Crosstalk Between Glycinergic and N-Methyl-D-Aspartate Receptor-Mediated Glutamatergic Transmission in Behaviours Associated with Opioid Use Disorder
Abstract
1. Introduction
2. Opioid Use Disorder and Dopamine Hypofunction
3. The Interaction Between Opioids and the GABAergic System in Response to Exposure to Mu-Opioid Agonists
| Opioid Ligand and Route of Administration | Subject | Findings | Reference |
|---|---|---|---|
| Fentanyl self-administration, IV, in rats Fentanyl, vapor self-administration in mice | Male and female adult Long Evans rats Male and female adult aged C57BL/6 mice | GABAB PAM (KK-92A) suppressed relapse in the VTA by reducing GIRK2/3 expression in DA neurons mediated by GABAB-R. | [60] |
| Buprenorphine intranasal administration | Male Sprague Dawley rats | Reversal of neurotransmitter dysregulation (↑ GABA/BDNF, ↓ DA) in the brain through BDNF/CREB modulation. | [52] |
| Fentanyl vapor self-administration Naloxone, IP | Male and female adult C57BL/6 mice | A reduction in GABAB receptor-mediated inhibition in VTA dopamine neurons during withdrawal. | [50] |
| DAMGO and morphine (bath perfusion in brain slice electrophysiology experiments) | Oprm1 A112G knockin mice | ↓ MOR suppression of GABA and Glu release onto the mesolimbic VTA dopaminergic neurons (SNP effect). | [54] |
| Morphine pellet, SC Naloxone, SC | Male Sprague Dawley rats | Acute morphine application produces mixed effects on GABAergic transmission mediated by a switch in MOR G protein coupling to stimulatory Gs proteins, causing activation of the cAMP-PKA pathway that increases GABA release. Increased basal GABAergic transmission and mIPSC frequency in the CeA during withdrawal. | [51] |
| Daily morphine in neonatal rats, IP, and pellet implantations in adult rats, SC DAMGO–deltorphin for brainstem slices | Male Wistar rats | ↓ GABA via DOR trafficking enhanced analgesia mediated by PLA2–AA–12-LOX–dependent inhibition of Ca2+ channels in the NRM. | [95] |
| Daily morphine in neonatal rats, IP, and pellet implantations in adult rats, SC. DAMGO–deltorphin mixture for isobologram | Male Wistar rats | A synergistic DOR–MOR interaction induced IPSC inhibition (PLA2 and cAMP/PKA dependent). In vivo, NRM microinjection of DOR and MOR agonists produced synergistic antinociception (PLA2-dependent). | [96] |
| Agonist, partial agonist and antagonist treatments for opioid addiction | Review | Opioids suppress GABAergic inhibition in the VTA, causing disinhibition of NAcC DA neurons, which enhances cue salience and increases relapse risk. | [97] |
| Increased morphine injection (10–20 mg/kg over 5 days, SC + 80 Hz whole body vibration) | Male Wistar rats | Reduced withdrawal symptoms associated with restored VTA GABA, increased DA release, and modulated expression of DORs on NAc cholinergic interneurons during withdrawal. | [98] |
| Increased heroin injection (5–40 mg/kg, twice daily, for 4 days, SC) | Male and female C57/B6 mice | Hyperalgesia was attenuated by DR GABA inhibition of serotonin and specific chemogenetic inhibition of DR-VGaT neurons. | [57] |
| Oxycodone self-administration, IV | Male HS rats | Highly addicted rats showed increased sIPSCs. Nociceptin reduces the excessive oxycodone self-administration and reverses GABA dysregulation in CeA. | [55] |
| Morphine (In vitro study) | Rat PAG slices | Opioid ↓ GABAergic synaptic currents in PAG via activating K+ channels through PLA2–AA–12-LOX pathway. | [87] |
| Morphine self-administration, IV or 10 mg/kg, SC (Respiratory depression) | Adult rhesus monkeys | ASP8062 decreased morphine self-administration without affecting the respiratory system via positive allosteric modulation of GABAB receptors (brain area was not specified). | [61] |
| Heroin overdose | Humans a postmortem case–control human study on 13 heroin-addicted males who died of overdose and 12 age-matched male controls who died of sudden natural causes | Decreased GAD 65/67-immunostained neuropil density in layers III and V, with a non-significant increase in somata density, indicating dysregulation of GABAergic interneuron-mediated inhibition in aMCC. | [58] |
| Heroin overdose | Humans 13 heroin-addicted males who died of overdose and 12 male controls who died of sudden natural causes | Bilaterally increased GAD65/67-immunoreactive neuropil density in layer V, which indicates dysregulation of GABAergic interneuron activity in AIC. | [59] |
| Codeine-containing cough syrup dependence | Human | ↓ GABA+ and ↑ Glu levels in the medial PFC, where GABA+ levels correlated negatively with impulsivity and positively with cognitive performance; glutamate correlated positively with impulsivity but not with cognitive performance. | [53] |
| Fentanyl (48%) and other opioids (ie, morphine, hydrocodone, oxycodone, and hydromophone [48.6%]) as the primary substance of abuse | Human | Baclofen was more effective than buprenorphine in detoxification, and the effect was mediated via the VTA GABAB receptor. | [56] |
| OUD patients (Heroin) | Human | Hypermethylation in the promoter region of the GAD2 gene. The peripheral blood samples were associated with OUD. | [99] |

4. Crosstalk Between N-Methyl-D-Aspartate Receptors and µ-Opioid Receptors in the Context of Opioid Use Disorder
5. The Role of Glycine in Modulating N-Methyl-D-Aspartate Receptors: Current Insights into Opioid Addiction Therapy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| NSOs | Novel synthetic opioids |
| IV | Intravenous |
| Fentalogs | Fentanyl analogues |
| MORs | µ-Opioid receptors |
| OUD | Opioid use disorder |
| SUD | Substance use disorders |
| LH | Lateral hypothalamus |
| MH | Medial hypothalamus |
| PAG | Periaqueductal Gray |
| DRF | Dorsal part of the reticular formation |
| VRF | Ventral part of the reticular formation |
| VTA | Ventral tegmental area |
| NAc | Nucleus accumbens |
| CPP | Conditioned place preference |
| SN | Substantia nigra |
| non-ORs | Non-opioid receptors |
| MOUD | Medications for opioid use disorder |
| DA | Dopamine |
| NMDA | N-Nethyl-D-aspartate |
| GABA | Gamma-aminobutyric acid |
| NMDARs | N-Methyl-D-aspartate receptors |
| Hipp | Hippocampus |
| NAcSh | NAc shell |
| Glu | Glutamate |
| AMPA | α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
| NAcC | NAc core |
| GlyT-1 | Glycine transporter 1 |
| DOR2 | δ2-Opioid receptor |
| DOPAC | 3,4-Dihydroxyphenilacetic acid |
| HVA | Homovanillic acid |
| DAMGO | D-Ala2,N-Me-Phe4,Gly5-ol-enkephalin |
| DAT | DA transporter |
| CTAP | D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 |
| MSN | Medium spiny neuron |
| D1-MSNs | D1 receptors |
| D2-MSNs | D2 receptors |
| RMTg | Rostromedial tegmental nucleus |
| IPSCs | Inhibitory postsynaptic currents |
| GVG | γ-Vinyl GABA |
| CeA | The central amygdala |
| PKA | Protein Kinase A |
| BDNF | Brain-derived neurotrophic factor |
| CREB | Cyclic AMP response element-binding protein |
| MoCA | Montreal Cognitive Assessment |
| PFC | Prefrontal cortex |
| SNP | Single-nucleotide polymorphism |
| mNAcSh | Medial nucleus accumbens shell |
| DR | Dorsal raphe |
| VGaT | Vesicular GABA transporter |
| VGluT3 | Vesicular glutamate transporter 3 |
| TPH | Tryptophan hydroxylase |
| aMCC | The anterior midcingulate cortex |
| GAD | Glutamate decarboxylase |
| AIC | The anterior insular cortex |
| GAD-ir | GAD-immunoreactive |
| PAMs | Positive allosteric modulators |
| GIRK | G-protein-gated inwardly rectifying potassium channel |
| RGS2 | Regulator of G protein signalling 2 |
| CNS | Central nervous system |
| PV | Parvalbumin |
| SST | Somatostatin |
| VIP | Vasoactive intestinal peptide |
| O-LM | Oriens-lacunosum moleculare interneurons |
| NRM | Nucleus raphe magnus |
| PLA2 | Phospholipase A(2) |
| PKC | Protein kinase C |
| N/OFQ | Nociceptin/orphanin FQ peptide |
| CLA–ACC | Claustrum–anterior cingulate cortex |
| KOR | κ-Opioid receptor |
| EPSCs | Excitatory post-synaptic currents |
| CINs | Cholinergic interneurons |
| D1R | D1 receptors |
| D2R | D2 receptors |
| BLA | Basolateral amygdala |
| VP | Ventral pallidum |
| LDT | Lateral dorsomedial tegmentum |
| AMPARs | AMPA receptors |
| GLT-1 | Glutamate transporter-1 |
| CIS | Chronic immobilisation stress |
| OFC | Orbitofrontal cortex |
| DS | Dorsal striatum |
| LHb | Lateral habenula |
| VPGlu | Glutamatergic neurons in the ventral pallidum |
| PF–PC | Parallel fibre–Purkinje cell |
| ERK | Extracellular signal-regulated kinases |
| LTP | Long-term potentiation |
| pGLUN1 | Phosphorylation of Ser897 in the GLUN1 subunit |
| DLPFC | The dorsolateral prefrontal cortex |
| mGlyR | Metabotropic glycine receptor |
| GFAP | Glial fibrillary acidic protein |
| HNK | Hydroxynorketamine |
| CRF1 | Corticotropin-releasing factor |
| RVM | Rostral ventromedial medulla |
| mHb–IPN | The medial habenula–interpeduncular nucleus |
| Kv1 | K+-channels of the shaker family |
| nAchR | Nicotinic acetylcholine receptor |
| xCT | Cystine/glutamate antiporter |
| S1R | Sigma-1 receptor |
| DCS | D-Cycloserine |
References
- Des Jarlais, D.C. HIV-1 Infection among Intravenous Drug Users in Manhattan, New York City, from 1977 through 1987. J. Am. Med. Assoc. 1989, 261, 1008–1012. [Google Scholar] [CrossRef]
