DNMT Enzymes and Their Impact on Cervical Cancer: A State-of-the-Art Review
Abstract
1. Introduction
2. Discovering DNMT Enzymes
3. Structure of DNMT Genes and Proteins
4. Classification and Function of DNMT Enzymes
5. Role of DNMT1 in CC
6. Role of DNMT2 in CC
7. Role of DNMT3A in CC
8. Role of DNMT3B in CC
9. Role of DNMT3L in CC
10. DNMTs as Therapeutic Target Potential in CC
| Drug | Description | Results | Model | Cite |
|---|---|---|---|---|
| 5-Aza-2′ deoxycytidine (5-Aza-dC) | Nucleoside analog and DNA methylation inhibitor | Decreases the expression and activity of DNMT1, DNMT3A, and DNMT3B | HeLa and C-33A CC cell lines | [139,140,141] |
| 5-Aza-dC | Nucleoside analog and DNA methylation inhibitor | Does not affect DNMT1 expression | HeLa and SiHa CC cell lines | [88] |
| Zebularine (Zeb) | Nucleoside analog of cytidine and DNA methylation inhibitor | Decreases DNMT1, DNMT3A, and DNMT3B expression, but unfortunately, this drug does not decrease their activity | HeLa CC cell line | [143] |
| Trichosanthin (TCS) | Type I Ribosome-Inactivating Protein that is extracted from the Trichosanthes kirilowii herb | Inhibits the expression and activity of DNMT1, reducing methylation and increasing the expression of APC and TSLC1 TSG | HeLa and CaSki CC cell lines | [144] |
| Apicidin (N-O-methyl-L-tryptophanyl-L-isoleucinyl-D-pipecolinyl-L-2-amino-8-oxodecanoyl) | Anti-protozoal fungal metabolite agent that acts as a selective HDACs inhibitor for Class I HDACs (HDACs 2, 3, and 8) | Reduces DNMT1 expression by decreasing the levels of acetyl-Histone 3 and acetyl-Histone 4; decreasing the levels of transcriptional activation markers, such as H3K4me3; and increasing the levels of H3K9me3 and H3K27me3, two marks of transcriptional repression. It promotes pRB and HDAC1 recruitment and avoids the binding of Pol II and P/CAF (or KAT2B), a Histone Acetyltransferase (HAT) enzyme that adds acetyl groups onto lysine residues in histone proteins. Subsequently, DNMT1 downregulation increases p21 expression and induces apoptosis | HeLa CC cell line | [145,146] |
| Luteolin (3′,4′,5,7-tetrahydroxyflavone) and Limoniastrum guyonianum | Luteolin is a dietary flavonoid, and L. guyonianum is a plant; specifically, it is a shrub from the plumbaginaceae family | Decrease UHRF1 and DNMT1 expression and global DNA methylation while increasing p16 expression, inhibiting cell proliferation, and inducing arrest of the cell cycle in the G2/M phase and apoptosis | HeLa CC cell line | [147] |
| Epigallocatechin gallate (EGCG), Eugenol, and Amarogentin | Major component of green tea polyphenols; active component of clave and chirata plant | These 3 drugs decrease DNMT1 and increase RBSP3, LIMD1, and p16 protein expression via demethylation in RBSP3 and p16 promoters, which inhibit cell proliferation, block the cell cycle in the G1/S phase, and increase apoptosis | HeLa CC cell line | [148] |
| EGCG | Major component of green tea polyphenols | Decreases the expression and activity of DNMT1, DNMT3A, and DNMT3B enzymes through competitive binding to the catalytic cavity of DNMT1 and DNMT3A, decreasing global DNA methylation and increasing the expression of RARβ, CDH1, and DAPK1 TSG via demethylation of their promoters | HeLa CC cell line | [141,149] |
| Menthol | Cyclic monoterpene | Decreases DNMT1 activity and increases FANCF expression via demethylation in its promoter, contributing to the maintenance of genome integrity | SiHa CC cell line | [150] |
| Folate (F) and Methionine (M) | Vitamin B9 and indispensable dietary amino acid | Their depletion reduces cell proliferation by decreasing DNMT1, DNMT3A, and DNMT3B expression, as well as global DNA methylation | SiHa and C-4II CC cell lines | [122] |
| H1 | 2-(2-aminobenzo[d]thiazol-6-yl) benzo[d]oxazol-5-amine derivative | Inhibits cell proliferation and tumor growth and promotes cell cycle arrest via repression of the E7/Rb/E2F-1/DNMT1 signaling pathway | HeLa CC cell line and male BALB/c nude mice | [151] |
| Capsaicin | Capsaicinoid present in chili peppers | Inhibits DNMT1 activity and methylation on promoters of CADM1 and SOCS1 genes while increasing cell viability and the formation of apoptotic bodies | HeLa CC cell line | [152] |
| Casticin (3′,5-dihydroxy-3,4′,6,7-tetramethoxyflavone or CAS) | 7-O-methylated flavonoid extracted from Fructus viticis | Represses DNMT1 activity and expression and reverts the stemness phenotype | Cancer stem-like cells derived from the HeLa and CaSki CC cell line | [93] |
| Ethanol | Ethyl alcohol | Decreases acid folic levels and increases DNMT1, DNMT3A, and DNMT3B expression, leading to in vivo genome-wide hypomethylation | SiHa CC cell line and athymic nude mice | [153] |
| Laminarin | Polysaccharide found in brown algae | DNMT1 could be a target of Laminarin in CC and COVID-19 patients | In silico | [154] |
| Quercetin | Dietary phytochemical | Interacts with DNMT3A and DNMT3B and inhibits their activity. It also decreases DNMT1, DNMT3A, and DNMT3B expressions, as well as global DNA methylation, leading to the re-expression of TSGs, such as RARB, TIMP3, VHL, PTEN, CDH1, and SOCS1 via demethylation of their promoters | HeLa CC cell line | [155] |
| Valproic acid (VPA) | Inhibitor of HDAC1 | Treatment inhibits the formation of the DNMT3A/HDAC1 complex, leading to OCT4 re-expression | C-33A CC cell line | [156] |
| Sulforaphane (SFN) | Dietary phytochemical | Inhibits DNMT activity and decreases DNMT3B expression, which induces the expression of RARβ, CDH1, DAPK1, and GSTP1 TSG via demethylation of their promoters | HeLa CC cell line | [140] |
| Betulin | Triterpenoid | Inhibits DNMT3A activity and reduces cell viability | HeLa CC cell line | [157] |
| Cisplatin (Cis-diaminodichloroplatinum (II) or CDDP) | Alkylating agent | Decreases DNMT1 expression, promoting the re-expression of BRCA1, BRCA2, FANCC, and FANCD2 genes via demethylation of their promoters | HeLa and SiHa CC cell lines | [89] |
| CDDP | Alkylating agent | Inhibits DNMT1 expression, increases BRCA1, BRCA2, FANCC, and FANCD2 expression, and decreases the methylation levels in their promoters | SiHa and HeLa CC cell lines | [89] |
| CDDP | Alkylating agent | DNMT3B expression increases in CDDP-resistant subclones. However, co-treatment with CDDP and 5-Aza-CdR only increases DAP kinase expression to the mRNA level via demethylation of its promoter in these CDDP-resistant subclones | ME180 CC cell line | [158] |
| SGI-1027 (N-(4-(2-Amino-6-methylpyrimidin-4-ylamino)phenyl)-4-(quinolin-4-ylamino) benzamide) | Quinoline-based compound | Inhibits DNMT1 activity, increasing apoptotic cell death and cell cycle arrest, and decreasing viability in vitro and in vivo by inhibition of the JAK/STAT signaling pathway | HeLa CC cell line | [159] |
| Trichostatin A (TSA) | HDAC inhibitor | Inhibits DNMT3B expression and induces apoptosis | CaSki and HeLa CC cell lines | [160] |
| Hydralazine | Antihypertensive | Induces APC expression and promotes demethylation, inhibiting cell growth | HeLa, CaSki, and SiHa CC cell lines | [161] |
| Hydralazine | Antihypertensive | Increased the PFS in patients with advanced CC | 19 Mexican patients | [162] |
| Hydralazine | Antihypertensive | Reverts gemcitabine resistance via inhibition of G9A histone methyltransferase in vitro | CaLo CC cell line | [163] |
