Lower Thyroid Function and Higher Plasma Choline: Effect Modification by Metabolic Dysfunction-Associated Steatotic Liver Disease
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Laboratory Methods
4.3. Quantification of Microbiome-Related Metabolites
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jabbar, A.; Pingitore, A.; Pearce, S.H.; Zaman, A.; Iervasi, G.; Razvi, S. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 2017, 14, 39–55. [Google Scholar] [CrossRef]
- van Tienhoven-Wind, L.; Dullaart, R.P. Low normal thyroid function as a determinant of increased large very low density lipoprotein particles. Clin. Biochem. 2015, 48, 489–494. [Google Scholar] [CrossRef]
- van Tienhoven-Wind, L.J.; Dullaart, R.P. Low-normal thyroid function and novel cardiometabolic biomarkers. Nutrients 2015, 7, 1352–1377. [Google Scholar] [CrossRef]
- van den Berg, E.H.; van Tienhoven-Wind, L.J.N.; Amini, M.; Schreuder, T.C.M.A.; Faber, K.N.; Blokzijl, H.; Dullaart, R.P. Higher free triiodothyronine is associated with non-alcoholic fatty liver disease in euthyroid subjects: The Lifelines Cohort Study. Metabolism 2017, 67, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Ludgate, M.E.; Masetti, G.; Soares, P. The relationship between the gut microbiota and thyroid disorders. Nat. Rev. Endocrinol. 2024, 20, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhao, H.; Chen, W. Relationship between gut microbiota and thyroid function: A two-sample Mendelian randomization study. Front. Endocrinol. 2023, 14, 1240752. [Google Scholar] [CrossRef]
- Su, X.; Zhao, Y.; Li, Y.; Ma, S.; Wang, Z. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis. Clin. Sci. 2020, 134, 1521–1535. [Google Scholar] [CrossRef]
- Shin, N.R.; Bose, S.; Wang, J.-H.; Nam, Y.-D.; Song, E.-J.; Lim, D.-W.; Kim, H.-B.; Lim, Y.-S.; Choi, H.S.; Kim, H. Chemically or surgically induced thyroid dysfunction altered gut microbiota in rat models. FASEB J. 2020, 34, 8686–8701. [Google Scholar] [CrossRef]
- Jeong, C.; Baek, H.; Bae, J.; Hwang, N.; Ha, J.; Cho, Y.-S.; Lim, D.-J. Gut microbiome in the Graves’ disease: Comparison before and after anti-thyroid drug treatment. PLoS ONE 2024, 19, e0300678. [Google Scholar] [CrossRef]
- Yang, Q.; Han, H.; Sun, Z.; Liu, L.; Zheng, X.; Meng, Z.; Tao, N.; Liu, J. Association of choline and betaine with the risk of cardiovascular disease and all-cause mortality: Meta-analysis. Eur. J. Clin. Investig. 2023, 53, e14041. [Google Scholar] [CrossRef]
- Shi, C.; Pei, M.; Wang, Y.; Chen, Q.; Cao, P.; Zhang, L.; Guo, J.; Deng, W.; Wang, L.; Li, X.; et al. Changes of flavin-containing monooxygenases and trimethylamine-N-oxide may be involved in the promotion of non-alcoholic fatty liver disease by intestinal microbiota metabolite trimethylamine. Biochem. Biophys. Res. Commun. 2022, 594, 1–7. [Google Scholar] [CrossRef]