- Brownstein, M.J. A Brief History of Opiates, Opioid Peptides, and Opioid Receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 5391–5393. [Google Scholar] [CrossRef] [PubMed]
- Bode, A.D.; Singh, M.; Andrews, J.; Kapur, G.B.; Baez, A.A. Fentanyl Laced Heroin and Its Contribution to a Spike in Heroin Overdose in Miami-Dade County. Am. J. Emerg. Med. 2017, 35, 1364–1365. [Google Scholar] [CrossRef] [PubMed]
- Mistler, C.B.; Chandra, D.K.; Copenhaver, M.M.; Wickersham, J.A.; Shrestha, R. Engagement in Harm Reduction Strategies After Suspected Fentanyl Contamination Among Opioid-Dependent Individuals. J. Community Health 2021, 46, 349–357. [Google Scholar] [CrossRef]
- Yu, J.; Diekhans, K.; Tsang, A.; Rodda, L.N. Fluorofentanyl and Novel Synthetic Opioids in Accidental Overdose Deaths. J. Anal. Toxicol. 2024, 48, 573–581. [Google Scholar] [CrossRef]
- Volkow, N.D.; Blanco, C. The Changing Opioid Crisis: Development, Challenges and Opportunities. Mol. Psychiatry 2021, 26, 218–233. [Google Scholar]
- Hosztafi, S.; Galambos, A.R.; Köteles, I.; Karádi, D.; Fürst, S.; Al-Khrasani, M. Opioid-Based Haptens: Development of Immunotherapy. Int. J. Mol. Sci. 2024, 25, 7781. [Google Scholar] [CrossRef]
- Buresh, M.; Stern, R.; Rastegar, D. Treatment of Opioid Use Disorder in Primary Care. BMJ 2021, 373, n784. [Google Scholar] [CrossRef]
- Mattick, R.P.; Breen, C.; Kimber, J.; Davoli, M. Methadone Maintenance Therapy versus No Opioid Replacement Therapy for Opioid Dependence. Cochrane Database Syst. Rev. 2009, 2009, CD002209. [Google Scholar] [CrossRef]
- Abraham, A.J.; Andrews, C.M.; Harris, S.J.; Friedmann, P.D. Availability of Medications for the Treatment of Alcohol and Opioid Use Disorder in the USA. Neurotherapeutics 2020, 17, 55–69. [Google Scholar] [CrossRef]
- Schuckit, M.A. Treatment of Opioid-Use Disorders. N. Engl. J. Med. 2016, 375, 357–368. [Google Scholar] [CrossRef]
- Falconnier, C.; Caparros-Roissard, A.; Decraene, C.; Lutz, P.E. Functional Genomic Mechanisms of Opioid Action and Opioid Use Disorder: A Systematic Review of Animal Models and Human Studies. Mol. Psychiatry 2023, 28, 4568–4584. [Google Scholar] [CrossRef]
- David, V.; Cazala, P. Differentiation of Intracranial Morphine Self-Administration Behavior among Five Brain Regions in Mice. Pharmacol. Biochem. Behav. 1994, 48, 625–633. [Google Scholar] [CrossRef] [PubMed]
- David, V.; Cazala, P. Anatomical and Pharmacological Specificity of the Rewarding Effect Elicited by Microinjections of Morphine into the Nucleus Accumbens of Mice. Psychopharmacology 2000, 150, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, M.C.; Franklin, K.B.J. The Development of a Conditioned Place Preference to Morphine: Effects of Microinjections into Various CNS Sites. Behav. Neurosci. 1997, 111, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.G.; LePiane, F.G. Reinforcing Effects of Morphine Microinjection into the Ventral Tegmental Area. Pharmacol. Biochem. Behav. 1980, 12, 965–968. [Google Scholar] [CrossRef]
- Volkow, N.D.; Frieden, T.R.; Hyde, P.S.; Cha, S.S. Medication-Assisted Therapies—Tackling the Opioid-Overdose Epidemic. N. Engl. J. Med. 2014, 370, 2063–2066. [Google Scholar] [CrossRef]
- Cao, D.N.; Li, F.; Wu, N.; Li, J. Insights into the Mechanisms Underlying Opioid Use Disorder and Potential Treatment Strategies. Br. J. Pharmacol. 2023, 180, 862–878. [Google Scholar]
- Dunn, K.E.; Huhn, A.S.; Bergeria, C.L.; Gipson, C.D.; Weerts, E.M. Non-Opioid Neurotransmitter Systems That Contribute to the Opioid Withdrawal Syndrome: A Review of Preclinical and Human Evidence. J. Pharmacol. Exp. Ther. 2019, 371, 422–452. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Manzanedo, C.; Do Couto, B.R.; Rodríguez-Arias, M.; Miñarro, J. Memantine Blocks Sensitization to the Rewarding Effects of Morphine. Brain Res. 2009, 1288, 95–104. [Google Scholar] [CrossRef]
- Bespalov, A.Y.; Zvartau, E.E. Intraaccumbens Administration of NMDA Receptor Antagonist (±)-CPP Prevents Locomotor Activation Conditioned by Morphine and Amphetamine in Rats. Pharmacol. Biochem. Behav. 1996, 55, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Y.; Guo, C.Y.; Yu, P.; Lee, D.Y.W.; Han, J.S.; Cui, C.L. The Role of NR2B Containing NMDA Receptor in Place Preference Conditioned with Morphine and Natural Reinforcers in Rats. Exp. Neurol. 2006, 200, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Y.; Chu, N.N.; Guo, C.Y.; Han, J.S.; Cui, C.L. NR2B-Containing NMDA Receptor Is Required for Morphine-but Not Stress-Induced Reinstatement. Exp. Neurol. 2007, 203, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.H.; Wardeh, G.; Smit, A.B.; Schoffelmeer, A.N.M. Morphine Causes a Delayed Increase in Glutamate Receptor Functioning in the Nucleus Accumbens Core. Eur. J. Pharmacol. 2005, 511, 27–30. [Google Scholar] [CrossRef]
- Galambos, A.R.; Papp, Z.T.; Boldizsár, I.; Zádor, F.; Köles, L.; Harsing, L.G.; Al-Khrasani, M. Glycine Transporter 1 Inhibitors: Predictions on Their Possible Mechanisms in the Development of Opioid Analgesic Tolerance. Biomedicines 2024, 12, 421. [Google Scholar] [CrossRef]
- Galambos, A.R.; Essmat, N.; Lakatos, P.P.; Szücs, E.; Boldizsár, I.; Abbood, S.K.; Karádi, D.; Kirchlechner-Farkas, J.M.; Király, K.; Benyhe, S.; et al. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int. J. Mol. Sci. 2024, 25, 11136. [Google Scholar] [CrossRef]
- Nestler, E.J. Is There a Common Molecular Pathway for Addiction? Nat. Neurosci. 2005, 8, 1445–1449. [Google Scholar] [CrossRef]
- Listos, J.; Łupina, M.; Talarek, S.; Mazur, A.; Orzelska-Górka, J.; Kotlińska, J. The Mechanisms Involved in Morphine Addiction: An Overview. Int. J. Mol. Sci. 2019, 20, 4302. [Google Scholar] [CrossRef]
- Kaplan, G.B.; Thompson, B.L. Neuroplasticity of the Extended Amygdala in Opioid Withdrawal and Prolonged Opioid Abstinence. Front. Pharmacol. 2023, 14, 1253736. [Google Scholar] [CrossRef]
- Baik, J.H. Stress and the Dopaminergic Reward System. Exp. Mol. Med. 2020, 52, 1879–1890. [Google Scholar] [CrossRef]
- Yoshida, Y.; Koide, S.; Hirose, N.; Takada, K.; Tomiyama, K.; Koshikawa, N.; Cools, A.R. Fentanyl Increases Dopamine Release in Rat Nucleus Accumbens: Involvement of Mesolimbic MU- and Delta-2-Opioid Receptors. Neuroscience 1999, 92, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Liu, B.; Wang, L.; Zhu, S.; Li, X.; Kang, S.; Niu, X.; Song, J.; Wu, Y. Global, Regional, and National Epidemiology of Opioid Use Disorder Among Adolescents and Young Adults, 1990–2019. J. Adolesc. Health 2025, 76, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A.; Leone, P.; Rivest, R.; Leeb, K. Elevations of Nucleus Accumbens Dopamine and DOPAC Levels during Intravenous Heroin Self-administration. Synapse 1995, 21, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Gooding, S.W.; Lewis, E.; Chau, C.; Sandhu, S.; Glienke, J.; Whistler, J.L. Nucleus Accumbens Sub-Regions Experience Distinct Dopamine Release Responses Following Acute and Chronic Morphine Exposure. bioRxiv 2024. [Google Scholar] [CrossRef]
- Vander Weele, C.M.; Porter-Stransky, K.A.; Mabrouk, O.S.; Lovic, V.; Singer, B.F.; Kennedy, R.T.; Aragona, B.J. Rapid Dopamine Transmission within the Nucleus Accumbens: Dramatic Difference between Morphine and Oxycodone Delivery. Eur. J. Neurosci. 2014, 40, 3041–3054. [Google Scholar] [CrossRef]
- Spanagel, R.; Almeida, O.F.X.; Shippenberg, T.S. Long Lasting Changes in Morphine-induced Mesolimbic Dopamine Release after Chronic Morphine Exposure. Synapse 1993, 14, 243–245. [Google Scholar] [CrossRef]
- Maisonneuve, I.M.; Warner, L.M.; Glick, S.D. Biphasic Dose-Related Effects of Morphine on Dopamine Release. Drug Alcohol Depend. 2001, 65, 55–63. [Google Scholar] [CrossRef]
- Di Giannuario, A.; Pieretti, S.; Catalani, A.; Loizzo, A. Orphanin FQ Reduces Morphine-Induced Dopamine Release in the Nucleus Accumbens: A Microdialysis Study in Rats. Neurosci. Lett. 1999, 272, 183–186. [Google Scholar] [CrossRef]
- Pothos, E.; Rada, P.; Mark, G.P.; Hoebel, B.G. Dopamine Microdialysis in the Nucleus Accumbens during Acute and Chronic Morphine, Naloxone-Precipitated Withdrawal and Clonidine Treatment. Brain Res. 1991, 566, 348–350. [Google Scholar] [CrossRef]
- Acquas, E.; Carboni, E.; Di Chiara, G. Profound Depression of Mesolimbic Dopamine Release after Morphine Withdrawal in Dependent Rats. Eur. J. Pharmacol. 1991, 193, 133–134. [Google Scholar] [CrossRef]
- Samson, K.R.; Xu, W.; Kortagere, S.; España, R.A. Intermittent Access to Oxycodone Decreases Dopamine Uptake in the Nucleus Accumbens Core during Abstinence. Addict. Biol. 2022, 27, e13241. [Google Scholar] [CrossRef]
- Sustkova-Fiserova, M.; Puskina, N.; Havlickova, T.; Lapka, M.; Syslova, K.; Pohorala, V.; Charalambous, C. Ghrelin Receptor Antagonism of Fentanyl-Induced Conditioned Place Preference, Intravenous Self-Administration, and Dopamine Release in the Nucleus Accumbens in Rats. Addict. Biol. 2020, 25, e12845. [Google Scholar] [CrossRef]
- Ferber, S.G.; Weller, A.; Yadid, G.; Friedman, A. Discovering the Lost Reward: Critical Locations for Endocannabinoid Modulation of the Cortico–Striatal Loop That Are Implicated in Major Depression. Int. J. Mol. Sci. 2021, 22, 1867. [Google Scholar] [CrossRef] [PubMed]