| Genistein | Polyphenol | Inhibits the expression and enzymatic activity of DNMTs, reverts the promoter region methylation of the TSGs, and re-establishes their expression | HeLa CC cell line | [164] |
| Hydralazine | Antihypertensive | Induces radiosensitization and decreases cell viability | SiHa CC cell line | [165] |
| Hydralazine | Antihypertensive | Demethylates and reactivates the expression of TSG without affecting global DNA methylation in vivo | Patients with untreated CC | [166] |
11. The Interplay Between DNMTs, miRNAs, and lncRNAs in Cervical Cancer
12. DNA Methylation as Biomarker in CC
13. Future Directions
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CC | Cervical cancer |
| DNMTs | DNA methyltransferases |
| HR-HPV | High-risk human papillomavirus |
| PTEN | Phosphatase and Tensin Homolog |
| PAX1 gene | Paired Box 1 |
| TSLC1 | Tumor suppressor in lung cancer 1 |
| CGIs | CpG Islands |
| FOXA2 | Forkhead Box A2 |
| PAX2 | Paired Box 2 |
| AJAP1 | Adherens Junctions-Associated Protein 1 |
| KLF2 | KLF Transcription Factor 2 |
| TRIB3 | Tribbles Pseudokinase 3 |
| STC2 | Stanniocalcin 2 |
| TETs | Ten-Eleven-Translocations |
| CIN | Cervical Intraepithelial Neoplasia |
| SIL | Squamous Intraepithelial Lesion |
| LSIL | Low-grade SIL |
| HSIL | High-grade SIL |
| LR-HPV | Low-Risk HPV |
| IR-HPV | Intermediate-Risk HPV |
| VIA | Visual inspection of acetic acid |
| PD-L1 | Programmed death ligand 1 |
| cDNA | Complementary DNA |
| RT-PCR | Reverse-Transcription-Polymerase Chain Reaction |
| HAVANA | Human and Vertebrate Analysis and Annotation |
| CDS | Coding Sequence |
| tRNA | Transfer RNA |
| DMAP | Charge-rich DNMT-Associated Protein |
| PBD | Proliferating Cell Nuclear Antigen Binding |
| NLS | Nuclear Location Sequence |
| DMAP1 | DNA Methyltransferase 1-Associated Protein 1 |
| RFTS | Replication Foci Targeting Sequence |
| PBHD | Poly Bromo Homology Domain |
| BAH1/2 | Bromo-Adjacent Homology 1 and 2 |
| PWWP | Pro-Trp-Pro-Trp |
| ADD | Atrx-DNMT3-DNMT3L |
| AdoMet or SAM | S-adenosyl-l-methionine |
| TRD | Target Recognition Domain |
| CFT | CFTXXYXXY motif |
| AdoHcy or SAH | S-Adenosyl-l-Homocysteine |
| Sp1 | Sp1 Transcription Factor |
| LSF | Late SV40 Factor |
| TSG | Tumor-Suppressor Gene |
| CDKN1A | Cyclin Dependent Kinase Inhibitor 1A |
| SP4 | Sp4 Transcription Factor |
| OS | Overall Survival |
| HPV+ | Positive for Human papillomavirus infection |
| HPV− | Negative for Human papillomavirus infection |
| FITC | Fluorescein isothiocyanate |
| MAGI2-AS | MAGI2 antisense RNA |
| PHFK | Primary human foreskin keratinocyte cells |
| RARB | Retinoic Acid Receptor β |
| CADM1 | Cell Adhesion Molecule 1 |
| E6AP | Ubiquitin Ligase E6-Associated Protein |
| C1QBP | Complement C1q Binding Protein |
| BCAP31 | B-Cell Receptor-Associated Protein 31 |
| CDKN2A | Cyclin Dependent Kinase Inhibitor 2A |
| PTMS | Parathymosin |
| CCNA1 | Cyclin A1 |
| CHFR | Checkpoint With Forkhead and Ring Finger Domains |
| SFRP4 | Secreted Frizzled-Related Protein 4 |
| Cep131 | Centrosomal Protein 131 |
| EphA7 | EPH Receptor A7 |
| EMT | Epithelial–Mesenchymal Transition |
| SORBS3-β | Sorbin And SH3 Domain Containing 3-β |
| UBA | Ubiquitin-Like Modifier Activating Enzyme 1 |
| ELK1 | ETS Transcription Factor ELK1 |
| GABPA | GA Binding Protein Transcription Factor Subunit α |
| TRDMT1 | TRNA Aspartic Acid Methyltransferase 1 |
| DOX | Doxorubicin |
| ETOPO | Etoposide |
| IL-6 | Interleukin 6 |
| LC3 | Microtubule-Associated Protein 1 Light Chain 3 α |
| ROS | Reactive oxygen species |
| RAD51 | RAD51 Recombinase |
| XRCC1 | X-Ray Repair Cross-Complementing 1 |
| NF-κB | Nuclear factor-kappa B |
| NSUN1 | NOP2 Nucleolar Protein |
| GRP78 | Glucose-Regulated Protein 78 |
| NSUN3 | NOP2/Sun RNA Methyltransferase 3 |
| NSUN5 | NOP2/Sun RNA Methyltransferase 5 |
| AMPK | 5′ AMP-activated protein kinase |
| miRNAs | Micro RNAs |
| lncRNAs | Long non-coding RNAs |
| circRNAs | Circular RNAs |
| SUV39H1 | SUV39H1 Histone Lysine Methyltransferase |
| HP1 | Heterochromatin protein 1 |
| IGFBP3 | Insulin-Like Growth Factor Binding Protein 3 |
| TP53AIP1 | Tumor Protein P53-Regulated Apoptosis-Inducing Protein 1 |
| H3K27me3 | Tri-methylation of Lysine 27 on Histone H3 |
| EZH2 | Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit |
| HAVCR2 | Hepatitis A Virus Cellular Receptor 2 |
| LGALS9 | Galectin-9 |
| CCLL2 | C-C Motif Chemokine Ligand 2 |
| CCR4 | CC Motif Chemokine Receptor 4 |
| H3K9me3 | Tri-methylation of Lysine 9 on Histone H3 |
| BST2 | Bone Marrow Stromal Cell Antigen 2 |
| SNPs | Single-Nucleotide Polymorphisms |
| FOXO3a | Forkhead Box O3 |
| PTPRR | Protein Tyrosine Phosphatase Receptor Type R |
| TSA | Trichostatin A |
| HDAC | Histones Deacetylases |
| 5-Aza-dC | 5-Aza-2′ deoxycytidine |
| Zeb | Zebularine |
| TCS | Trichosanthin |
| APC | Adenomatous Polyposis Coli Protein |
| Pol II | RNA Polymerase II Subunit A |
| P/CAF | Lysine Acetyltransferase 2B |
| pRB | Retinoblastoma protein |
| HAT | Histone Acetyltransferase |
| EGCG | Epigallocatechin gallate |
| RBSP3 | RB Protein Serine Phosphatase from chromosome 3 |
| LIMD1 | LIM Domain Containing 1 |
| p16 | Cyclin Dependent Kinase Inhibitor 2A |
| CDH1 | Cadherin 1 |
| DAPK1 | Death-Associated Protein Kinase 1 |
| FANCF | FA Complementation Group F |
| F | Folate |
| M | Methionine |
| SOCS1 | Suppressor Of Cytokine Signaling 1 |
| E2F-1 | E2F Transcription Factor 1 |
| COVID-19 | Coronavirus disease 2019 |
| VPA | Valproic acid |
| OCT4 | POU Class 5 Homeobox 1 |
| SFN | Sulforaphane |
| CDDP | Cis-diaminodichloroplatinum (II) |
| PFS | Progression-free survival |
| BRCA1 | BRCA1 DNA Repair Associated |
| BRCA2 | BRCA2 DNA Repair Associated |
| FANCC | FA Complementation Group C |
| FANCD2 | FA Complementation Group D2 |
| DAP | Death-Associated Protein |
| PIK3AP1 | Phosphoinositide-3-Kinase Adaptor Protein 1 |
| PI3K | Phosphoinositide-3-Kinase |
| SIX1-1 | SIX Homeobox 1-1 lncRNA |
| AKT | AKT Serine/Threonine Kinase |
| 3′-UTR | 3′ Untranslated Region |
| WNT | Wingless and int |
| TNF-α | Tumor Necrosis Factor α |
| c-Met | MET Proto-Oncogene, Receptor Tyrosine Kinase |
| UTF1 | Undifferentiated Embryonic Cell Transcription Factor 1 |
| CCSLCs | Cervical cancer stem cell-like cells |
| FoxM1 | Forkhead box protein M1 |
| LIMS2 | LIM Zinc Finger Domain Containing |
| LINP1 | Leukemia NUP98 Fusion Partner 1 |
| YAP1 | Yes1-Associated Transcriptional Regulator |
| PRSS8 | Serine Protease 8 |
| cAMP | Protein Kinase CAMP-Activated Catalytic Subunit α |
| PKA | PKA C-α-1 protein |
| CREB | CAMP Responsive Element Binding Protein 1 |
| HOTAIR | HOX transcript antisense intergenic RNA |
| LATS1 | Large-tumor-suppressor kinase 1 |
| ncRNAs | Non-coding RNAs |
| CSRP2BP | Lysine Acetyltransferase 14 |
| SMAD4 | SMAD Family Member 4 |
| EDN3 | Endothelin 3 |
| ZNF671 | Zinc Finger Protein 671 |
| AUC | Area Under the Curve |
| ZSCAN18 | Zinc Finger and SCAN Domain Containing 18 |
| ASTN1 | Astrotactin 1 |
| DLX1 | Distal-Less Homeobox 1 |
| ITGA4 | Integrin Subunit α 4 |
| RXFP3 | Relaxin Family Peptide Receptor 3 |
| SOX17 | SRY-Box Transcription Factor 17 |
| LBC | Liquid-Based Cytology |
| MAL | Myelin And Lymphocyte Protein |
| ddPCR | Droplet digital PCR |
| qMSP | Multiplex quantitative methylation-specific PCR |
| SOX1 | SRY-Box Transcription Factor 1 |
| BSP | Bisulfite Sequencing PCR |
| HT sequencing | High-Throughput Sequencing |
| qMSP* | Quantitative multiplex Methylation-Specific PCR |