- Yepes-Calderón, M.; Martín Del Campo Sanchez, F.; Kremer, D.; Knobbe, T.J.; Gomes Neto, A.W.; Connelley, M.A.; Dullaart, R.P.F.; Corpeleijn, E.; de Borst, M.H.; Bakker, S.J.L.; et al. Plasma trimethylamine N-oxide concentration and all-cause mortality in kidney transplant recipients. Nephrol. Dial. Transplant. 2025, 40, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Oste, M.C.J.; Bennett, D.W.; Jeyarajah, E.J.; Shalaurova, I.; Gruppen, E.G.; Hazen, S.L.; Otvos, J.D.; Bakker, S.J.L.; Dullaart, R.P.; et al. High Betaine, a Trimethylamine N-Oxide Related Metabolite, Is Prospectively Associated with Low Future Risk of Type 2 Diabetes Mellitus in the PREVEND Study. J. Clin. Med. 2019, 8, 1813. [Google Scholar] [CrossRef]
- Zeisel, S.H. Choline: An essential nutrient for humans. Nutrition 2000, 16, 2093–2098. [Google Scholar] [CrossRef]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.F.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κb. J. Am. Heart Assoc. 2016, 5, e002767. [Google Scholar] [CrossRef]
- Wu, K.; Yuan, Y.; Yu, H.; Dai, X.; Wang, S.; Sun, Z.; Wang, F.; Fei, H.; Lin, Q.; Jiang, H.; et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 2020, 136, 501–515. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, X.; Zhang, K.; Ma, J.; Li, M.; Jin, G.; Liu, X.; Wang, S.; Wang, B.; Wu, J.; et al. Microbial metabolite trimethylamine-N-oxide induces intestinal carcinogenesis through inhibiting farnesoid X receptor signaling. Cell. Oncol. 2024, 47, 1183–1199, Correction in Cell. Oncol. 2024, 47, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhao, Q.; Jiang, X.; Hu, J.; Jiang, Q.; Sheng, L.; Peng, X.; Wang, S.; Chen, Y.; Wan, Y.; et al. Trimethylamine N-oxide impairs β-cell function and glucose tolerance. Nat. Commun. 2024, 15, 2526. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Annunziata, G.; Laudisio, D.; Tenore, G.C.; Colao, A.; Savastano, S. A new light on vitamin D in obesity: A novel association with Trimethylamine-N-Oxide (TMAO). Nutrients 2019, 11, 1310. [Google Scholar] [CrossRef]
- Day, C.R.; Kempson, S.A. Betaine chemistry, roles, and potential use in liver disease. Biochim. Biophys. Acta BBA 2016, 1860, 1098–1106. [Google Scholar] [CrossRef]
- Lever, M.; Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef]
- Ha, S.; Wong, V.W.S.; Zhang, X.; Yu, J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2025, 74, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Benedé-Ubieto, R.; Cubero, F.J.; Nevzorova, Y.A. Breaking the barriers: The role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024, 16, 2331460. [Google Scholar] [CrossRef]
- Liu, L.; Yin, M.; Gao, J.; Yu, C.; Lin, J.; Wu, A.; Zhu, J.; Xu, C.; Liu, X. Intestinal Barrier Function in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J. Clin. Transl. Hepatol. 2022, 11, 452. [Google Scholar] [CrossRef]
- Bano, A.; Chaker, L.; Plompen, E.P.C.; Hofman, A.; Dehghan, A.; Franco, O.H.; Janssen, H.L.A.; Murad, S.D.; Peeters, R.P. Thyroid function and the risk of nonalcoholic fatty liver disease: The Rotterdam study. J. Clin. Endocrinol. Metab. 2016, 101, 3204–3211. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Garcia, E.; Gruppen, E.G.; Kremer, D.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Higher Free Triiodothyronine Is Associated with Higher HDL Particle Concentration and Smaller HDL Particle Size. J. Clin. Endocrinol. Metab. 2022, 107, e1807–e1815. [Google Scholar] [CrossRef]