- Gangarossa, G.; Espallergues, J.; d’Exaerde, A.d.K.; El Mestikawy, S.; Gerfen, C.R.; Hervé, D.; Girault, J.A.; Valjent, E. Distribution and Compartmental Organization of GABAergic Medium-Sized Spiny Neurons in the Mouse Nucleus Accumbens. Front. Neural Circuits 2013, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Chartoff, E.H.; Connery, H.S. It’s MORe Exciting than Mu: Crosstalk between Mu Opioid Receptors and Glutamatergic Transmission in the Mesolimbic Dopamine System. Front. Pharmacol. 2014, 5, 116. [Google Scholar]
- Hosseinzadeh Sahafi, O.; Sardari, M.; Alijanpour, S.; Rezayof, A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci. 2023, 13, 815. [Google Scholar] [CrossRef]
- Bonci, A.; Williams, J.T. Increased Probability of GABA Release during Withdrawal from Morphine. J. Neurosci. 1997, 17, 796–803. [Google Scholar] [CrossRef]
- Xi, Z.O.; Stein, E.A. Gabaergic Mechanisms of Opiate Reinforcement. Alcohol. 2002, 37, 485–494. [Google Scholar] [CrossRef]
- Matsui, A.; Williams, J.T. Opioid-Sensitive GABA Inputs from Rostromedial Tegmental Nucleus Synapse onto Midbrain Dopamine Neurons. J. Neurosci. 2011, 31, 17729–17735. [Google Scholar] [CrossRef]
- Moussawi, K.; Ortiz, M.M.; Gantz, S.C.; Tunstall, B.J.; Marchette, R.C.N.; Bonci, A.; Koob, G.F.; Vendruscolo, L.F. Fentanyl Vapor Self-Administration Model in Mice to Study Opioid Addiction. Sci. Adv. 2020, 6, eabc0413. [Google Scholar] [CrossRef]
- Bajo, M.; Madamba, S.G.; Roberto, M.; Siggins, G.R. Acute Morphine Alters GABAergic Transmission in the Central Amygdala during Naloxone-Precipitated Morphine Withdrawal: Role of Cyclic AMP. Front. Integr. Neurosci. 2014, 8, 45. [Google Scholar] [CrossRef]
- Xhakaza, S.P.; Khoza, L.J.; Haripershad, A.M.; Ghazi, T.; Dhani, S.; Mutsimhu, C.; Molopa, M.J.; Madurai, N.P.; Madurai, L.; Singh, S.D.; et al. Alterations in Neurotransmitter Levels and Transcription Factor Expression Following Intranasal Buprenorphine Administration. Biomed. Pharmacother. 2021, 138, 111515. [Google Scholar] [CrossRef] [PubMed]
- Li, J.N.; Liu, X.L.; Li, L. Prefrontal GABA and Glutamate Levels Correlate with Impulsivity and Cognitive Function of Prescription Opioid Addicts: A 1H-Magnetic Resonance Spectroscopy Study. Psychiatry Clin. Neurosci. 2020, 74, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Popova, D.; Desai, N.; Blendy, J.A.; Pang, Z.P. Synaptic Regulation by OPRM1 Variants in Reward Neurocircuitry. J. Neurosci. 2019, 39, 5685–5696. [Google Scholar] [CrossRef] [PubMed]
- Kallupi, M.; Carrette, L.L.G.; Kononoff, J.; Woods, L.C.S.; Palmer, A.A.; Schweitzer, P.; George, O.; De Guglielmo, G. Nociceptin Attenuates the Escalation of Oxycodone Self-Administration by Normalizing CeA-GABA Transmission in Highly Addicted Rats. Proc. Natl. Acad. Sci. USA 2020, 117, 2140–2148. [Google Scholar] [CrossRef]
- Hermenau, M.; Stamper, B.; Leung, K.; Pomm, R.; Guerrier, C.; Cammilleri, J.; Johnson, B. A Retrospective Comparison of the Effectiveness of Buprenorphine Versus Baclofen for Acute Opioid Withdrawal. HCA Healthc. J. Med. 2023, 4, 11–149. [Google Scholar] [CrossRef]
- Alvarez-Bagnarol, Y.; García, R.; Vendruscolo, L.F.; Morales, M. Inhibition of Dorsal Raphe GABAergic Neurons Blocks Hyperalgesia during Heroin Withdrawal. Neuropsychopharmacology 2023, 48, 1300–1308. [Google Scholar] [CrossRef]
- von Gilsa, A.; Steiner, J.; Gos, A.; Trübner, K.; Mawrin, C.; Kaliszan, M.; Nickl-Jockschat, T.; Gos, T. Impairment of the GABAergic System in the Anterior Midcingulate Cortex of Heroin-Addicted Males. Eur. Arch. Psychiatry Clin. Neurosci. 2025, 1–8. [Google Scholar] [CrossRef]
- Gos, A.; Steiner, J.; Trübner, K.; Mawrin, C.; Kaliszan, M.; Gos, T. Impairment of the GABAergic System in the Anterior Insular Cortex of Heroin-Addicted Males. Eur. Arch. Psychiatry Clin. Neurosci. 2025, 275, 219–226. [Google Scholar] [CrossRef]
- Pachenari, N.; Channell, A.L.; Belilos, A.J.; Dienel, S.J.; Moussawi, K. Reduced GIRK Expression in Midbrain Dopamine Neurons during Prolonged Abstinence from Fentanyl Self-Administration. Psychopharmacology 2025, 242, 1653–1666. [Google Scholar] [CrossRef]
- Akuzawa, S.; Irie, M.; Kanki, M.; Shirakawa, T.; Sato, Y. Effect of ASP8062 on Morphine Self-Administration and Morphine-Induced Respiratory Suppression in Monkeys. J. Pharmacol. Sci. 2023, 151, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Mu, Q.; Chang, H.; Zhang, C.; Wang, Y.; Rong, S.; Liu, S.; Zuo, D.; He, Z.; Wan, D.; et al. Postretrieval Microinjection of Baclofen Into the Agranular Insular Cortex Inhibits Morphine-Induced CPP by Disrupting Reconsolidation. Front. Pharmacol. 2020, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Zhu, N.; Meng, X.L.; Li, Y.H.; Sui, N. Effects of Inactivating the Agranular or Granular Insular Cortex on the Acquisition of the Morphine-Induced Conditioned Place Preference and Naloxone-Precipitated Conditioned Place Aversion in Rats. J. Psychopharmacol. 2013, 27, 837–844. [Google Scholar] [CrossRef]
- Defelipe, J.; López-Cruz, P.L.; Benavides-Piccione, R.; Bielza, C.; Larrañaga, P.; Anderson, S.; Burkhalter, A.; Cauli, B.; Fairén, A.; Feldmeyer, D.; et al. New Insights into the Classification and Nomenclature of Cortical GABAergic Interneurons. Nat. Rev. Neurosci. 2013, 14, 202–216. [Google Scholar] [CrossRef]
- He, X.J.; Patel, J.; Weiss, C.E.; Ma, X.; Bloodgood, B.L.; Banghart, M.R. Convergent, Functionally Independent Signaling by Mu and Delta Opioid Receptors in Hippocampal Parvalbumin Interneurons. eLife 2021, 10, e69746. [Google Scholar] [CrossRef]
- Shao, C.; Chen, P.; Chen, Q.; Zhao, M.; Zhang, W.N.; Yang, K. Mu Opioid Receptors Inhibit GABA Release from Parvalbumin Interneuron Terminals onto CA1 Pyramidal Cells. Biochem. Biophys. Res. Commun. 2020, 522, 1059–1062. [Google Scholar] [CrossRef]
- Caccavano, A.P.; Vlachos, A.; McLean, N.; Kimmel, S.; Kim, J.H.; Vargish, G.; Mahadevan, V.; Hewitt, L.; Rossi, A.M.; Spineux, I.; et al. Divergent Opioid-Mediated Suppression of Inhibition between Hippocampus and Neocortex across Species and Development. Neuron 2025, 113, 1805–1822.e7. [Google Scholar] [CrossRef]
- Bouarab, C.; Thompson, B.; Polter, A.M. VTA GABA Neurons at the Interface of Stress and Reward. Front. Neural Circuits 2019, 13, 78. [Google Scholar] [CrossRef]
- Reeves, K.C.; Shah, N.; Muñoz, B.; Atwood, B.K. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front. Mol. Neurosci. 2022, 15, 919773. [Google Scholar] [CrossRef]
- Drake, C.T.; Milner, T.A. Mu Opioid Receptors Are in Discrete Hippocampal Interneuron Subpopulations. Hippocampus 2002, 12, 119–136. [Google Scholar] [CrossRef]
- Cattaneo, S.; Zaghi, M.; Maddalena, R.; Bedogni, F.; Sessa, A.; Taverna, S. Somatostatin-Expressing Interneurons Co-Release GABA and Glutamate onto Different Postsynaptic Targets in the Striatum. bioRxiv 2019. [Google Scholar] [CrossRef]
- Kecskés, A.; Pohóczky, K.; Kecskés, M.; Varga, Z.V.; Kormos, V.; Szőke, É.; Henn-Mike, N.; Fehér, M.; Kun, J.; Gyenesei, A.; et al. Characterization of Neurons Expressing the Novel Analgesic Drug Target Somatostatin Receptor 4 in Mouse and Human Brains. Int. J. Mol. Sci. 2020, 21, 7788. [Google Scholar] [CrossRef] [PubMed]
- Turi, G.F.; Li, W.K.; Chavlis, S.; Pandi, I.; O’Hare, J.; Priestley, J.B.; Grosmark, A.D.; Liao, Z.; Ladow, M.; Zhang, J.F.; et al. Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning. Neuron 2019, 101, 1150–1165.e8. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; de Solis, C.A.; Boyle, L.M.; Bock, T.; Lofaro, O.M.; Buss, E.W.; Asok, A.; Kandel, E.R.; Siegelbaum, S.A. Enkephalin Release from VIP Interneurons in the Hippocampal CA2/3a Region Mediates Heterosynaptic Plasticity and Social Memory. Mol. Psychiatry 2022, 27, 2879–2900. [Google Scholar] [CrossRef] [PubMed]
- Blasco-lbáñez, J.M. Enkephalin-Containing Interneurons Are Specialized to Innervate Other Interneurons in the Hippocampal CA1 Region of the Rat and Guinea-Pig. Eur. J. Neurosci. 1998, 10, 1784–1795. [Google Scholar] [CrossRef]
- Berríos-Cárcamo, P.; Quezada, M.; Santapau, D.; Morales, P.; Olivares, B.; Ponce, C.; Ávila, A.; De Gregorio, C.; Ezquer, M.; Quintanilla, M.E.; et al. A Novel Morphine Drinking Model of Opioid Dependence in Rats. Int. J. Mol. Sci. 2022, 23, 3874. [Google Scholar] [CrossRef]
- Neubrandt, M.; Lenkey, N.; Vervaeke, K. VIP Interneurons Control Hippocampal Place Cell Remapping through Transient Disinhibition in Novel Environments. bioRxiv 2025. [Google Scholar] [CrossRef]
- Merrill, C.B.; Friend, L.N.; Newton, S.T.; Hopkins, Z.H.; Edwards, J.G. Ventral Tegmental Area Dopamine and GABA Neurons: Physiological Properties and Expression of MRNA for Endocannabinoid Biosynthetic Elements. Sci. Rep. 2015, 5, 16176. [Google Scholar] [CrossRef]
- Viena, T.D.; Rasch, G.E.; Silva, D.; Allen, T.A. Calretinin and Calbindin Architecture of the Midline Thalamus Associated with Prefrontal–Hippocampal Circuitry. Hippocampus 2021, 31, 770–789. [Google Scholar] [CrossRef]