| UK | United Kingdom |
| NREP-AS1 | NREP Antisense RNA 1 |
| JAM3 | Junctional Adhesion Molecule 3 |
| MSP | Methylation-Specific PCR |
| TCGA | The Atlas Genome Cancer |
| GEO | Gene Expression Omnibus |
| TZ3 | Type 3 transformation zone |
| FAM19A4 | TAFA Chemokine Like Family Member 4 |
| HIV | Human Immunodeficiency Virus |
| PRMD8 | PR/SET Domain 8 |
| ASCL1 | Achaete-Scute Family BHLH Transcription Factor 1 |
| MIR520H | MicroRNA 520h |
| LHX8 | LIM Homeobox 8 |
| GHSR | Growth Hormone Secretagogue Receptor |
| SST | Somatostatin |
| ZIC1 | Zic Family Member 1 |
References
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Ward, R.L.; Hesson, L.B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 2014, 9, 823–828. [Google Scholar] [CrossRef]
- Cain, J.A.; Montibus, B.; Oakey, R.J. Intragenic CpG Islands and Their Impact on Gene Regulation. Front. Cell Dev. Biol. 2022, 10, 832348. [Google Scholar] [CrossRef]
- Saxonov, S.; Berg, P.; Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA 2006, 103, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Bahar Halpern, K.; Vana, T.; Walker, M.D. Paradoxical role of DNA methylation in activation of FoxA2 gene expression during endoderm development. J. Biol. Chem. 2014, 289, 23882–23892. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Wang, J.; Li, Q.; Tao, X.; Chang, K.; Hua, K.; Yu, Y.; Wong, K.K.; Feng, W. DNA methylation promotes paired box 2 expression via myeloid zinc finger 1 in endometrial cancer. Oncotarget 2016, 7, 84785–84797. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zhang, B. Hypermethylation in the promoter region inhibits AJAP1 expression and activates the JAK/STAT pathway to promote prostate cancer cell migration and stem cell sphere formation. Pathol. Res. Pract. 2023, 241, 154224. [Google Scholar] [CrossRef]
- Mizuguchi, M.; Hara, T.; Yoshita-Takahashi, M.; Kohda, T.; Tanaka, Y.; Nakamura, M. Promoter CpG methylation inhibits Krüppel-like factor 2 (KLF2)-Mediated repression of hTERT gene expression in human T-cells. Biochem. Biophys. Rep. 2021, 26, 100984. [Google Scholar] [CrossRef]
- Cho, J.-W.; Shim, H.S.; Lee, C.Y.; Park, S.Y.; Hong, M.H.; Lee, I.; Kim, H.R. The importance of enhancer methylation for epigenetic regulation of tumorigenesis in squamous lung cancer. Exp. Mol. Med. 2022, 54, 12–22. [Google Scholar] [CrossRef]
- Yang, X.; Han, H.; De Carvalho, D.D.; Lay, F.D.; Jones, P.A.; Liang, G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014, 26, 577–590. [Google Scholar] [CrossRef]
- Pappalardo, X.G.; Barra, V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 2021, 14, 25. [Google Scholar] [CrossRef]
- Meaney, M.J.; Szyf, M. Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues Clin. Neurosci. 2005, 7, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, I.A.; Mehler, M.F. Epigenetic mechanisms underlying nervous system diseases. Handb. Clin. Neurol. 2018, 147, 43–58. [Google Scholar] [CrossRef]
- Kriaucionis, S.; Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324, 929–930. [Google Scholar] [CrossRef] [PubMed]
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930–935. [Google Scholar] [CrossRef]
- Koh, K.P.; Yabuuchi, A.; Rao, S.; Huang, Y.; Cunniff, K.; Nardone, J.; Laiho, A.; Tahiliani, M.; Sommer, C.A.; Mostoslavsky, G.; et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011, 8, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; D’Alessio, A.C.; Taranova, O.V.; Hong, K.; Sowers, L.C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466, 1129–1133. [Google Scholar] [CrossRef]
- Chattopadhyaya, S.; Ghosal, S. DNA methylation: A saga of genome maintenance in hematological perspective. Hum. Cell 2022, 35, 448–461. [Google Scholar] [CrossRef]
- Robertson, K.D.; Keyomarsi, K.; Gonzales, F.A.; Velicescu, M.; Jones, P.A. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res. 2000, 28, 2108–2113. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 2017, 5, 1. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- International Collaboration of Epidemiological Studies of Cervical Cancer. Cervical carcinoma and sexual behavior: Collaborative reanalysis of individual data on 15,461 women with cervical carcinoma and 29,164 women without cervical carcinoma from 21 epidemiological studies. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1060–1069. [Google Scholar] [CrossRef]
- Kashyap, N.; Krishnan, N.; Kaur, S.; Ghai, S. Risk Factors of Cervical Cancer: A Case-Control Study. Asia Pac. J. Oncol. Nurs. 2019, 6, 308–314. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Sellors, J.W.; Sankaranarayanan, R. Colposcopy and Treatment of Cervical Intraepithelial Neoplasia: A Beginner’s Manual; Diamond Pocket Books (P) Ltd.: New Delhi, India, 2003. [Google Scholar]
- Lax, S. Histopathology of cervical precursor lesions and cancer. Acta Dermatoven APA 2011, 20, 125–133. [Google Scholar]
- National Cancer Institute Workshop. The 1988 Bethesda System for reporting cervical/vaginal cytological diagnoses. JAMA 1989, 262, 931–934. [Google Scholar] [CrossRef]
- Pangarkar, M.A. The Bethesda System for reporting cervical cytology. Cytojournal 2022, 19, 28. [Google Scholar] [CrossRef]
- Khieu, M.; Butler, S.L. High-grade squamous intraepithelial lesion of the cervix. In StatPearls [Internet]; StatPearls Publishing: Petersburg, FL, USA, 2023. [Google Scholar]
- Banerjee, D.; Mittal, S.; Mandal, R.; Basu, P. Screening technologies for cervical cancer: Overview. Cytojournal 2022, 19, 23. [Google Scholar] [CrossRef]
- Fontham, E.T.H.; Wolf, A.M.D.; Church, T.R.; Etzioni, R.; Flowers, C.R.; Herzig, A.; Guerra, C.E.; Oeffinger, K.C.; Shih, Y.T.; Walter, L.C.; et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society. CA Cancer J. Clin. 2020, 70, 321–346. [Google Scholar] [CrossRef]
- Gothwal, M.; Nalwa, A.; Singh, P.; Yadav, G.; Bhati, M.; Samriya, N. Role of Cervical Cancer Biomarkers p16 and Ki67 in Abnormal Cervical Cytological Smear. J. Obstet. Gynecol. India 2021, 71, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Angelico, G.; Inzani, F.; Arciuolo, D.; d’Amati, A.; Addante, F.; Travaglino, A.; Scaglione, G.; D’Alessandris, N.; Valente, M.; et al. The emerging and challenging role of PD-L1 in patients with gynecological cancers: An updating review with clinico-pathological considerations. Gynecol. Oncol. 2024, 184, 57–66. [Google Scholar] [CrossRef]
- Guo, F.; Lu, R.; Kong, W.; Anwar, M.; Feng, Y. DNA mismatch repair system regulates the expression of PD-L1 through DNMTs in cervical cancer. Cancer Cell Int. 2024, 24, 25. [Google Scholar] [CrossRef]
- Liu, H.; Ma, H.; Li, Y.; Zhao, H. Advances in epigenetic modifications and cervical cancer research. BBA Rev. Cancer 2023, 1878, 188894. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Yu, J.; Yu, S.; Ruan, Z. Histone modifications in cervical cancer: Epigenetic mechanisms, functions and clinical implications (Review). Oncol. Rep. 2025, 54, 131. [Google Scholar] [CrossRef]
- Riggs, A.D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 1975, 14, 9–25. [Google Scholar] [CrossRef]
- Vaidya, H.; Jelinek, J.; Issa, J.J. DNA Methylation, Aging, and Cancer. Epigenomes 2025, 9, 18. [Google Scholar] [CrossRef]
- Johnson, T.B.; Coghill, R.D. Researches on Pyrimidines. C111. The Discovery of 5-Methyl-Cytosine in Tuberculinic Acid, the Nucleic Acid of the Tubercle Bacillus1. J. Am. Chem. Soc 1925, 47, 2838–2844. [Google Scholar] [CrossRef]