- Gruppen, E.G.; Kootstra-Ros, J.; Kobold, A.M.; Connelly, M.A.; Touw, D.; Bos, J.H.J.; Hak, E.; Links, T.P.; Bakker, S.J.L.; Dullaart, R.P.F. Cigarette smoking is associated with higher thyroid hormone and lower TSH levels: The PREVEND study. Endocrine 2020, 67, 613–622. [Google Scholar] [CrossRef]
- Brenta, G.; Nepote, A.; Barreto, A.; Musso, C.; Faingold, C.; Fossati, P.; Antonelli, A.; Fallahi, P.; Famá, F.; Meroño, T. Low glomerular filtration rate values are associated with higher TSH in an elderly population at high cardiovascular disease risk. Front. Endocrinol. 2023, 14, 1162626. [Google Scholar] [CrossRef]
- Anderson, J.L.C.; Gruppen, E.G.; van Tienhoven-Wind, L.; Eisenga, M.F.; de Vries, H.; Gansevoort, R.T.; Bakker, S.J.; Dullaart, R.P. Glomerular filtration rate is associated with free triiodothyronine in euthyroid subjects: Comparison between various equations to estimate renal function and creatinine clearance. Eur. J. Intern. Med. 2018, 48, 94–99. [Google Scholar] [CrossRef]
- Cappola, A.R.; Arnold, A.M.; Wulczyn, K.; Carlson, M.; Robbins, J.; Psaty, B.M. Thyroid function in the euthyroid range and adverse outcomes in older adults. J. Clin. Endocrinol. Metab. 2015, 100, 1088–1096. [Google Scholar] [CrossRef]
- Chaker, L.; Baumgartner, C.; Den Elzen, W.P.J.; Collet, T.H.; Ikram, M.A.; Blum, M.R.; Dehghan, A.; Drechsler, C.; Luben, R.N.; Portegies, M.L.P.; et al. Thyroid function within the reference range and the risk of stroke: An individual participant data analysis. J. Clin. Endocrinol. Metab. 2016, 101, 4270–4282. [Google Scholar] [CrossRef]
- Xu, Y.; Derakhshan, A.; Hysaj, O.; Wildisen, L.; Ittermann, T.; Pingitore, A.; Abolhassani, N.; Medici, M.; Kiemeney, L.A.L.M.; Riksen, N.P.; et al. The optimal healthy ranges of thyroid function defined by the risk of cardiovascular disease and mortality: Systematic review and individual participant data meta-analysis. Lancet Diabetes Endocrinol. 2023, 11, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Gruppen, E.G.; Connelly, M.A.; Sluiter, W.J.; Bakker, S.J.L.; Dullaart, R.P.F. Higher plasma GlycA, a novel pro-inflammatory glycoprotein biomarker, is associated with reduced life expectancy: The PREVEND study. Clin. Chim. Acta 2019, 488, 7–12. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; de Borst, M.H.; Wolak-Dinsmore, J.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Non-Alcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: Role of Circulating Branched-Chain Amino Acids. Nutrients 2019, 11, 705. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Wolak-Dinsmore, J.; Wang, Z.; Li, X.S.; Bennett, D.W.; Connelly, M.A.; Otvos, J.D.; Hazen, S.L.; Jeyarajah, E.J. NMR quantification of trimethylamine-N-oxide in human serum and plasma in the clinical laboratory setting. Clin. Biochem. 2017, 50, 947–955. [Google Scholar] [CrossRef]