- Oriol, L.; Chao, M.; Kollman, G.J.; Dowlat, D.S.; Singhal, S.M.; Steinkellner, T.; Hnasko, T.S. Ventral Tegmental Area Interneurons Revisited: GABA and Glutamate Projection Neurons Make Local Synapses. eLife 2025, 13, 100085. [Google Scholar] [CrossRef]
- Matsui, A.; Jarvie, B.C.; Robinson, B.G.; Hentges, S.T.; Williams, J.T. Separate GABA Afferents to Dopamine Neurons Mediate Acute Action of Opioids, Development of Tolerance, and Expression of Withdrawal. Neuron 2014, 82, 1346–1356. [Google Scholar] [CrossRef]
- Castro, D.C.; Bruchas, M.R. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019, 102, 529–552. [Google Scholar] [CrossRef] [PubMed]
- Fields, H.L.; Margolis, E.B. Understanding Opioid Reward. Trends Neurosci. 2015, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, S.I.; Tsunekawa, N.; Yanagawa, Y.; Okada, Y.; Kuribayashi, J.; Obata, K. Electrophysiological and Morphological Characteristics of GABAergic Respiratory Neurons in the Mouse Pre-Bötzinger Complex. Eur. J. Neurosci. 2006, 23, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Yajima, Y.; Hayashi, Y. Ambiguous Respiratory Neurons Are Modulated by GABA(A) Receptor-Mediated Inhibition. Neuroscience 1999, 90, 249–257. [Google Scholar] [CrossRef]
- Baertsch, N.A.; Baertsch, H.C.; Ramirez, J.M. The Interdependence of Excitation and Inhibition for the Control of Dynamic Breathing Rhythms. Nat. Commun. 2018, 9, 843. [Google Scholar] [CrossRef]
- Vaughan, C.W.; Ingram, S.L.; Connor, M.A.; Christie, M.J. How Opioids Inhibit GABA-Mediated Neurotransmission. Nature 1997, 390, 611–614. [Google Scholar] [CrossRef]
- Bobeck, E.N.; McNeal, A.L.; Morgan, M.M. Drug Dependent Sex-Differences in Periaqueducatal Gray Mediated Antinociception in the Rat. Pain 2009, 147, 210–216. [Google Scholar] [CrossRef]
- Hughes, D.I.; Todd, A.J. Central Nervous System Targets: Inhibitory Interneurons in the Spinal Cord. Neurotherapeutics 2020, 17, 874–885. [Google Scholar] [CrossRef]
- Gutierrez-Mecinas, M.; Davis, O.; Polgár, E.; Shahzad, M.; Navarro-Batista, K.; Furuta, T.; Watanabe, M.; Hughes, D.I.; Todd, A.J. Expression of Calretinin Among Different Neurochemical Classes of Interneuron in the Superficial Dorsal Horn of the Mouse Spinal Cord. Neuroscience 2019, 398, 171–181. [Google Scholar] [CrossRef]
- Fatima, M.; Ren, X.; Pan, H.; Slade, H.F.E.; Asmar, A.J.; Xiong, C.M.; Shi, A.; Xiong, A.E.; Wang, L.; Duan, B. Spinal Somatostatin-Positive Interneurons Transmit Chemical Itch. Pain 2019, 160, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Glerup, S.; Molgaard, S.; Ulrichsen, M.; Boggild, S.; Holm, M.L.; Vaegter, C.; Nyengaard, J. Immunofluorescent Visualization of Mouse Interneuron Subtypes. F1000Research 2014, 3, 242. [Google Scholar] [CrossRef]
- Pasternak, G.W.; Pan, Y.X. Mu Opioids and Their Receptors: Evolution of a Concept. Pharmacol. Rev. 2013, 65, 1257–1317. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, J.; Xu, M.; Rossi, G.C.; Majumdar, S.; Pasternak, G.W.; Pan, Y.X. Truncated μ-Opioid Receptors with 6 Transmembrane Domains Are Essential for Opioid Analgesia. Anesth. Analg. 2018, 126, 1050–1057. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, Z.Z. Signaling Cascades for δ-Opioid Receptor-Mediated Inhibition of Gaba Synaptic Transmission and Behavioral Antinociception. Mol. Pharmacol. 2012, 81, 375–383. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, Z.Z. Synaptic Mechanism for Functional Synergism between δ- And μ-Opioid Receptors. J. Neurosci. 2010, 30, 4735–4745. [Google Scholar] [CrossRef]
- Nutt, D.; Lingford-Hughes, A. Addiction: The Clinical Interface. Br. J. Pharmacol. 2008, 154, 397–405. [Google Scholar] [CrossRef]
- Jones, G.C.; Small, C.A.; Otteson, D.Z.; Hafen, C.W.; Breinholt, J.T.; Flora, P.D.; Burris, M.D.; Sant, D.W.; Ruchti, T.R.; Yorgason, J.T.; et al. Whole-Body Vibration Prevents Neuronal, Neurochemical, and Behavioral Effects of Morphine Withdrawal in a Rat Model. Int. J. Mol. Sci. 2023, 24, 14147. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, Y.; Xun, Y.; Yu, J.; Lu, Y.; Zhang, R.; Dang, W.; Zhu, F.; Zhang, J. Association between Methylation in the Promoter Region of the GAD2 Gene and Opioid Use Disorder. Brain Res. 2023, 1812, 148407. [Google Scholar] [CrossRef]
- Hasbi, A.; Sivasubramanian, M.; Milenkovic, M.; Komarek, K.; Madras, B.K.; George, S.R. Dopamine D1-D2 Receptor Heteromer Expression in Key Brain Regions of Rat and Higher Species: Upregulation in Rat Striatum after Cocaine Administration. Neurobiol. Dis. 2020, 143, 105017. [Google Scholar] [CrossRef]
- Bertran-Gonzalez, J.; Bosch, C.; Maroteaux, M.; Matamales, M.; Hervé, D.; Valjent, E.; Girault, J.A. Opposing Patterns of Signaling Activation in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons in Response to Cocaine and Haloperidol. J. Neurosci. 2008, 28, 5671–5685. [Google Scholar] [CrossRef]
- Berendse, H.W.; Graaf, Y.G.; Groenewegen, H.J. Topographical Organization and Relationship with Ventral Striatal Compartments of Prefrontal Corticostriatal Projections in the Rat. J. Comp. Neurol. 1992, 316, 314–347. [Google Scholar] [CrossRef]
- Pignatelli, M.; Beyeler, A. Valence Coding in Amygdala Circuits. Curr. Opin. Behav. Sci. 2019, 26, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wienecke, C.F.R.; Nachtrab, G.; Chen, X. A Thalamic Input to the Nucleus Accumbens Mediates Opiate Dependence. Nature 2016, 530, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhang, S.; Wang, H.L.; Barker, D.J.; Miranda-Barrientos, J.; Morales, M. VTA Glutamatergic Inputs to Nucleus Accumbens Drive Aversion by Acting on GABAergic Interneurons. Nat. Neurosci. 2016, 19, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Vachez, Y.M.; Tooley, J.R.; Abiraman, K.; Matikainen-Ankney, B.; Casey, E.; Earnest, T.; Ramos, L.M.; Silberberg, H.; Godynyuk, E.; Uddin, O.; et al. Ventral Arkypallidal Neurons Inhibit Accumbal Firing to Promote Reward Consumption. Nat. Neurosci. 2021, 24, 379–390. [Google Scholar] [CrossRef]
- Beier, K.T.; Steinberg, E.E.; Deloach, K.E.; Xie, S.; Miyamichi, K.; Schwarz, L.; Gao, X.J.; Kremer, E.J.; Malenka, R.C.; Luo, L. Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell 2015, 162, 622–634. [Google Scholar] [CrossRef]
- Scofield, M.D.; Heinsbroek, J.A.; Gipson, C.D.; Kupchik, Y.M.; Spencer, S.; Smith, A.C.W.; Roberts-Wolfe, D.; Kalivas, P.W. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol. Rev. 2016, 68, 816–871. [Google Scholar] [CrossRef]
- Brown, M.T.C.; Tan, K.R.; O’Connor, E.C.; Nikonenko, I.; Muller, D.; Lüscher, C. Ventral Tegmental Area GABA Projections Pause Accumbal Cholinergic Interneurons to Enhance Associative Learning. Nature 2012, 492, 452–456. [Google Scholar] [CrossRef]
- Wu, Y.; Perez-Rosello, T.; Awatramani, R.; Surmeier, D.J. Presynaptic Mu Opioid Receptors Suppress the Functional Connectivity of Ventral Tegmental Area Dopaminergic Neurons with Aversion-Related Brain Regions. J. Neurosci. 2025, 45, e1194242025. [Google Scholar] [CrossRef]
- Mamaligas, A.A.; Cai, Y.; Ford, C.P. Nicotinic and Opioid Receptor Regulation of Striatal Dopamine D2-Receptor Mediated Transmission. Sci. Rep. 2016, 6, 37834. [Google Scholar] [CrossRef]
- Reeves, J.M.; Arias-Hervert, E.; Kmiec, G.E.; Birdsong, W.T. Excitatory Synaptic Transmission Is Differentially Modulated by Opioid Receptors along the Claustro-Cingulate Pathway. eNeuro 2025, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- McGovern, D.J.; Polter, A.M.; Prévost, E.D.; Ly, A.; McNulty, C.J.; Rubinstein, B.; Root, D.H. Ventral Tegmental Area Glutamate Neurons Establish a Mu-Opioid Receptor Gated Circuit to Mesolimbic Dopamine Neurons and Regulate Opioid-Seeking Behavior. Neuropsychopharmacology 2023, 48, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Lupica, C.R.; Hoffman, A.F. Control of Dopamine Communication by Opioids: Glutamate Enters the Discussion. Neuropsychopharmacology 2023, 48, 1833–1834. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.T.C.; Bellone, C.; Mameli, M.; Labouèbe, G.; Bocklisch, C.; Balland, B.; Dahan, L.; Luján, R.; Deisseroth, K.; LüScher, C. Drug-Driven AMPA Receptor Redistribution Mimicked by Selective Dopamine Neuron Stimulation. PLoS ONE 2010, 5, e15870. [Google Scholar] [CrossRef]
- Heinsbroek, J.A.; De Vries, T.J.; Peters, J. Glutamatergic Systems and Memory Mechanisms Underlying Opioid Addiction. Cold Spring Harb. Perspect. Med. 2021, 11, a039602, Erratum in Cold Spring Harb. Perspect. Med. 2020, 10, a040410. [Google Scholar] [CrossRef]
- Salisbury, A.J.; Blackwood, C.A.; Cadet, J.L. Prolonged Withdrawal From Escalated Oxycodone Is Associated With Increased Expression of Glutamate Receptors in the Rat Hippocampus. Front. Neurosci. 2021, 14, 617973. [Google Scholar] [CrossRef]
- Lin, H.; Olaniran, A.; Luo, X.; Strauch, J.; Burke, M.A.M.; Matheson, C.L.; Li, X. Orbitofrontal Cortex to Dorsal Striatum Circuit Is Critical for Incubation of Oxycodone Craving after Forced Abstinence. Addict. Biol. 2024, 29, e13440. [Google Scholar] [CrossRef]
- Chen, R.S.; Liu, J.; Wang, Y.J.; Ning, K.; Liu, J.G.; Liu, Z.Q. Glutamatergic Neurons in Ventral Pallidum Modulate Heroin Addiction via Epithalamic Innervation in Rats. Acta Pharmacol. Sin. 2024, 45, 945–958. [Google Scholar] [CrossRef]