- Hotchkiss, R.D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 1948, 175, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, G.R. Occurrence of 5-Methyl-Cytosine in Nucleic Acids. Nature 1950, 166, 237–238. [Google Scholar] [CrossRef] [PubMed]
- Holliday, R.; Pugh, J.E. DNA modification mechanisms and gene activity during development. Science 1975, 187, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Bestor, T.; Laudano, A.; Mattaliano, R.; Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988, 203, 971–983. [Google Scholar] [CrossRef]
- el-Deiry, W.S.; Nelkin, B.D.; Celano, P.; Yen, R.W.; Falco, J.P.; Hamilton, S.R.; Baylin, S.B. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl. Acad. Sci. USA 1991, 88, 3470–3474. [Google Scholar] [CrossRef]
- Yen, R.W.; Vertino, P.M.; Nelkin, B.D.; Yu, J.J.; el-Deiry, W.; Cumaraswamy, A.; Lennon, G.G.; Trask, B.J.; Celano, P.; Baylin, S.B. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 1992, 20, 2287–2291. [Google Scholar] [CrossRef]
- Issa, J.P.; Vertino, P.M.; Wu, J.; Sazawal, S.; Celano, P.; Nelkin, B.D.; Hamilton, S.R.; Baylin, S.B. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J. Natl. Cancer Inst. 1993, 85, 1235–1240. [Google Scholar] [CrossRef]
- Aniello, F.; Locascio, A.; Fucci, L.; Geraci, G.; Branno, M. Isolation of cDNA clones encoding DNA methyltransferase of sea urchin P. lividus: Expression during embryonic development. Gene 1996, 178, 57–61. [Google Scholar] [CrossRef]
- Yoder, J.A.; Bestor, T.H. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum. Mol. Genet. 1998, 7, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Xie, S.; Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 1998, 19, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K.D.; Uzvolgyi, E.; Liang, G.; Talmadge, C.; Sumegi, J.; Gonzales, F.A.; Jones, P.A. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: Coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999, 27, 2291–2298. [Google Scholar] [CrossRef]
- Aapola, U.; Shibuya, K.; Scott, H.S.; Ollila, J.; Vihinen, M.; Heino, M.; Shintani, A.; Kawasaki, K.; Minoshima, S.; Krohn, K.; et al. Isolation and Initial Characterization of a Novel Zinc Finger Gene, DNMT3L, on 21q22.3, Related to the Cytosine-5- Methyltransferase 3 Gene Family. Genomics 2000, 65, 293–298. [Google Scholar] [CrossRef]
- Ostler, K.R.; Davis, E.M.; Payne, S.L.; Gosalia, B.B.; Exposito-Cespedes, J.; Le Beau, M.M.; Godley, L.A. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 2007, 26, 5553–5563. [Google Scholar] [CrossRef]
- Wong, K.K.; Lawrie, C.H.; Green, T.M. Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. Biomark. Insights 2019, 14, 1177271919846454. [Google Scholar] [CrossRef]
- Dreos, R.; Ambrosini, G.; Groux, R.; Cavin Perier, R.; Bucher, P. The eukaryotic promoter database in its 30th year: Focus on non-vertebrate organisms. Nucleic Acids Res. 2017, 45, D51–D55. [Google Scholar] [CrossRef]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Wu, C.; Cui, W.; Wang, L. DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy. Cancers 2020, 12, 2123. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Liu, S.; Lin, K.; Luo, Y.; Perry, J.J.; Wang, Y.; Song, J. Crystal Structure of Human DNA Methyltransferase 1. J. Mol. Biol. 2015, 427, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- McGraw, S.; Oakes, C.C.; Martel, J.; Cirio, M.C.; de Zeeuw, P.; Mak, W.; Plass, C.; Bartolomei, M.S.; Chaillet, J.R.; Trasler, J.M. Loss of DNMT1o Disrupts Imprinted X Chromosome Inactivation and Accentuates Placental Defects in Females. PLoS Genet. 2013, 9, e1003873. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wang, Z.; Okano, M.; Nogami, M.; Li, Y.; He, W.W.; Okumura, K.; Li, E. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 1999, 236, 87–95. [Google Scholar] [CrossRef]
- Chen, T.; Ueda, Y.; Xie, S.; Li, E. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J. Biol. Chem. 2002, 277, 38746–38754. [Google Scholar] [CrossRef]
- Suetake, I.; Mishima, Y.; Kimura, H.; Lee, Y.H.; Goto, Y.; Takeshima, H.; Ikegami, T.; Tajima, S. Characterization of DNA-binding activity in the N-terminal domain of the DNA methyltransferase Dnmt3a. Biochem. J. 2011, 437, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Van Emburgh, B.O.; Shan, J.; Su, Z.; Fields, C.R.; Vieweg, J.; Hamazaki, T.; Schwartz, P.H.; Terada, N.; Robertson, K.D. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol. Cancer Res. 2009, 7, 1622–1634. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Sun, S.; Rodriguez, M.; Yue, P.; Jang, S.J.; Mao, L. A novel DNMT3B subfamily, DeltaDNMT3B, is the predominant form of DNMT3B in non-small cell lung cancer. Int. J. Oncol. 2006, 29, 201–207. [Google Scholar]
- Frauer, C.; Rottach, A.; Meilinger, D.; Bultmann, S.; Fellinger, K.; Hasenoder, S.; Wang, M.; Qin, W.; Soding, J.; Spada, F.; et al. Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS ONE 2011, 6, e16627. [Google Scholar] [CrossRef] [PubMed]
- Garvilles, R.G.; Hasegawa, T.; Kimura, H.; Sharif, J.; Muto, M.; Koseki, H.; Takahashi, S.; Suetake, I.; Tajima, S. Dual Functions of the RFTS Domain of Dnmt1 in Replication-Coupled DNA Methylation and in Protection of the Genome from Aberrant Methylation. PLoS ONE 2015, 10, e0137509. [Google Scholar] [CrossRef]
- Bachman, K.E.; Rountree, M.R.; Baylin, S.B. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem. 2001, 276, 32282–32287. [Google Scholar] [CrossRef] [PubMed]
- Dhayalan, A.; Rajavelu, A.; Rathert, P.; Tamas, R.; Jurkowska, R.Z.; Ragozin, S.; Jeltsch, A. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J. Biol. Chem. 2010, 285, 26114–26120. [Google Scholar] [CrossRef]
- Ge, Y.Z.; Pu, M.T.; Gowher, H.; Wu, H.P.; Ding, J.P.; Jeltsch, A.; Xu, G.L. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J. Biol. Chem. 2004, 279, 25447–25454. [Google Scholar] [CrossRef]
- Boyko, K.; Arkova, O.; Nikolaeva, A.; Popov, V.O.; Georgiev, P.; Bonchuk, A. Structure of the DNMT3B ADD domain suggests the absence of a DNMT3A-like autoinhibitory mechanism. Biochem. Biophys. Res. Commun. 2022, 619, 124–129. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Li, J.; Ding, Z.; Xiao, J.; Yin, X.; He, S.; Shi, P.; Dong, L.; Li, G.; et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 2015, 517, 640–644. [Google Scholar] [CrossRef]
- Aapola, U.; Liiv, I.; Peterson, P. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res. 2002, 30, 3602–3608. [Google Scholar] [CrossRef]
- Uysal, F.; Ozturk, S. DNA Methyltransferases in Mammalian Oocytes. Results Probl. Cell Differ. 2017, 63, 211–222. [Google Scholar] [CrossRef]
- Dong, A.; Yoder, J.A.; Zhang, X.; Zhou, L.; Bestor, T.H.; Cheng, X. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res. 2001, 29, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Bestor, T.H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992, 11, 2611–2617. [Google Scholar] [CrossRef] [PubMed]
- Jurkowska, R.Z.; Anspach, N.; Urbanke, C.; Jia, D.; Reinhardt, R.; Nellen, W.; Cheng, X.; Jeltsch, A. Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a in complex with regulator Dnmt3L. Nucleic Acids Res. 2008, 36, 6656–6663. [Google Scholar] [CrossRef] [PubMed]
- Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Structure and function of mammalian DNA methyltransferases. Chembiochem 2011, 12, 206–222. [Google Scholar] [CrossRef]