- Garcia, E.; Shalaurova, I.; Matyus, S.P.; Wolak-Dinsmore, J.; Oskardmay, D.N.; Connelly, M.A. Quantification of choline in serum and plasma using a clinical nuclear magnetic resonance analyzer. Clin. Chim. Acta 2022, 524, 106–112. [Google Scholar] [CrossRef]
| Variable | Overall Population | TSH Quartile 1 (Lowest) | TSH Quartile 2 | TSH Quartile 3 | TSH Quartile 4 (Highest) | p-Value |
|---|---|---|---|---|---|---|
| Number of participants | 4771 | 1193 | 1192 | 1193 | 1193 | |
| TSH, mIU/L | 1.71 ± 0.81 | 0.82 ± 0.20 | 1.33 ± 0.14 | 1.85 ± 0.20 | 2.84 ± 0.53 | <0.001 |
| Free T4, pMol/L | 15.71 ± 1.87 | 15.98 ± 1.89 | 15.83 ± 1.87 | 15.70 ± 1.85 | 15.33 ± 1.79 | <0.001 |
| Free T3, pMol/L | 4.86 ± 0.52 | 4.85 ± 0.51 | 4.85 ± 0.50 | 4.87 ± 0.53 | 4.87 ± 0.53 | 0.53 |
| Male sex, n (%) | 2427 (50.9) | 607 (50.9) | 606 (50.8) | 607 (50.9) | 607 (50.9) | 0.99 |
| Age, years | 52.95 ± 11.87 | 53.78 ± 12.45 | 52.27 ± 11.44 | 52.25 ± 11.88 | 53.52 ± 11.62 | 0.001 |
| Waist circumference, cm | 91.77 ± 12.86 | 92.06 ± 12.89 | 90.95 ± 12.48 | 91.60 ± 13.09 | 92.49 ± 12.95 | 0.025 |
| Body mass index, kg/m2 | 26.54 ± 4.33 | 26.59 ± 4.36 | 26.23 ± 4.00 | 26.56 ± 4.37 | 26.78 ± 4.57 | 0.019 |
| Alcohol categories (%) | 0.001 | |||||
| Never | 1149 (24.3) | 335 (28.5) | 253 (21.4) | 271 (22.9) | 290 (24.5) | |
| Less than 1 drink per day | 2325 (49.3) | 539 (45.9) | 585 (49.5) | 602 (50.9) | 599 (50.7) | |
| More than 1 drink per day | 1245 (26.4) | 300 (25.6) | 343 (29.0) | 309 (26.1) | 293 (24.8) | |
| Current smoking | 1344 (28.6) | 415 (35.5) | 370 (31.4) | 318 (27.0) | 241 (20.4) | <0.001 |
| eGFRcreat+cys, mL/min/1.73m2 | 97.61 ± 16.98 | 97.53 ± 17.65 | 98.80 ± 16.23 | 98.11 ± 16.78 | 95.99 ± 17.12 | 0.001 |
| Urinary albumin excretion | 8.53 [6.02, 15.40] | 8.94 [6.07, 18.29] | 8.74 [6.01, 15.48] | 8.49 [6.01, 14.54] | 8.10 [6.00, 14.10] | 0.011 |
| Triglycerides, mmol/L | 1.10 [0.80, 1.59] | 1.09 [0.79, 1.55] | 1.06 [0.77, 1.52] | 1.09 [0.79, 1.60] | 1.19 [0.85, 1.71] | <0.001 |
| Gamma-glutamyltransferase, U/L | 24 [16, 38] | 23 [15, 38] | 23 [16, 38] | 24 [16, 38] | 24 [16, 39] | 0.88 |
| Fatty liver index | 36 [15, 67] | 38 [15, 66] | 33 [14, 62] | 35 [14, 68] | 39 [16, 69] | 0.008 |
| Lipid lowering drugs, n (%) | 337 (8.2) | 84 (8.1) | 79 (7.8) | 83 (8.2) | 91 (8.7) | 0.89 |
| Antihypertensive drugs, n (%) | 859 (20.9) | 228 (22.0) | 190 (18.8) | 212 (20.9) | 229 (22.0) | 0.24 |
| Antidiabetic drugs, n (%) | 153 (3.2) | 35 (2.9) | 33 (2.8) | 34 (2.9) | 51 (4.3) | 0.12 |
| Diabetes, n yes (%) | 268 (5.6) | 69 (5.8) | 54 (4.6) | 63 (5.3) | 82 (6.9) | 0.09 |
| hs-CRP, mg/L | 1.32 [0.60, 2.96] | 1.40 [0.63, 3.12] | 1.25 [0.59, 2.81] | 1.26 [0.60, 2.86] | 1.36 [0.59, 3.11] | 0.33 |
| Positive anti-TPO antibodies, n (%) | 367 (7.7) | 56 (4.7) | 53 (4.5) | 92 (7.7) | 166 (13.9) | <0.001 |
| Choline, µmol/L | 7.30 [5.80, 9.20] | 7.10 [5.70, 9.20] | 7.30 [5.70, 9.10] | 7.30 [5.80, 9.10] | 7.50 [5.90, 9.30] | 0.04 |