- Khatri, S.N.; Ulangkaya, H.; Maher, E.E.; Sadek, S.; Hong, M.; Woodcox, A.M.; Stoops, W.W.; Gipson, C.D. Oxycodone Withdrawal Is Associated with Increased Cocaine Self-Administration and Aberrant Accumbens Glutamate Plasticity in Rats. Neuropharmacology 2024, 242, 109773. [Google Scholar] [CrossRef]
- Dolgetta, A.; Johnson, M.; Fruitman, K.; Siegel, L.; Zhou, Y.; McEwen, B.S.; Kreek, M.J.; Milner, T.A. Sex and Chronic Stress Alter the Distribution of Glutamate Receptors within Rat Hippocampal CA3 Pyramidal Cells Following Oxycodone Conditioned Place Preference. Neurobiol. Stress 2022, 17, 100431. [Google Scholar] [CrossRef]
- Xi, Z.X.; Stein, E.A. Blockade of Ionotropic Glutamatergic Transmission in the Ventral Tegmental Area Reduces Heroin Reinforcement in Rat. Psychopharmacology 2002, 164, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bai, J.; Sun, J.Y.; Ye, T.; Zhang, L.; Wu, F.Y.; Nan, J.; Lan, Y. Mechanisms Underlying Mu Opioid Receptor Effects on Parallel Fiber-Purkinje Cell Synaptic Transmission in Mouse Cerebellar Cortex. Front. Synaptic Neurosci. 2022, 14, 862704. [Google Scholar] [CrossRef] [PubMed]
- Garzón, J.; Rodríguez-Muñoz, M.; Sánchez-Blázquez, P. Direct Association of Mu-Opioid and NMDA Glutamate Receptors Supports Their Cross-Regulation: Molecular Implications for Opioid Tolerance. Curr. Drug Abus. Rev. 2012, 5, 199–226. [Google Scholar] [CrossRef] [PubMed]
- Berhow, M.T.; Hiroi, N.; Nestler, E.J. Regulation of ERK (Extracellular Signal Regulated Kinase), Part of the Neurotrophin Signal Transduction Cascade, in the Rat Mesolimbic Dopamine System by Chronic Exposure to Morphine or Cocaine. J. Neurosci. 1996, 16, 4707–4715. [Google Scholar] [CrossRef]
- Ivanov, A.; Pellegrino, C.; Rama, S.; Dumalska, I.; Salyha, Y.; Ben-Ari, Y.; Medina, I. Opposing Role of Synaptic and Extrasynaptic NMDA Receptors in Regulation of the Extracellular Signal-Regulated Kinases (ERK) Activity in Cultured Rat Hippocampal Neurons. J. Physiol. 2006, 572, 789–798. [Google Scholar] [CrossRef]
- Sun, W.L.; Quizon, P.M.; Zhu, J. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 137. [Google Scholar]
- Shen, H.; Moussawi, K.; Zhou, W.; Toda, S.; Kalivas, P.W. Heroin Relapse Requires Long-Term Potentiation-like Plasticity Mediated by NMDA2b-Containing Receptors. Proc. Natl. Acad. Sci. USA 2011, 108, 19407–19412. [Google Scholar] [CrossRef]
- Liu, X.S.; Hou, Y.; Yan, T.L.; Guo, Y.Y.; Han, W.; Guan, F.L.; Chen, T.; Li, T. Dopamine D3 Receptor-Regulated NR2B Subunits of N-Methyl-d-Aspartate Receptors in the Nucleus Accumbens Involves in Morphine-Induced Locomotor Activity. CNS Neurosci. Ther. 2014, 20, 823–829. [Google Scholar] [CrossRef]
- Kao, J.H.; Huang, E.Y.K.; Tao, P.L. NR2B Subunit of NMDA Receptor at Nucleus Accumbens Is Involved in Morphine Rewarding Effect by SiRNA Study. Drug Alcohol. Depend. 2011, 118, 366–374. [Google Scholar] [CrossRef]
- Anderson, E.M.; Reeves, T.; Kapernaros, K.; Neubert, J.K.; Caudle, R.M. Phosphorylation of the N-Methyl-D-Aspartate Receptor Is Increased in the Nucleus Accumbens during Both Acute and Extended Morphine Withdrawal. J. Pharmacol. Exp. Ther. 2015, 355, 496–505. [Google Scholar] [CrossRef]
- Ellis, R.J.; Ferland, J.M.N.; Rahman, T.; Landry, J.L.; Callens, J.E.; Pandey, G.; Lam, T.K.; Kanyo, J.; Nairn, A.C.; Dracheva, S.; et al. Machine Learning Analysis of the Orbitofrontal Cortex Transcriptome of Human Opioid Users Identifies Shisa7 as a Translational Target Relevant for Heroin Seeking Leveraging a Male Rat Model. Biol. Psychiatry 2025, 98, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Castellano, D.; Wu, K.; Keramidas, A.; Lu, W. Shisa7-Dependent Regulation of GABAA Receptor Single-Channel Gating Kinetics. J. Neurosci. 2022, 42, 8758–8766. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Li, J.; Pelkey, K.A.; Pandey, S.; Chen, X.; Wang, Y.X.; Wu, K.; Ge, L.; Li, T.; Castellano, D.; et al. Shisa7 Is a GABAAreceptor Auxiliary Subunit Controlling Benzodiazepine Actions. Science 2019, 366, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Zong, W.; Glausier, J.R.; Kim, S.M.; Shelton, M.A.; Phan, B.D.N.; Srinivasan, C.; Pfenning, A.R.; Tseng, G.C.; Lewis, D.A.; et al. Molecular Rhythm Alterations in Prefrontal Cortex and Nucleus Accumbens Associated with Opioid Use Disorder. Transl. Psychiatry 2022, 12, 123. [Google Scholar] [CrossRef]
- Thompson, B.L.; Oscar-Berman, M.; Kaplan, G.B. Opioid-Induced Structural and Functional Plasticity of Medium-Spiny Neurons in the Nucleus Accumbens. Neurosci. Biobehav. Rev. 2020, 120, 417–430. [Google Scholar]
- Spiga, S.; Puddu, M.C.; Pisano, M.; Diana, M. Morphine Withdrawal-Induced Morphological Changes in the Nucleus Accumbens. Eur. J. Neurosci. 2005, 22, 2332–2340. [Google Scholar] [CrossRef]
- Diana, M.; Spiga, S.; Acquas, E. Persistent and Reversible Morphine Withdrawal-Induced Morphological Changes in the Nucleus Accumbens. Ann. N. Y. Acad. Sci. 2006, 1074, 446–457. [Google Scholar]
- Leite-Morris, K.A.; Kobrin, K.L.; Guy, M.D.; Young, A.J.; Heinrichs, S.C.; Kaplan, G.B. Extinction of Opiate Reward Reduces Dendritic Arborization and C-Fos Expression in the Nucleus Accumbens Core. Behav. Brain Res. 2014, 263, 51–59. [Google Scholar] [CrossRef]
- Heng, L.J.; Yang, J.; Liu, Y.H.; Wang, W.T.; Hu, S.J.; Gao, G.D. Repeated Morphine Exposure Decreased the Nucleus Accumbens Excitability during Short-Term Withdrawal. Synapse 2008, 62, 775–782. [Google Scholar] [CrossRef]
- Wu, X.; Shi, M.; Wei, C.; Yang, M.; Liu, Y.; Liu, Z.; Zhang, X.; Ren, W. Potentiation of Synaptic Strength and Intrinsic Excitability in the Nucleus Accumbens after 10 Days of Morphine Withdrawal. J. Neurosci. Res. 2012, 90, 1270–1283. [Google Scholar] [CrossRef]
- Wu, X.; Shi, M.; Ling, H.; Wei, C.; Liu, Y.; Liu, Z.; Ren, W. Effects of Morphine Withdrawal on the Membrane Properties of Medium Spiny Neurons in the Nucleus Accumbens Shell. Brain Res. Bull. 2013, 90, 92–99. [Google Scholar] [CrossRef]
- Fox, M.E.; Wulff, A.B.; Franco, D.; Choi, E.Y.; Calarco, C.A.; Engeln, M.; Turner, M.D.; Chandra, R.; Rhodes, V.M.; Thompson, S.M.; et al. Adaptations in Nucleus Accumbens Neuron Subtypes Mediate Negative Affective Behaviors in Fentanyl Abstinence. Biol. Psychiatry 2022, 93, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Georges, F.; Stinus, L.; Le Moine, C. Mapping of C-Fos Gene Expression in the Brain during Morphine Dependence and Precipitated Withdrawal, and Phenotypic Identification of the Striatal Neurons Involved. Eur. J. Neurosci. 2000, 12, 4475–4486. [Google Scholar] [CrossRef] [PubMed]
- Enoksson, T.; Bertran-Gonzalez, J.; Christie, M.J. Nucleus Accumbens D2- and D1-Receptor Expressing Medium Spiny Neurons Are Selectively Activated by Morphine Withdrawal and Acute Morphine, Respectively. Neuropharmacology 2012, 62, 2463–2471. [Google Scholar] [CrossRef] [PubMed]
- Matamales, M.; Bertran-Gonzalez, J.; Salomon, L.; Degos, B.; Deniau, J.M.; Valjent, E.; Hervé, D.; Girault, J.A. Striatal Medium-Sized Spiny Neurons: Identification by Nuclear Staining and Study of Neuronal Subpopulations in BAC Transgenic Mice. PLoS ONE 2009, 4, e4770. [Google Scholar] [CrossRef]
- Hearing, M.C.; Jedynak, J.; Ebner, S.R.; Ingebretson, A.; Asp, A.J.; Fischer, R.A.; Schmidt, C.; Larson, E.B.; Thomas, M.J. Reversal of Morphine-Induced Cell-Type-Specific Synaptic Plasticity in the Nucleus Accumbens Shell Blocks Reinstatement. Proc. Natl. Acad. Sci. USA 2016, 113, 757–762. [Google Scholar] [CrossRef]
- Madayag, A.C.; Gomez, D.; Anderson, E.M.; Ingebretson, A.E.; Thomas, M.J.; Hearing, M.C. Cell-Type and Region-Specific Nucleus Accumbens AMPAR Plasticity Associated with Morphine Reward, Reinstatement, and Spontaneous Withdrawal. Brain Struct. Funct. 2019, 224, 2311–2324. [Google Scholar] [CrossRef]
- Shen, M.R.; Campbell, D.E.; Kopczynski, A.; Maddams, S.; Rosenblum, N.; Nigam, K.; Suzuki, J. Ketamine in Treating Opioid Use Disorder and Opioid Withdrawal: A Scoping Review. Front. Psychiatry 2025, 16, 1552084. [Google Scholar] [CrossRef]
- Michael, A.; Onisiforou, A.; Georgiou, P.; Koumas, M.; Powels, C.; Mammadov, E.; Georgiou, A.N.; Zanos, P. (2R,6R)-Hydroxynorketamine Prevents Opioid Abstinence-Related Negative Affect and Stress-Induced Reinstatement in Mice. Br. J. Pharmacol. 2025, 182, 3428–3451. [Google Scholar] [CrossRef]
- Montemitro, C.; Angebrandt, A.; Wang, T.Y.; Pettorruso, M.; Abulseoud, O.A. Mechanistic Insights into the Efficacy of Memantine in Treating Certain Drug Addictions. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 111, 110409. [Google Scholar] [CrossRef]
- D’Souza, M.S. Glutamatergic Transmission in Drug Reward: Implications for Drug Addiction. Front. Neurosci. 2015, 9, 404. [Google Scholar] [CrossRef]