- Schaefer, M.; Pollex, T.; Hanna, K.; Tuorto, F.; Meusburger, M.; Helm, M.; Lyko, F. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010, 24, 1590–1595. [Google Scholar] [CrossRef]
- Tuorto, F.; Herbst, F.; Alerasool, N.; Bender, S.; Popp, O.; Federico, G.; Reitter, S.; Liebers, R.; Stoecklin, G.; Gröne, H.J.; et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J. 2015, 34, 2350–2362. [Google Scholar] [CrossRef]
- Hervouet, E.; Vallette, F.M.; Cartron, P.F. Dnmt1/Transcription factor interactions: An alternative mechanism of DNA methylation inheritance. Genes Cancer 2010, 1, 434–443. [Google Scholar] [CrossRef]
- Chin, H.G.; Ponnaluri, V.k.C.; Zhang, G.; Estève, P.-O.; Schaus, S.E.; Hansen, U.; Pradhan, S. Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression. Oncotarget 2016, 7, 83627–83640. [Google Scholar] [CrossRef]
- Hervouet, E.; Vallette, F.M.; Cartron, P.F. Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 2009, 4, 487–499. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, J.; Li, X.; Xiao, G.; Wang, H.; Yang, G.; Li, Y.; Tang, S.C.; Qin, S.; Du, N.; et al. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J. Cell. Mol. Med. 2018, 22, 6262–6274. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Lu, R.; Wang, P.; Yu, Y.; Chen, D.; Gao, L.; Liu, S.; Ji, D.; Rothbart, S.B.; Wang, Y.; et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 2018, 554, 387–391. [Google Scholar] [CrossRef]
- Hata, K.; Okano, M.; Lei, H.; Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 2002, 129, 1983–1993. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Liu, S.S.; Ip, S.M.; Wong, L.C.; Ng, T.Y.; Ngan, H.Y. E-cadherin expression is silenced by DNA methylation in cervical cancer cell lines and tumours. Eur. J. Cancer 2003, 39, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, Y.; Dang, H.; Wu, X. MicroRNA-148a-3p inhibits the proliferation of cervical cancer cells by regulating the expression levels of DNMT1 and UTF1. Oncol. Lett. 2021, 22, 617. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Basu, M.; Roy, A.; Mandal, R.K.; Panda, C.K. High nuclear expression of DNMT1 in correlation with inactivation of TET1 portray worst prognosis among the cervical carcinoma patients: Clinical implications. J. Mol. Histol. 2023, 54, 89–102. [Google Scholar] [CrossRef]
- Dutta, P.; Pal, D.; Sultana, F.; Mandal, R.K.; Roy, A.; Panda, C.K. Down-regulation of FA-BRCA Pathway in Cervical Carcinoma Gradually Reversed During the Development of Chemo-tolerance: Clinical Implications. Reprod. Sci. 2024, 31, 1122–1138. [Google Scholar] [CrossRef]
- Gong, Y.; Wan, J.H.; Zou, W.; Lian, G.Y.; Qin, J.L.; Wang, Q.M. MiR-29a inhibits invasion and metastasis of cervical cancer via modulating methylation of tumor suppressor SOCS1. Futur. Oncol. 2019, 15, 1729–1744. [Google Scholar] [CrossRef]
- Luczak, M.W.; Roszak, A.; Pawlik, P.; Kedzia, H.; Kedzia, W.; Malkowska-Walczak, B.; Lianeri, M.; Jagodzinski, P.P. Transcriptional analysis of CXCR4, DNMT3A, DNMT3B and DNMT1 gene expression in primary advanced uterine cervical carcinoma. Int. J. Oncol. 2012, 40, 860–866. [Google Scholar] [CrossRef]
- Piyathilake, C.J.; Badiga, S.; Borak, S.G.; Weragoda, J.; Bae, S.; Matthews, R.; Bell, W.C.; Partridge, E.E. A higher degree of expression of DNA methyl transferase 1 in cervical cancer is associated with poor survival outcome. Int. J. Womens Health 2017, 9, 413–420. [Google Scholar] [CrossRef]
- Wang, X.L.; Cao, X.Z.; Wang, D.Y.; Qiu, Y.B.; Deng, K.Y.; Cao, J.G.; Lin, S.Q.; Xu, Y.; Ren, K.Q. Casticin Attenuates Stemness in Cervical Cancer Stem-Like Cells by Regulating Activity and Expression of DNMT1. Chin. J. Integr. Med. 2023, 29, 224–232. [Google Scholar] [CrossRef]
- Zhu, P.; Li, X.; Liu, Y.; Xiong, J.; Yuan, D.; Chen, Y.; Luo, L.; Huang, J.; Wang, B.; Nie, Q.; et al. Methylation-mediated silencing of EDN3 promotes cervical cancer proliferation, migration and invasion. Front. Oncol. 2023, 13, 1010132. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Ding, L.; Jiang, S.W.; Hao, J.; Zhao, W.M.; Zhou, Q.; Yang, Z.K.; Zhang, L. Folate deficiency and aberrant expression of DNA methyltransferase 1 were associated with cervical cancerization. Curr. Pharm. Des. 2014, 20, 1639–1646. [Google Scholar] [CrossRef]
- Han, H.Y.; Mou, J.T.; Jiang, W.P.; Zhai, X.M.; Deng, K. Five candidate biomarkers associated with the diagnosis and prognosis of cervical cancer. Biosci. Rep. 2021, 41, BSR20204394, Erratum in Biosci. Rep. 2021, 41, BSR-20204394_COR. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Dong, J.; Wang, Y.; Chen, Y. The expressions of DNA methyltransferase 1 (DNMT1) and cyclin A1 (CCNA1) in cervical carcinogenesis. Int. J. Clin. Exp. Pathol. 2019, 12, 40–49. [Google Scholar]
- Sawada, M.; Kanai, Y.; Arai, E.; Ushijima, S.; Ojima, H.; Hirohashi, S. Increased expression of DNA methyltransferase 1 (DNMT1) protein in uterine cervix squamous cell carcinoma and its precursor lesion. Cancer Lett. 2007, 251, 211–219. [Google Scholar] [CrossRef]
- Ruan, M.; Cheng, Q.; Gong, C.; Cao, Z.; Xu, L.; Zhang, Q. Development of a kind of RG108-Fluorescein conjugates for detection of DNA methyltransferase 1 (DNMT1) in living cells. Anal. Biochem. 2020, 607, 113823. [Google Scholar] [CrossRef]
- Fan, Q.; Huang, T.; Sun, X.; Wang, Y.W.; Wang, J.; Liu, Y.; Ni, T.; Gu, S.L.; Li, Y.H.; Wang, Y.D. HPV-16/18 E6-induced APOBEC3B expression associates with proliferation of cervical cancer cells and hypomethylation of Cyclin D1. Mol. Carcinog. 2021, 60, 313–330. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, H.J.; Choi, M.Y.; Kang, S.S.; Kim, Y.S.; Shin, J.K.; Choi, W.S. UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer. Mol. Cells 2021, 44, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.M.; Wei, W.; Collins, S.I.; Pereira, M.; Diyaf, A.; Constandinou-Williams, C.; Young, L.S.; Roberts, S.; Woodman, C.B. Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women. Carcinog 2012, 33, 1286–1293. [Google Scholar] [CrossRef]
- Pattabiraman, C.; Hong, S.; Gunasekharan, V.K.; Pranatharthi, A.; Bajaj, J.; Srivastava, S.; Krishnamurthy, H.; Ammothumkandy, A.; Giri, V.G.; Laimins, L.A.; et al. CD66+ cells in cervical precancers are partially differentiated progenitors with neoplastic traits. Cancer Res. 2014, 74, 6682–6692. [Google Scholar] [CrossRef]
- Au Yeung, C.L.; Tsang, W.P.; Tsang, T.Y.; Co, N.N.; Yau, P.L.; Kwok, T.T. HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53. Oncol. Rep. 2010, 24, 1599–1604. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Wang, J.W.; Meng, F.C.; Yang, P.; Zhang, X.G.; Wu, H.Z. LncRNATCF7 up-regulates DNMT1 mediated by HPV-18 E6 and regulates biological behavior of cervical cancer cells by inhibiting miR-155. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8779–8787. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.; Long, J.; Shen, D.; Zhou, W.; Zhou, Q.; Yang, J.; Jiang, M. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines. Oncotarget 2015, 6, 23930–23943. [Google Scholar] [CrossRef] [PubMed]
- Burgers, W.A.; Blanchon, L.; Pradhan, S.; de Launoit, Y.; Kouzarides, T.; Fuks, F. Viral oncoproteins target the DNA methyltransferases. Oncogene 2007, 26, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- Chalertpet, K.; Pakdeechaidan, W.; Patel, V.; Mutirangura, A.; Yanatatsaneejit, P. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation. Cancer Sci. 2015, 106, 1333–1340. [Google Scholar] [CrossRef]