| TMAO, µmol/L | 3.20 [1.80, 5.70] | 3.20 [1.70, 5.70] | 3.20 [1.70, 5.50] | 3.20 [1.70, 5.90] | 3.40 [1.90, 5.90] | 0.10 |
| Betaine, µmol/L | 36.6 [30.7, 43.7] | 36.8 [30.8, 43.9] | 36.5 [30.6, 43.4] | 36.5 [30.8, 43.2] | 36.8 [30.5, 44.2] | 0.68 |
| Choline | TMAO | Betaine | ||||
|---|---|---|---|---|---|---|
| Model | Std. β (95% CI) | p-Value | Std. β (95% CI) | p-Value | Std. β (95% CI) | p-Value |
| Model 1 | 0.03 (0.01; 0.06) | 0.049 | 0.03 (0.01; 0.06) | 0.031 | −0.03 (−0.06; 0.01) | 0.054 |
| Model 2 | 0.05 (0.02; 0.07) | 0.001 | 0.04 (0.01; 0.06) | 0.021 | −0.01 (−0.03; 0.02) | 0.74 |
| Model 3 | 0.03 (0.01; 0.07) | 0.018 | 0.02 (0.01; 0.06) | 0.12 | 0.01 (−0.03; 0.03) | 0.85 |
| Model 4 | 0.04 (0.01; 0.07) | 0.012 | 0.03 (−0.01; 0.06) | 0.094 | 0.02 (−0.03; 0.03) | 0.82 |
| Fatty Liver Index ≥ 60 (n = 1425) | ||||||
|---|---|---|---|---|---|---|
| Choline | TMAO | Betaine | ||||
| Model | Std. β (95% CI) | p-Value | Std. β (95% CI) | p-Value | Std. β (95% CI) | p-Value |
| Model 1 | 0.07 (0.02; 0.12) | 0.008 | 0.04 (−0.01; 0.09) | 0.14 | −0.04 (−0.09; 0.01) | 0.14 |
| Model 2 | 0.09 (0.04; 0.14) | 0.001 | 0.04 (−0.01; 0.09) | 0.14 | −0.02 (−0.07; 0.04) | 0.56 |
| Model 3 | 0.08 (0.02; 0.13) | 0.004 | 0.03 (−0.02; 0.08) | 0.27 | −0.02 (−0.07; 0.04) | 0.54 |
| Model 4 | 0.08 (0.03; 0.13) | 0.003 | 0.02 (−0.04; 0.08) | 0.47 | 0.01 (−0.04; 0.07) | 0.69 |
| Fatty liver index < 60 (n = 3324) | ||||||
| Model 1 | 0.01 (−0.03; 0.04) | 0.61 | 0.03 (−0.01; 0.06) | 0.11 | −0.02 (−0.06; 0.01) | 0.21 |
| Model 2 | 0.03 (−0.01; 0.06) | 0.13 | 0.03 (−0.01; 0.07) | 0.08 | 0.01 (−0.03; 0.04) | 0.63 |
| Model 3 | 0.02 (−0.01; 0.06) | 0.21 | 0.03 (−0.01; 0.07) | 0.08 | 0.01 (−0.02; 0.04) | 0.57 |
| Model 4 | 0.02 (−0.02; 0.05) | 0.35 | 0.03 (−0.01; 0.07) | 0.12 | 0.01 (−0.03; 0.04) | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Post, A.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Lower Thyroid Function and Higher Plasma Choline: Effect Modification by Metabolic Dysfunction-Associated Steatotic Liver Disease. Int. J. Mol. Sci. 2025, 26, 10525. https://doi.org/10.3390/ijms262110525
Post A, Connelly MA, Bakker SJL, Dullaart RPF. Lower Thyroid Function and Higher Plasma Choline: Effect Modification by Metabolic Dysfunction-Associated Steatotic Liver Disease. International Journal of Molecular Sciences. 2025; 26(21):10525. https://doi.org/10.3390/ijms262110525
Chicago/Turabian StylePost, Adrian, Margery A. Connelly, Stephan J. L. Bakker, and Robin P. F. Dullaart. 2025. "Lower Thyroid Function and Higher Plasma Choline: Effect Modification by Metabolic Dysfunction-Associated Steatotic Liver Disease" International Journal of Molecular Sciences 26, no. 21: 10525. https://doi.org/10.3390/ijms262110525
APA StylePost, A., Connelly, M. A., Bakker, S. J. L., & Dullaart, R. P. F. (2025). Lower Thyroid Function and Higher Plasma Choline: Effect Modification by Metabolic Dysfunction-Associated Steatotic Liver Disease. International Journal of Molecular Sciences, 26(21), 10525. https://doi.org/10.3390/ijms262110525