- Nazari, S.; Sadat-Shirazi, M.S.; Shahbazi, A.; Ghaffari, K.; Vousooghi, N. The Effect of Morphine Administration on GluN3B NMDA Receptor Subunit MRNA Expression in Rat Brain. Acta Neurobiol. Exp. 2024, 84, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Galaj, E.; Barrera, E.D.; Persaud, K.; Nisanov, R.; Vashisht, A.; Goldberg, H.; Patel, N.; Lenhard, H.; You, Z.B.; Gardner, E.L.; et al. The Impact of Heroin Self-Administration and Environmental Enrichment on Ventral Tegmental CRF1 Receptor Expression. Int. J. Neuropsychopharmacol. 2023, 26, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tian, X.; Guo, X.; He, Y.; Chen, H.; Zhou, J.; Wang, Z.J. AMPA Receptor Positive Allosteric Modulators Attenuate Morphine Tolerance and Dependence. Neuropharmacology 2018, 137, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Olianas, M.C.; Dedoni, S.; Onali, P. Potentiation of Dopamine D1-like Receptor Signaling by Concomitant Activation of δ- And μ-Opioid Receptors in Mouse Medial Prefrontal Cortex. Neurochem. Int. 2012, 61, 1404–1416. [Google Scholar] [CrossRef]
- Beckerman, M.A.; Glass, M.J. Ultrastructural Relationship between the AMPA-GluR2 Receptor Subunit and the Mu-Opioid Receptor in the Mouse Central Nucleus of the Amygdala. Exp. Neurol. 2011, 227, 149–158. [Google Scholar] [CrossRef]
- Chen, S.L.; Hsu, K.Y.; Huang, E.Y.K.; Lu, R.B.; Tao, P.L. Low Doses of Dextromethorphan Attenuate Morphine-Induced Rewarding via the Sigma-1 Receptor at Ventral Tegmental Area in Rats. Drug Alcohol. Depend. 2011, 117, 164–169. [Google Scholar] [CrossRef]
- Chittajallu, R.; Vlachos, A.; Yuan, X.; Hunt, S.; Abebe, D.; London, E.; Pelkey, K.A.; McBain, C.J. Complex Opioid Driven Modulation of Glutamatergic and Cholinergic Neurotransmission in a GABAergic Brain Nucleus Associated with Emotion, Reward and Addiction. bioRxiv 2025. [Google Scholar] [CrossRef]
- Xie, X.; Zhuang, D.; Li, L.; Wu, T.; Shen, W.; Liu, Y.; Xu, W.; Hong, Q.; Xu, Z.; Chen, W.; et al. Association Between the (GT)26 Allele in the GRIN2A Promoter and Opioid Use Disorder. Psychiatry Investig. 2025, 22, 730–735. [Google Scholar] [CrossRef]
- Raiteri, L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine–Glutamate Crosstalk. Biomedicines 2024, 12, 1518. [Google Scholar] [CrossRef]
- Johnson, J.W.; Ascher, P. Glycine Potentiates the NMDA Response in Cultured Mouse Brain Neurons. Nature 1987, 325, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Otsu, Y.; Darcq, E.; Pietrajtis, K.; Mátyás, F.; Schwartz, E.; Bessaih, T.; Abi Gerges, S.; Rousseau, C.V.; Grand, T.; Dieudonné, S.; et al. Control of Aversion by Glycine-Gated GluN1/GluN3A NMDA Receptors in the Adult Medial Habenula. Science 2019, 366, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Laboute, T.; Zucca, S.; Holcomb, M.; Patil, D.N.; Garza, C.; Wheatley, B.A.; Roy, R.N.; Forli, S.; Martemyanov, K.A. Orphan Receptor GPR158 Serves as a Metabotropic Glycine Receptor: MGlyR. Science 2023, 379, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, X.; Bai, Y.; Yang, X.; Sui, N. Opposite Effects of MK-801 on the Expression of Food and Morphine-Induced Conditioned Place Preference in Rats. J. Psychopharmacol. 2006, 20, 40–46. [Google Scholar] [CrossRef]
- Do Couto, B.R.; Aguilar, M.A.; Manzanedo, C.; Rodríguez-Arias, M.; Miñrro, J. Effects of NMDA Receptor Antagonists (MK-801 and Memantine) on the Acquisition of Morphine-Induced Conditioned Place Preference in Mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 1035–1043. [Google Scholar] [CrossRef]
- Papp, M.; Gruca, P.; Willner, P. Selective Blockade of Drug-Induced Place Preference Conditioning by ACPC, a Functional NDMA-Receptor Antagonist. Neuropsychopharmacology 2002, 27, 727–743. [Google Scholar] [CrossRef]
- Suzuki, T.; Kato, H.; Aoki, T.; Tsuda, M.; Narita, M.; Misawa, M. Effects of the Non-Competitive NMDA Receptor Antagonist Ketamine on Morphine-Induced Place Preference in Mice. Life Sci. 2000, 67, 383–389. [Google Scholar] [CrossRef]
- Popik, P.; Wrobel, M.; Rygula, R.; Bisaga, A.; Bespalov, A.Y. Effects of Memantine, an NMDA Receptor Antagonist, on Place Preference Conditioned with Drug and Nondrug Reinforcers in Mice. Behav. Pharmacol. 2003, 14, 237–244. [Google Scholar] [CrossRef]
- Popik, P.; Mamczarz, J.; Frączek, M.; Widła, M.; Hesselink, M.; Danysz, W. Inhibition of Reinforcing Effects of Morphine and Naloxone: Precipitated Opioid Withdrawal by Novel Glycine Site and Uncompetitive NMDA Receptor Antagonists. Neuropharmacology 1998, 37, 1033–1042. [Google Scholar] [CrossRef]
- Tzschentke, T.M.; Schmidt, W.J. N-Methyl-d-Aspartic Acid-Receptor Antagonists Block Morphine-Induced Conditioned Place Preference in Rats. Neurosci. Lett. 1995, 193, 37–40. [Google Scholar] [CrossRef]
- LaLumiere, R.T.; Kalivas, P.W. Glutamate Release in the Nucleus Accumbens Core Is Necessary for Heroin Seeking. J. Neurosci. 2008, 28, 3170–3177. [Google Scholar] [CrossRef]
- Eteraf-Oskouei, T.; Mahmoudi Gharehbaba, A.; Majidpour, S.; Asl, B.H. Preventive Effects of Crocin and Meloxicam on Morphine Withdrawal Symptoms in Mice: Behavioral and Biochemical Insights. BMC Pharmacol. Toxicol. 2025, 26, 159. [Google Scholar] [CrossRef]
- Falls, W.A.; Miserendino, M.J.D.; Davis, M. Extinction of Fear-Potentiated Startle: Blockade by Infusion of an NMDA Antagonist into the Amygdala. J. Neurosci. 1992, 12, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.D.; Azorlosa, J.L. The NMDA Antagonist MK-801 Blocks the Extinction of Pavlovian Fear Conditioning. Behav. Neurosci. 1996, 110, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, A.; Yamada, M.; Furuie, H.; Gotoh, L.; Saitoh, A.; Nagase, H.; Oka, J.I.; Yamada, M. Systemic Administration of a Delta Opioid Receptor Agonist, KNT-127, Facilitates Extinction Learning of Fear Memory in Rats. J. Pharmacol. Sci. 2019, 139, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Ledgerwood, L.; Richardson, R.; Cranney, J. Effects of D-Cycloserine on Extinction of Conditioned Freezing. Behav. Neurosci. 2003, 117, 341–349. [Google Scholar] [CrossRef]
- Walker, D.L.; Ressler, K.J.; Lu, K.T.; Davis, M. Facilitation of Conditioned Fear Extinction by Systemic Administration or Intra-Amygdala Infusions of D-Cycloserine as Assessed with Fear-Potentiated Startle in Rats. J. Neurosci. 2002, 22, 2343–2351. [Google Scholar] [CrossRef]
- Port, R.L.; Seybold, K.S. Manipulation of NMDA-Receptor Activity Alters Extinction of an Instrumental Response in Rats. Physiol. Behav. 1998, 64, 391–393. [Google Scholar] [CrossRef]
- Botreau, F.; Paolone, G.; Stewart, J. D-Cycloserine Facilitates Extinction of a Cocaine-Induced Conditioned Place Preference. Behav. Brain Res. 2006, 172, 173–178. [Google Scholar] [CrossRef]
- Paolone, G.; Botreau, F.; Stewart, J. The Facilitative Effects of D-Cycloserine on Extinction of a Cocaine-Induced Conditioned Place Preference Can Be Long Lasting and Resistant to Reinstatement. Psychopharmacology 2009, 202, 403–409. [Google Scholar] [CrossRef]
- Thanos, P.K.; Bermeo, C.; Wang, G.J.; Volkow, N.D. D-Cycloserine Accelerates the Extinction of Cocaine-Induced Conditioned Place Preference in C57bL/c Mice. Behav. Brain Res. 2009, 199, 345–349. [Google Scholar] [CrossRef]
- Karel, P.; Calabrese, F.; Riva, M.; Brivio, P.; Van der Veen, B.; Reneman, L.; Verheij, M.; Homberg, J. D-Cycloserine Enhanced Extinction of Cocaine-Induced Conditioned Place Preference Is Attenuated in Serotonin Transporter Knockout Rats. Addict. Biol. 2018, 23, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.Y.; Lee, Y.S.; Cherng, C.G.; Cheng, L.Y.; Chang, W.T.; Chuang, J.Y.; Kao, G.S.; Yu, L. D-Cycloserine, Sarcosine and D-Serine Diminish the Expression of Cocaine-Induced Conditioned Place Preference. J. Psychopharmacol. 2013, 27, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.M.; Carlezon, W.A. D-Cycloserine Facilitates Extinction of Naloxone-Induced Conditioned Place Aversion in Morphine-Dependent Rats. Biol. Psychiatry 2010, 67, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Groblewski, P.A.; Lattal, K.M.; Cunningham, C.L. Effects of D-Cycloserine on Extinction and Reconditioning of Ethanol-Seeking Behavior in Mice. Alcohol. Clin. Exp. Res. 2009, 33, 772–782. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wu, N.; Zhang, Z.L.; Ai, J.; Li, J. Effects of D-Cycloserine on Extinction and Reinstatement of Morphine-Induced Conditioned Place Preference. Neurosci. Lett. 2011, 503, 196–199. [Google Scholar] [CrossRef]
- Thanos, P.K.; Bermeo, C.; Wang, G.J.; Volkow, N.D. D-Cycloserine Facilitates Extinction of Cocaine Self-Administration in Rats. Synapse 2011, 65, 938–944. [Google Scholar] [CrossRef]
- Thanos, P.K.; Subrize, M.; Lui, W.; Puca, Z.; Ananth, M.; Michaelides, M.; Wang, G.J.; Volkow, N.D. D-Cycloserine Facilitates Extinction of Cocaine Self-Administration in C57 Mice. Synapse 2011, 65, 1099–1105. [Google Scholar] [CrossRef]
- Bäckström, P.; Hyytiä, P. Ionotropic and Metabotropic Glutamate Receptor Antagonism Attenuates Cue-Induced Cocaine Seeking. Neuropsychopharmacology 2006, 31, 778–786. [Google Scholar] [CrossRef]
- Bäckström, P.; Hyytiä, P. Ionotropic Glutamate Receptor Antagonists Modulate Cue-Induced Reinstatement of Ethanol-Seeking Behavior. Alcohol. Clin. Exp. Res. 2004, 28, 558–565. [Google Scholar] [CrossRef]
- Lee, J.L.C.; Gardner, R.J.; Butler, V.J.; Everitt, B.J. D-Cycloserine Potentiates the Reconsolidation of Cocaine-Associated Memories. Learn. Mem. 2009, 16, 82–85. [Google Scholar] [CrossRef]