- Na Rangsee, N.; Yanatatsaneejit, P.; Pisitkun, T.; Somparn, P.; Jintaridth, P.; Topanurak, S. Host proteome linked to HPV E7-mediated specific gene hypermethylation in cancer pathways. Infect. Agents Cancer 2020, 15, 7. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, F.Q.; Sun, Y.H.; Zhou, S.Y.; Li, T.Y.; Chen, R. Effects of DNMT1 silencing on malignant phenotype and methylated gene expression in cervical cancer cells. J. Exp. Clin. Cancer Res. 2011, 30, 98. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, H.M.; Huong, P.T.T.; Han, H.J.; Hwang, J.; Cha-Molstad, H.; Lee, K.H.; Ryoo, I.J.; Kim, K.E.; Huh, Y.H.; et al. Enhanced anticancer effects of a methylation inhibitor by inhibiting a novel DNMT1 target, CEP 131, in cervical cancer. BMB Rep. 2019, 52, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, J.; Fan, X.; Chen, S.; Wang, R. Targeted demethylation of the EphA7 promoter inhibits tumorigenesis via the SP1/DNMT1 and PI3K/AKT axes and improves the response to multiple therapies in cervical cancer. Cell Death Dis. 2025, 16, 324. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Wang, F.; Wang, Z.; Zhang, Y.; Chen, Y.; Wang, L.; Zhou, J. SORBS3-β suppresses lymph node metastasis in cervical cancer by promoting the ubiquitination of β-catenin. J. Transl. Med. 2025, 23, 406. [Google Scholar] [CrossRef]
- Ren, C.C.; Miao, X.H.; Yang, B.; Zhao, L.; Sun, R.; Song, W.Q. Methylation status of the fragile histidine triad and E-cadherin genes in plasma of cervical cancer patients. Int. J. Gynecol. Cancer 2006, 16, 1862–1867. [Google Scholar] [CrossRef] [PubMed]
- Bloniarz, D.; Adamczyk-Grochala, J.; Lewinska, A.; Wnuk, M. The lack of functional DNMT2/TRDMT1 gene modulates cancer cell responses during drug-induced senescence. Aging 2021, 13, 15833–15874. [Google Scholar] [CrossRef]
- Adamczyk-Grochala, J.; Bloniarz, D.; Zielinska, K.; Lewinska, A.; Wnuk, M. DNMT2/TRDMT1 gene knockout compromises doxorubicin-induced unfolded protein response and sensitizes cancer cells to ER stress-induced apoptosis. Apoptosis 2023, 28, 166–185. [Google Scholar] [CrossRef]
- Pan, X.; Du, X.; Jia, S. DNA methyltransferase DNMT3A inhibits TP53AIP1 expression and promotes cervical cancer development and metastasis. Cytotechnology 2025, 77, 74. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, P.; Zhang, L.; Wu, G.; Zheng, Y.; He, F. Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A. Tumour Biol. 2011, 32, 941–950. [Google Scholar] [CrossRef]
- Su, P.H.; Lin, Y.W.; Huang, R.L.; Liao, Y.P.; Lee, H.Y.; Wang, H.C.; Chao, T.K.; Chen, C.K.; Chan, M.W.; Chu, T.Y.; et al. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene 2013, 32, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Mandal, P.; Bhattacharya, A.; Kundu, S.; Roy Chowdhury, R.; Mondal, N.R.; Chatterjee, T.; Chakravarty, B.; Roy, S.; Sengupta, S. Impact of viral and host DNA methylations on HPV16-related cervical cancer pathogenesis. Tumour Biol. 2017, 39, 1010428317699799. [Google Scholar] [CrossRef] [PubMed]
- Gokul, G.; Gautami, B.; Malathi, S.; Sowjanya, A.P.; Poli, U.R.; Jain, M.; Ramakrishna, G.; Khosla, S. DNA methylation profile at the DNMT3L promoter: A potential biomarker for cervical cancer. Epigenetics 2007, 2, 80–85. [Google Scholar] [CrossRef]
- Poomipark, N.; Flatley, J.E.; Hill, M.H.; Mangnall, B.; Azar, E.; Grabowski, P.; Powers, H.J. Methyl Donor Status Influences DNMT Expression and Global DNA Methylation in Cervical Cancer Cells. Asian Pac. J. Cancer Prev. 2016, 17, 3213–3222. [Google Scholar]
- Yang, Y.; Liu, R.; Qiu, R.; Zheng, Y.; Huang, W.; Hu, H.; Ji, Q.; He, H.; Shang, Y.; Gong, Y.; et al. CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene 2015, 34, 104–118. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, X.X.; Zhuang, Y.W.; Jiang, Y.; Melcher, K.; Xu, H.E. Structure of the PRC2 complex and application to drug discovery. Acta Pharmacol. Sin. 2017, 38, 963–976. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, S.; Pei, M.; Zhao, M.; Wang, L.; Jiang, Y.; Yang, T.; Zhao, J.; Song, L.; Yang, X. Crosstalk between histone modification and DNA methylation orchestrates the epigenetic regulation of the costimulatory factors, Tim-3 and galectin-9, in cervical cancer. Oncol. Rep. 2019, 42, 2655–2669. [Google Scholar] [CrossRef] [PubMed]
- Kandel, S.; Adhikary, P.; Li, G.; Cheng, K. The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett. 2021, 510, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, S.; Chang, J.; Quan, S.; Yang, T.; Zhao, M.; Wang, L.; Yang, X. Activation of the CCL22/CCR4 causing EMT process remodeling under EZH2-mediated epigenetic regulation in cervical carcinoma. J. Cancer 2024, 15, 6299–6314. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, S.; Zhao, M.; Yang, T.; Quan, S.; Yang, Q.; Song, L.; Yang, X. SUV39H1-DNMT3A-mediated epigenetic regulation of Tim-3 and galectin-9 in the cervical cancer. Cancer Cell Int. 2020, 20, 325. [Google Scholar] [CrossRef]
- Wubuli, R.; Ainiwaer, Z.; Niyazi, M.; Han, L. DNA hypomethylation modification promotes BST2 expression in cervical cancer by facilitating STAT1 binding to the promoter of BST2. Infect. Agent Cancer 2025, 20, 36. [Google Scholar] [CrossRef]
- Peralta-Arrieta, I.; Hernandez-Sotelo, D.; Castro-Coronel, Y.; Leyva-Vazquez, M.A.; Illades-Aguiar, B. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation. Am. J. Cancer Res. 2017, 7, 77–87. [Google Scholar]
- Hernandez-Sotelo, D.; Garcia-Aguilar, R.; Castro-Coronel, Y.; Magana, J.J.; Leyva-Vazquez, M.A.; Alarcon-Romero Ldel, C.; Lopez-Bayghen, E.; Illades-Aguiar, B. The 46359CT polymorphism of DNMT3B is associated with the risk of cervical cancer. Mol. Biol. Rep. 2013, 40, 4275–4280. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Mao, L.; Spitz, M.R.; Wei, Q. Functional relevance of C46359T in the promoter region of human DNMT3B6. Cancer Res. 2004, 64, 2913. [Google Scholar]
- Wilting, S.M.; Snijders, P.J.; Meijer, G.A.; Ylstra, B.; van den Ijssel, P.R.; Snijders, A.M.; Albertson, D.G.; Coffa, J.; Schouten, J.P.; van de Wiel, M.A.; et al. Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J. Pathol. 2006, 209, 220–230. [Google Scholar] [CrossRef]
- Li, H.; Yuan, Y.; Dong, H.; Wang, T.; Zhang, D.; Zhou, L.; Chen, L.; He, X. Foxo3a-Mediated DNMT3B Impedes Cervical Cancer Cell Proliferation and Migration Capacities through Suppressing PTEN Promoter Methylation. J. Investig. Surg. 2023, 36, 2162170. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Shah, P.T.; Su, Q.; Li, S.; Huang, F.; Wang, J.; Wang, P.; Wu, C. Recombinant adenoviruses expressing HPV16/18 E7 upregulate the HDAC6 and DNMT3B genes in C33A cells. Front. Cell. Infect. Microbiol. 2024, 14, 1459572. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, C.; Jung, J.; Yeo, S.G. The histone deacetylase class I, II inhibitor trichostatin A delays peripheral neurodegeneration. J. Mol. Histol. 2019, 50, 167–178. [Google Scholar] [CrossRef]
- Sekhavat, A.; Sun, J.M.; Davie, J.R. Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochem. Cell Biol. 2007, 85, 751–758. [Google Scholar] [CrossRef]
- Gokul, G.; Ramakrishna, G.; Khosla, S. Reprogramming of HeLa cells upon DNMT3L overexpression mimics carcinogenesis. Epigenetics 2009, 4, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tang, T.; Li, J.; Yang, Y.; Quan, Y.; Zhang, L.; Huang, W.; Zhou, M. Overexpression of MicroRNA 142-5p Suppresses the Progression of Cervical Cancer through Targeting Phosphoinositol-3-Kinase Adaptor Protein 1 Expression. Mol. Cell. Biol. 2021, 41, e0036320. [Google Scholar] [CrossRef]
- Ali Khan, M.; Kedhari Sundaram, M.; Hamza, A.; Quraishi, U.; Gunasekera, D.; Ramesh, L.; Goala, P.; Al Alami, U.; Ansari, M.Z.; Rizvi, T.A.; et al. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells. eCAM 2015, 2015, 412149. [Google Scholar] [CrossRef]
- Khan, M.A.; Hussain, A.; Sundaram, M.K.; Alalami, U.; Gunasekera, D.; Ramesh, L.; Hamza, A.; Quraishi, U. (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol. Rep. 2015, 33, 1976–1984. [Google Scholar] [CrossRef]
- Kaur, G.; Dufour, J.M. Cell lines: Valuable tools or useless artifacts. Spermatogenesis 2012, 2, 1–5. [Google Scholar] [CrossRef]
- You, B.R.; Park, W.H. Zebularine inhibits the growth of HeLa cervical cancer cells via cell cycle arrest and caspase-dependent apoptosis. Mol. Biol. Rep. 2012, 39, 9723–9731. [Google Scholar] [CrossRef]
- Huang, Y.; Song, H.; Hu, H.; Cui, L.; You, C.; Huang, L. Trichosanthin inhibits DNA methyltransferase and restores methylation-silenced gene expression in human cervical cancer cells. Mol. Med. Rep. 2012, 6, 872–878. [Google Scholar] [CrossRef] [PubMed]
- You, J.S.; Kang, J.K.; Lee, E.K.; Lee, J.C.; Lee, S.H.; Jeon, Y.J.; Koh, D.H.; Ahn, S.H.; Seo, D.W.; Lee, H.Y.; et al. Histone deacetylase inhibitor apicidin downregulates DNA methyltransferase 1 expression and induces repressive histone modifications via recruitment of corepressor complex to promoter region in human cervix cancer cells. Oncogene 2008, 27, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Wapenaar, H.; Dekker, F.J. Histone acetyltransferases: Challenges in targeting bi-substrate enzymes. Clin. Epigenetics 2016, 8, 59. [Google Scholar] [CrossRef]
- Krifa, M.; Alhosin, M.; Muller, C.D.; Gies, J.P.; Chekir-Ghedira, L.; Ghedira, K.; Mely, Y.; Bronner, C.; Mousli, M. Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16 INK4A re-expression related to UHRF1 and DNMT1 down-regulation. J. Exp. Clin. Cancer Res. 2013, 32, 30. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Sur, S.; Roy, R.; Mandal, S.; Kumar Panda, C. Epigallocatechin gallate in combination with eugenol or amarogentin shows synergistic chemotherapeutic potential in cervical cancer cell line. J. Cell. Physiol. 2018, 234, 825–836. [Google Scholar] [CrossRef]
- Kedhari Sundaram, M.; Haque, S.; Somvanshi, P.; Bhardwaj, T.; Hussain, A. Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways. 3 Biotech 2020, 10, 484. [Google Scholar] [CrossRef]
- Parashar, G.; Parashar, N.; Capalash, N. – (-) Menthol Induces Reversal of Promoter Hypermethylation and Associated Up-Regulation of the FANCF Gene in the SiHa Cell Line. Asian Pac. J. Cancer Prev. 2017, 18, 1365–1370. [Google Scholar] [CrossRef]
- Jiao, P.; Wang, Y.; Mao, B.; Wang, B.; Zhong, Y.; Jin, H.; Zhang, L.; Zhang, L.; Liu, Z. Discovery of 2-(2-aminobenzo[d]thiazol-6-yl) benzo[d]oxazol-5-amine derivatives that regulated HPV relevant cellular pathway and prevented cervical cancer from abnormal proliferation. Eur. J. Med. Chem. 2020, 204, 112556. [Google Scholar] [CrossRef]
- Sharan, M.; Jha, M.; Chandel, R.; Syeda, S.; Mathur, R.; Jha, N.K.; Jha, S.K.; Goel, H.; Shrivastava, A.; Chauhan, S.; et al. Demethylation of CADM1 and SOCS1 using capsaicin in cervical cancer cell line. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 649–657. [Google Scholar] [CrossRef]
- Han, X.; Fang, F.; Cui, W.; Liu, Y.; Liu, Y. Effect of Ethanol-Induced Methyl Donors Consumption on the State of Hypomethylation in Cervical Cancer. Int. J. Mol. Sci. 2023, 24, 7729. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Nie, L.; Liang, X.; Huang, W.; Li, R. In silico analysis and preclinical findings uncover potential targets of anti-cervical carcinoma and COVID-19 in laminarin, a promising nutraceutical. Front. Pharmacol. 2022, 13, 955482. [Google Scholar] [CrossRef]
- Kedhari Sundaram, M.; Hussain, A.; Haque, S.; Raina, R.; Afroze, N. Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J. Cell. Biochem. 2019, 120, 18357–18369. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, P.; Zhang, L.; Gong, W.; Huang, G.; Zheng, Y.; He, F. HDAC1/DNMT3A-containing complex is associated with suppression of Oct4 in cervical cancer cells. Biochem 2012, 77, 934–940. [Google Scholar] [CrossRef]
- Kour, S.; Biswas, I.; Sheoran, S.; Arora, S.; Singh, A.; Prabhu, D.; Pawar, S.C.; Perugu, S.; Vuree, S. Betulin: A novel triterpenoid anti-cancerous agent targeting cervical cancer through epigenetic proteins. Mol. Divers. 2025, 29, 1507–1524. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Tanaka, T.; Yukawa, K.; Umesaki, N. A novel mechanism for acquired cisplatin-resistance: Suppressed translation of death-associated protein kinase mRNA is insensitive to 5-aza-2′-deoxycitidine and trichostatin in cisplatin-resistant cervical squamous cancer cells. Int. J. Oncol. 2006, 28, 497–508. [Google Scholar] [CrossRef]
- She, S.; Zhao, Y.; Kang, B.; Chen, C.; Chen, X.; Zhang, X.; Chen, W.; Dan, S.; Wang, H.; Wang, Y.J.; et al. Combined inhibition of JAK1/2 and DNMT1 by newly identified small-molecule compounds synergistically suppresses the survival and proliferation of cervical cancer cells. Cell Death Dis. 2020, 11, 724. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, L.-J.; Li, X.-P.; Wang, J.-L.; Chai, G.-L.; Wei, L.-H. Histone deacetylase inhibitors inducing human cervical cancer cell apoptosis by decreasing DNA-methyltransferase 3B. Chin. Med. J. 2012, 125, 3273–3278. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, C. Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chemother. Pharmacol. 2009, 63, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Coronel, J.; Cetina, L.; Pacheco, I.; Trejo-Becerril, C.; González-Fierro, A.; de la Cruz-Hernandez, E.; Perez-Cardenas, E.; Taja-Chayeb, L.; Arias-Bofill, D.; Candelaria, M.; et al. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med. Oncol. 2011, 28, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Candelaria, M.; de la Cruz-Hernandez, E.; Taja-Chayeb, L.; Perez-Cardenas, E.; Trejo-Becerril, C.; Gonzalez-Fierro, A.; Chavez-Blanco, A.; Soto-Reyes, E.; Dominguez, G.; Trujillo, J.E.; et al. DNA methylation-independent reversion of gemcitabine resistance by hydralazine in cervical cancer cells. PLoS ONE 2012, 7, e29181. [Google Scholar] [CrossRef]
- Sundaram, M.K.; Ansari, M.Z.; Al Mutery, A.; Ashraf, M.; Nasab, R.; Rai, S.; Rais, N.; Hussain, A. Genistein Induces Alterations of Epigenetic Modulatory Signatures in Human Cervical Cancer Cells. Anti Cancer Agents Med. Chem. 2018, 18, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Mani, E.; Medina, L.A.; Isaac-Olivé, K.; Dueñas-González, A. Radiosensitization of cervical cancer cells with epigenetic drugs hydralazine and valproate. Eur. J. Gynaec. Oncol. 2014, 35, 140–142. [Google Scholar] [CrossRef]
- Zambrano, P.; Segura-Pacheco, B.; Perez-Cardenas, E.; Cetina, L.; Revilla-Vazquez, A.; Taja-Chayeb, L.; Chavez-Blanco, A.; Angeles, E.; Cabrera, G.; Sandoval, K.; et al. A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 2005, 5, 44. [Google Scholar] [CrossRef]
- Yadav, P.; Bandyopadhayaya, S.; Ford, B.M.; Mandal, C. Interplay between DNA Methyltransferase 1 and microRNAs During Tumorigenesis. Curr. Drug Targets 2021, 22, 1129–1148. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, F.; Liu, Y.; Zhao, Q.; Tang, H. DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A. Clin. Epigenetics 2019, 11, 186. [Google Scholar] [CrossRef]