- Price, K.L.; McRae-Clark, A.L.; Saladin, M.E.; Maria, M.M.M.S.; DeSantis, S.M.; Back, S.E.; Brady, K.T. D-Cycloserine and Cocaine Cue Reactivity: Preliminary Findings. Am. J. Drug Alcohol. Abus. 2009, 35, 434–438. [Google Scholar] [CrossRef]
- Santa Ana, E.J.; Prisciandaro, J.J.; Saladin, M.E.; Mcrae-Clark, A.L.; Shaftman, S.R.; Nietert, P.J.; Brady, K.T. D-Cycloserine Combined with Cue Exposure Therapy Fails to Attenuate Subjective and Physiological Craving in Cocaine Dependence. Am. J. Addict. 2015, 24, 217–224. [Google Scholar] [CrossRef]
- Price, K.L.; Baker, N.L.; McRae-Clark, A.L.; Saladin, M.E.; Desantis, S.M.; Santa Ana, E.J.; Brady, K.T. A Randomized, Placebo-Controlled Laboratory Study of the Effects of d-Cycloserine on Craving in Cocaine-Dependent Individuals. Psychopharmacology 2013, 226, 739–746. [Google Scholar] [CrossRef]
- Prisciandaro, J.J.; Myrick, H.; Henderson, S.; McRae-Clark, A.L.; Santa Ana, E.J.; Saladin, M.E.; Brady, K.T. Impact of DCS-Facilitated Cue Exposure Therapy on Brain Activation to Cocaine Cues in Cocaine Dependence. Drug Alcohol Depend. 2013, 132, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Nic Dhonnchadha, B.Á.; Pinard, E.; Alberati, D.; Wettstein, J.G.; Spealman, R.D.; Kantak, K.M. Inhibiting Glycine Transporter-1 Facilitates Cocaine-Cue Extinction and Attenuates Reacquisition of Cocaine-Seeking Behavior. Drug Alcohol Depend. 2012, 122, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Uslaner, J.M.; Drott, J.T.; Sharik, S.S.; Theberge, C.R.; Sur, C.; Zeng, Z.; Williams, D.L.; Hutson, P.H. Inhibition of Glycine Transporter 1 Attenuates Nicotine- but Not Food-Induced Cue-Potentiated Reinstatement for a Response Previously Paired with Sucrose. Behav. Brain Res. 2010, 207, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Vengeliene, V.; Roßmanith, M.; Takahashi, T.T.; Alberati, D.; Behl, B.; Bespalov, A.; Spanagel, R. Targeting Glycine Reuptake in Alcohol Seeking and Relapse. J. Pharmacol. Exp. Ther. 2018, 365, 202–211. [Google Scholar] [CrossRef]
- Cervo, L.; Di Clemente, A.; Orrù, A.; Moro, F.; Cassina, C.; Pich, E.M.; Corsi, M.; Gozzi, A.; Bifone, A. Inhibition of Glycine Transporter-1 Reduces Cue-Induced Nicotine-Seeking, but Does Not Promote Extinction of Conditioned Nicotine Cue Responding in the Rat. Addict. Biol. 2013, 18, 800–811. [Google Scholar] [CrossRef]
- Alasmari, F.; Sari, D.B.; Alhaddad, H.; Al-Rejaie, S.S.; Sari, Y. Interactive Role of Acid Sensing Ion Channels and Glutamatergic System in Opioid Dependence. Neurosci. Biobehav. Rev. 2022, 135, 104581. [Google Scholar] [CrossRef]
- Fuller, M.J.; Andrys, N.R.R.; Gupta, S.C.; Ghobbeh, A.; Kreple, C.J.; Fan, R.; Taugher-Hebl, R.J.; Radley, J.J.; Lalumiere, R.T.; Wemmie, J.A. The Role of Acid-Sensing Ion Channel 1A (ASIC1A) in the Behavioral and Synaptic Effects of Oxycodone and Other Opioids. Int. J. Mol. Sci. 2024, 25, 11584. [Google Scholar] [CrossRef]
- Knackstedt, L.A.; Melendez, R.I.; Kalivas, P.W. Ceftriaxone Restores Glutamate Homeostasis and Prevents Relapse to Cocaine Seeking. Biol. Psychiatry 2010, 67, 81–84. [Google Scholar] [CrossRef]
- Raiteri, L.; Paolucci, E.; Prisco, S.; Raiteri, M.; Bonanno, G. Activation of a Glycine Transporter on Spinal Cord Neurons Causes Enhanced Glutamate Release in a Mouse Model of Amyotrophic Lateral Sclerosis. Br. J. Pharmacol. 2003, 138, 1021–1025. [Google Scholar] [CrossRef]
- Aceto, G.; Nardella, L.; Nanni, S.; Pecci, V.; Bertozzi, A.; Nutarelli, S.; Viscomi, M.T.; Colussi, C.; D’Ascenzo, M.; Grassi, C. Glycine-Induced Activation of GPR158 Increases the Intrinsic Excitability of Medium Spiny Neurons in the Nucleus Accumbens. Cell. Mol. Life Sci. 2024, 81, 268. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, R.; Guo, L.; Zhen, X. Morphine-Induced Inhibition of Ca2+-Dependent d-Serine Release from Astrocytes Suppresses Excitability of GABAergic Neurons in the Nucleus Accumbens. Addict. Biol. 2017, 22, 1289–1303. [Google Scholar] [CrossRef]
- Zafra, F.; Aragón, C.; Olivares, L.; Danbolt, N.C.; Giménez, C.; Storm-Mathisen, J. Glycine Transporters Are Differentially Expressed among CNS Cells. J. Neurosci. 1995, 15, 3952–3969. [Google Scholar] [CrossRef]
- Chieng, B.; Williams, J.T. Increased Opioid Inhibition of GABA Release in Nucleus Accumbens during Morphine Withdrawal. J. Neurosci. 1998, 18, 7033–7039. [Google Scholar] [CrossRef]
- Reeves, K.C.; Kube, M.J.; Grecco, G.G.; Fritz, B.M.; Muñoz, B.; Yin, F.; Gao, Y.; Haggerty, D.L.; Hoffman, H.J.; Atwood, B.K. Mu Opioid Receptors on VGluT2-Expressing Glutamatergic Neurons Modulate Opioid Reward. Addict. Biol. 2021, 26, e12942. [Google Scholar] [CrossRef]
- Jin, D.; Chen, H.; Chen, S.R.; Pan, H.L. A2δ-1 Protein Drives Opioid-Induced Conditioned Reward and Synaptic NMDA Receptor Hyperactivity in the Nucleus Accumbens. J. Neurochem. 2023, 164, 143–157. [Google Scholar] [CrossRef]
- Suzuki, T.; Kato, H.; Tsuda, M.; Suzuki, H.; Misawa, M. Effects of the Non-Competitive NMDA Receptor Antagonist Ifenprodil on the Morphine-Induced Place Preference in Mice. Life Sci. 1999, 64, PL151–PL156. [Google Scholar] [CrossRef]
- Xu, Y.; Lv, X.F.; Cui, C.L.; Ge, F.F.; Li, Y.J.; Zhang, H.L. Essential Role of NR2B-Containing NMDA Receptor-ERK Pathway in Nucleus Accumbens Shell in Morphine-Associated Contextual Memory. Brain Res. Bull. 2012, 89, 22–30. [Google Scholar] [CrossRef]
- Sepúlveda, J.; Oliva, P.; Contreras, E. Neurochemical Changes of the Extracellular Concentrations of Glutamate and Aspartate in the Nucleus Accumbens of Rats after Chronic Administration of Morphine. Eur. J. Pharmacol. 2004, 483, 249–258. [Google Scholar] [CrossRef]
- Sepulveda, M.J.; Hernandez, L.; Rada, P.; Tucci, S.; Contreras, E. Effect of Precipitated Withdrawal on Extracellular Glutamate and Aspartate in the Nucleus Accumbens of Chronically Morphine-Treated Rats: An in Vivo Microdialysis Study. Pharmacol. Biochem. Behav. 1998, 60, 255–262. [Google Scholar] [CrossRef]
- Kalivas, P.W. The Glutamate Homeostasis Hypothesis of Addiction. Nat. Rev. Neurosci. 2009, 10, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Caraballo, Y.; Li, Y.; Constantino, N.J.; Neal, M.A.; Driscoll, G.S.; Mavrikaki, M.; Bolshakov, V.Y.; Chartoff, E.H. Sex-Specific Behavioral and Thalamo-Accumbal Circuit Adaptations after Oxycodone Abstinence. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, Q.; Dong, Y.; Yan, W.; Song, K.; Lin, Y.Q.; Sun, Y.G. Mu-Opioid Receptors Expressed in Glutamatergic Neurons Are Essential for Morphine Withdrawal. Neurosci. Bull. 2020, 36, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, D.S.; Wade, Q.W.; McKendrick, G.E.; Nelsen, J.; Starostina, M.; Tran, N.; Blendy, J.A.; Graziane, N.M. The Paraventricular Thalamic Nucleus and Its Projections in Regulating Reward and Context Associations. eNeuro 2024, 11, 1–15, Erratum in eNeuro 2025, 12, 1. [Google Scholar] [CrossRef]
- Won, W.; Kim, D.; Shin, E.; Lee, C.J. Mapping Astrocytic and Neuronal μ-Opioid Receptor Expression in Various Brain Regions Using MOR-MCherry Reporter Mouse. Exp. Neurobiol. 2023, 32, 395–409. [Google Scholar] [CrossRef]

| Opioid Ligand and Route of Administration | Subject | Findings | Reference |
|---|---|---|---|
| Heroin self-administration, IV | Male Long-Evans rats | ↑ DA and DOPAC levels in the NAc. Increasing the fixed ratio from 1 to 10: no DA or DOPAC elevation. Extinction: ↓ DA and DOPAC levels, drug-seeking behaviour was indicated by lever pressing. Higher heroin dose: ↑ DA and DOPAC levels, showing dose-dependent enhancement of DA activity. | [33] |
| Fentanyl, IV and direct infusion into the VTA or the NAc (via microdialysis probe) | Male Sprague Dawley rats | ↑ DA release in rat NAc by MOR, DOR1, DOR2 activation. | [31] |
| Morphine, IP | Female Sprague Dawley derived rats | Monotonic ↑ in DA metabolites (DOPAC and HVA in the NAc, DOPAC in the striatum), a non-monotonic ↑ in DA in the NAc and striatum. | [37] |
| Morphine, IV or oxycodone, infusion Naloxone, IV, then 15 min later, either morphine or oxycodone | Male Sprague Dawley rats | Oxycodone: rapid and sustained DA concentration ↑ in the NAc with rapid rises in the frequency and amplitude of phasic DA release events. Morphine: transient spike in both DA and GABA levels. Naloxone abolished the morphine and oxycodone effects on DA level. | [35] |
| Morphine, IP | Male Wistar rats (Charles River) | Dose-dependent ↑ DA and DOPAC and HVA release in the NAc. | [38] |
| Morphine or saline, SC (days 1–6). On Days 0 and 7, Morphine, IV. Naloxone, IV on days 0 and 7. | Male C57BL/6 mice | Acute and chronic morphine: ↑ DA in the medial and lateral regions of NAc. Naloxone treatment reversed the increased tone of DA in NAc. | [34] |
| Morphine, IP for 7 days Naloxone, IP | Male, Sprague Dawley rats | Acute and chronic morphine: ↑ DA, DOPAC, and HVA levels in NAc. Chronic morphine did not change basal DA release. Naloxone (8th day): induced withdrawal symptoms and ↓ NAc DA. These effects were reversed by pretreatment with clonidine. | [39] |
| Morphine, SC | Male Sprague Dawley rats | Chronic morphine: long-lasting sensitization of DA release in the NAc. Challenge dose (either 3 days or 30 days later): ↑ DA release in NAc. | [36] |
| fentanyl (SC 20 or 30 μg/kg), (IV 10 μg/kg), or self-administered by rats (2.5 μg/kg/infusion) | Male adult Wistar rats | SC and IV Fentanyl: induced CPP and ↑ DA release in NAcSh, which was reversed by pretreatment with the GHS-R1A antagonist, JMV2959 (IP, 1 or 3 mg/kg) given 20 min before three consequents daily 360 min IV self-administration sessions under a fixed ratio. JMV2959 affected the concentration of byproducts associated with DA metabolism in the NAc (↑ DOPAC and HVA levels after s.c. fentanyl injection, accelerated early HVA formation following IV fentanyl, and ↓ the peak HVA levels (20%), with no impact on 3-MT). | [42] |
| Morphine, SC, and last injection IP. Naloxone, SC | Male rats (Wistar-Kioto, Charles River) | One day after morphine withdrawal, dependent rats showed lower DA levels in the caudal NAc-ventral striatum. A morphine challenge dose: ↑ DA in controls but had no effect in withdrawn animals. | [40] |
| Oxycodone, intermittent access. Next, a period of forced abstinence was imposed. | Adult female and male Long Evans rats | Oxycodone abstinence: ↓ NAcC DA uptake. Oxycodone ↓ DA uptake in abstinent rats. ↓ in DA transporter phosphorylation, only on day 15 of abstinence. Pretreatment with naloxone or CTAP significantly attenuated the effects of oxycodone on DA uptake. | [41] |
| Opioid Ligand and Route of Administration | Subject | Findings | Reference |
|---|---|---|---|
| DAMGO, DPDPE, U69593 (brain slice electrophysiology) | Male and female C57Bl/6J mice | ORs differentially regulate cortical glutamate circuits in the CLA–ACC. MOR/DOR activation modulated postsynaptic recurrent excitation, whereas presynaptic KOR activation inhibited glutamate release. | [112] |
| Morphine, IP (acute and chronic) | Male Wistar rats | Morphine induces widespread neuroinflammation and upregulates glutamatergic signalling through upregulation of glutamate, GluN3B NMDAR mRNAs, and astrocytic/inflammatory markers in different brain areas (NAc, striatum, Hipp). | [153] |
| Morphine, SC Hydroxynorketamine, IP Naloxone, IP | Male and female C57BL/6J mice | The metabolite hydroxynorketamine facilitates extinction, reverses morphine CPP, and prevents relapse by restoring NMDAR function and cortical EEG, increasing GluN2A and BDNF levels (GluN2A-dependent) in ventral Hipp and PFC. | [150] |
| Oxycodone self-administration, IV | Male Sprague Dawley rats | Glutamatergic projections from OFC to DS, coupled with D1R signalling, drive incubated oxycodone craving, whereas circuit disconnection reduces drug-seeking behaviour. | [118] |
| Heroin self-administration, IV | Male Sprague Dawley rats | Heroin suppressed VPGlu neuron activity during self-administration and relapse, while extinction reversed this pathway. Extinction increased excitatory (Vglut2) and decreased inhibitory (Vgat) markers in LHb terminals. Activation of VPGlu or its projections to the LHb suppressed heroin seeking, indicating that enhanced VPGlu–LHb glutamatergic transmission after extinction suppressed seeking. | [119] |
| DAMGO, CTOP (bath application) | Adult male Kunming mice (cerebellum slices) | Presynaptic MOR activation inhibited glutamatergic transmission at parallel fibre–Purkinje cell (PF–PC) synapses by reducing presynaptic glutamate release via cAMP–PKA and MAPK–ERK signalling. | [123] |
| Cocaine, morphine, nicotine, IP | Wild-type and transgenic mice (C57/BL6, DATKI and DAT-Cre mice) | Addictive drugs induce redistribution and insertion of GluA2-lacking calcium-permeable AMPARs in VTA DA neurons. This effect depends on DA release patterns that drive D1R-dependent synaptic plasticity. | [115] |
| Oxycodone, cocaine, IV | Male young adult Long Evans rats | Polydrug use downregulated GLT-1, altered AMPA/NMDA ratio, and exacerbated glutamate dyshomeostasis in NAcC. | [120] |
| Oxycodone self-administration, IV | Male Sprague Dawley rats | Oxycodone caused incubation of craving after long withdrawal and induced specific changes in hippocampal glutamate receptor expression linked to craving (upregulated ionotropic, downregulated mGluR2/3, upregulated other mGluR subunit mRNAs). | [117] |
| Heroin self-administration, IV | Male Long Evans rats | CRF1 upregulation in VTA DA neurons and NAc co-expressing GluR1 promotes opioid use. | [154] |
| Oxycodone, IP | Male and female adult Sprague Dawley rats | Glutamatergic adaptations to opioids are highly influenced by sex and stress history. Females downregulated NMDA after CPP; stressed males increased postsynaptic glutamate receptors within the hippocampal CA3. | [121] |
| Morphine, SC | Male ICR mice | Enhanced AMPAR signalling in descending pain inhibitory circuits (PAG–RVM pathway) prevented morphine tolerance and dependence. | [155] |
| Leu-enkephalin, DAMGO, DPDPE, morphine, (_)-U-50,488 | Male CD-1 mice (mPFC slices) | Opioid and DR signalling synergistically enhance cortical excitability. OR βγ subunits potentiate D1R-stimulated adenylate cyclase, enhancing AMPAR/NMDAR phosphorylation in the mPFC, which contributes to opioid addiction regulation. | [156] |
| Anatomical and immunocytochemical investigation | Male C57/BL/6 mice | GluR2-containing AMPARs co-localise with MOR in CeA dendrites, supporting direct opioid modulation of amygdala excitability. | [157] |
| Morphine, SC Dextromethorphan, IP | Male Sprague Dawley rats | Dextromethorphan attenuates morphine reward via activation of S1Rs in the VTA. | [158] |
| DAMGO, CTAP, met-enkephalin, morphine sulphate (mHb–IPN brain slices) | Male and female transgenic mice | MORs differentially modulate distinct neurotransmitter pathways in the mHb–IPN. MORs potentiate cholinergic → IPR glutamate transmission while Kv1 channel blockade unmasked MOR-enhanced nAChR-mediated EPSCs, revealing opioid control of excitatory signalling. | [159] |
| Oxycodone self-administration, oral | Male and female C57BL/6J and VGluT2-IRES::Cre mice | MORs inhibit glutamatergic input to VTA DA neurons, and VGluT2+ neurons projecting to the NAc are active during seeking. Inhibiting these neurons reduces reinstatement in males, only indicating a sex-dependent effect. | [113] |
| Heroin self-administration, IV in rats | Male Long-Evans rats (Translational); human postmortem | In OFC, Shisa7 is downregulated after heroin; its overexpression increases heroin seeking and impairs cognitive flexibility by altering glutamate/GABA receptor interactions. | [132] |
| OUD (opioid ligand was not specified) | Human postmortem | OUD disrupts circadian regulation of glutamatergic/GABAergic genes in DLPFC and NAc, potentially contributing to sleep and relapse issues. | [135] |
| Systematic review | Humans with OUD and opioid withdrawal | Adjunctive high-dose ketamine shows promise for treating OUD and withdrawal by targeting the glutamatergic system. | [149] |
| Systematic review | Preclinical (animals) and clinical trials (humans) | Memantine decreases OUD behaviours (craving, consumption, and withdrawal) severity in animal models, but in humans, the results were mixed but positive in terms of cognitive function. Memantine reduced morphine self-administration, CPP, tolerance, and withdrawal in animals through NMDAR antagonism in different brain areas. | [151] |
| Heroin (abused for over 1 year) | Human (males) | Longer promoter repeats in GRIN2A L-allele carriers reduced GRIN2A transcription, altering NMDA function, causing higher heroin craving. | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essmat, N.; Boldizsár, I., Jr.; Chalabiani, Y.; Varga, B.T.; Abbood, S.K.; Kirchlechner-Farkas, J.M.; Király, K.; Miklya, I.; Gyertyán, I.; Tábi, T.; et al. Crosstalk Between Glycinergic and N-Methyl-D-Aspartate Receptor-Mediated Glutamatergic Transmission in Behaviours Associated with Opioid Use Disorder. Int. J. Mol. Sci. 2025, 26, 10526. https://doi.org/10.3390/ijms262110526
Essmat N, Boldizsár I Jr., Chalabiani Y, Varga BT, Abbood SK, Kirchlechner-Farkas JM, Király K, Miklya I, Gyertyán I, Tábi T, et al. Crosstalk Between Glycinergic and N-Methyl-D-Aspartate Receptor-Mediated Glutamatergic Transmission in Behaviours Associated with Opioid Use Disorder. International Journal of Molecular Sciences. 2025; 26(21):10526. https://doi.org/10.3390/ijms262110526
Chicago/Turabian StyleEssmat, Nariman, Imre Boldizsár, Jr., Yashar Chalabiani, Bence Tamás Varga, Sarah Kadhim Abbood, Judit Mária Kirchlechner-Farkas, Kornél Király, Ildikó Miklya, István Gyertyán, Tamás Tábi, and et al. 2025. "Crosstalk Between Glycinergic and N-Methyl-D-Aspartate Receptor-Mediated Glutamatergic Transmission in Behaviours Associated with Opioid Use Disorder" International Journal of Molecular Sciences 26, no. 21: 10526. https://doi.org/10.3390/ijms262110526
APA StyleEssmat, N., Boldizsár, I., Jr., Chalabiani, Y., Varga, B. T., Abbood, S. K., Kirchlechner-Farkas, J. M., Király, K., Miklya, I., Gyertyán, I., Tábi, T., Fürst, S., Harsing, L. G., Jr., Zádor, F., & Al-Khrasani, M. (2025). Crosstalk Between Glycinergic and N-Methyl-D-Aspartate Receptor-Mediated Glutamatergic Transmission in Behaviours Associated with Opioid Use Disorder. International Journal of Molecular Sciences, 26(21), 10526. https://doi.org/10.3390/ijms262110526