- Mou, Z.; Xu, X.; Dong, M.; Xu, J. MicroRNA-148b Acts as a Tumor Suppressor in Cervical Cancer by Inducing G1/S-Phase Cell Cycle Arrest and Apoptosis in a Caspase-3-Dependent Manner. Med Sci. Monit. 2016, 22, 2809–2815. [Google Scholar] [CrossRef]
- Yeung, C.L.; Tsang, T.Y.; Yau, P.L.; Kwok, T.T. Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget 2017, 8, 12158–12173. [Google Scholar] [CrossRef]
- Cao, X.Z.; Zhang, Y.F.; Song, Y.W.; Yuan, L.; Tang, H.L.; Li, J.Y.; Qiu, Y.B.; Lin, J.Z.; Ning, Y.X.; Wang, X.Y.; et al. DNA methyltransferase 1/miR-342-3p/Forkhead box M1 signaling axis promotes self-renewal in cervical cancer stem-like cells in vitro and nude mice models. World J. Stem Cells 2025, 17, 99472. [Google Scholar] [CrossRef]
- Sun, J.; Ji, J.; Huo, G.; Song, Q.; Zhang, X. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int. J. Clin. Exp. Pathol. 2015, 8, 4755–4763. [Google Scholar]
- Wang, A.; Xu, Q.; Sha, R.; Bao, T.; Xi, X.; Guo, G. MicroRNA-29a inhibits cell proliferation and arrests cell cycle by modulating p16 methylation in cervical cancer. Oncol. Lett. 2021, 21, 272. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Gu, L.; Wang, Z.; Wang, Y.; Wang, J.; Zhang, Y. Mesenchymal stem cell-derived extracellular vesicles alleviate cervical cancer by delivering microRNA-331-3p to reduce LIM zinc finger domain containing 2 methylation in tumor cells. Hum. Mol. Genet. 2022, 31, 3829–3845. [Google Scholar] [CrossRef]
- Huang, W.; Li, H.; Yu, Q.; Xiao, W.; Wang, D.O. LncRNA-mediated DNA methylation: An emerging mechanism in cancer and beyond. J. Exp. Clin. Cancer Res. 2022, 41, 100, Erratum in J. Exp. Clin. Cancer Res. 2022, 41, 262. [Google Scholar] [CrossRef]
- Wu, L.; Gong, Y.; Yan, T.; Zhang, H. LINP1 Promotes the Progression of Cervical Cancer by Scaffolding EZH2, LSD1 and DNMT1 to Inhibit the Expression of KLF2 and PRSS8. Biochem. Cell Biol. 2020, 98, 591–599. [Google Scholar] [CrossRef]
- Hu, X.; Wang, W.; Ma, T.; Zhang, W.; Tang, X.; Zheng, Y.; Zheng, X. Long non-coding RNA SIX1-1 promotes proliferation of cervical cancer cells via negative transcriptional regulation of RASD1. Hum. Cell 2024, 37, 1446–1461. [Google Scholar] [CrossRef]
- Trujano-Camacho, S.; Cantú-de León, D.; Pérez-Yepez, E.; Contreras-Romero, C.; Coronel-Hernandez, J.; Millan-Catalan, O.; Rodríguez-Dorantes, M.; López-Camarillo, C.; Gutiérrez-Ruiz, C.; Jacobo-Herrera, N.; et al. HOTAIR Promotes the Hyperactivation of PI3K/Akt and Wnt/β-Catenin Signaling Pathways via PTEN Hypermethylation in Cervical Cancer. Cells 2024, 13, 1484. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, X.; Li, J.; Meng, Q.; Zheng, P. LncRNA HOTAIR promotes the migration and invasion of cervical cancer through DNMT3B/LATS1/ YAP1 pS127 axis. Reprod. Biol. 2024, 24, 100893. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, F.; Gao, Y.; Li, M.; Liu, M.; Wei, Y.; Jie, Q.; Wang, Y.; Mei, J.; Mei, J.; et al. Histone acetyltransferase CSRP2BP promotes the epithelial–mesenchymal transition and metastasis of cervical cancer cells by activating N-cadherin. J. Exp. Clin. Cancer Res. 2023, 42, 268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, H.; Yang, J.; Zhao, J.; Liang, Z.; Kang, X.; Wang, R. The identification and validation of EphA7 hypermethylation, a novel biomarker, in cervical cancer. BMC Cancer 2022, 22, 636. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Qin, F.; Shen, L.; Li, L.; Wu, Q.; Yi, P. Triage of women with a positive HPV DNA test: Evaluating a DNA methylation panel for detecting cervical intraepithelial neoplasia grade 3 and cervical cancer in cervical cytology samples. BMC Cancer 2025, 25, 1207. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Zhang, N.; Li, L.; Fu, Y.; Li, L.A.; Zhai, Q. Methylation testing versus cervical cytology for triage of HPV-positive women: A comparative study. Diagn. Microbiol. Infect. Dis. 2025, 113, 116917. [Google Scholar] [CrossRef]
- Ding, H.; Ke, Z.; Xiao, X.; Xin, B.; Xiong, H.; Lu, W. A Predictive Model Using Six Genes DNA Methylation Markers to Identify Individuals With High Risks of High-Grade Squamous Intraepithelial Lesions and Cervical Cancer. Int. J. Womens Health 2025, 17, 739–749. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.; Liu, Y.; Wang, P.; Zhao, J.; Yi, J.; Wei, J.; Wang, R. Identification of a novel hypermethylation marker, ZSCAN18, and construction of a diagnostic model in cervical cancer. Clin. Transl. Oncol. 2025, 27, 3346–3363. [Google Scholar] [CrossRef]
- Mortaki, A.; Douligeris, A.; Daskalaki, M.A.; Bikouvaraki, E.S.; Louizou, E.; Daskalakis, G.; Rodolakis, A.; Grigoriadis, T.; Pappa, K.I. The Role of HPV Genotyping, Cytology, and Methylation in the Triage of High-Risk HPV-Positive Patients. Biomedicines 2025, 13, 1139. [Google Scholar] [CrossRef]
- Anisimova, M.; Jain, M.; Shcherbakova, L.; Aminova, L.; Bugerenko, A.; Novitskaya, N.; Samokhodskaya, L.; Kokarev, V.; Inokenteva, V.; Panina, O. Detection of CADM1, MAL, and PAX1 Methylation by ddPCR for Triage of HPV-Positive Cervical Lesions. Biomedicines 2025, 13, 1450. [Google Scholar] [CrossRef]
- Salta, S.; Sequeira, J.P.; Amorim-Fernandes, B.; Lobo, J.; Baldaque, I.; Monteiro, P.; Tavares, F.; Taly, V.; Henrique, R.; Jerónimo, C. Methylation-Specific Droplet Digital PCR: Testing a Novel Triage Tool for HrHPV-Positive Women in the Cervical Cancer Screening Program of Northern Portugal. MedComm 2025, 6, e70203. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cui, M. Meta-analysis of the diagnostic value of SOX1 methylation in different types of cervical cancer. World J. Surg. Oncol. 2025, 23, 147. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhu, C.; Xie, M.; Yang, H. Analysis of the triage value of multigene methylation testing for CIN2 + in hrHPV-positive patients. Infect. Agents Cancer 2025, 20, 22. [Google Scholar] [CrossRef]
- Bowden, S.J.; Bodinier, B.; Paraskevaidi, M.; Kalliala, I.; Nasioutziki, M.; Ellis, L.B.; Zuehlke, R.C.; Flanagan, J.M.; Kyrgiou, M.; Chadeau-Hyam, M. DNA methylation signatures of cervical pre-invasive and invasive disease: An epigenome-wide association study. Int. J. Cancer 2025, 157, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Kong, L.; You, Y.; Wu, H.; Liou, Y.; Jin, X.; Liu, P.; Lang, J.; Li, L. Cytologic DNA methylation for managing minimally abnormal cervical cancer screening results. Int. J. Gynecol. Obstet. 2025, 171, 405–414. [Google Scholar] [CrossRef]
- Kong, L.; Xiao, X.; Wu, H.; You, Y.; Jin, X.; Liou, Y.; Liu, P.; Lang, J.; Li, L. Triage performance of DNA methylation for women with high-risk human papillomavirus infection. Oncologist 2025, 30, oyae324. [Google Scholar] [CrossRef]
- Binderup, K.O.; Boers, J.; Gustafson, L.W.; Andersen, B.; Petersen, L.K.; Bor, P.; Gribnau, J.; Quint, W.G.V.; Van Den Munckhof, H.; Tranberg, M.; et al. DNA-Methylation for Risk-Stratification of Women Without a Fully Visible Transformation Zone at Colposcopy: A Cross-Sectional Study. BJOG Int. J. Obstet. Gynaecol. 2025, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wei, Y.; Wu, A.; Huang, J.; He, R.; Gu, L.; Hong, Z.; Qiu, L. Performance of a six-methylation-marker assay in predicting LEEP specimen histology results of cervical HSIL patients: A retrospective study. BMC Cancer 2025, 25, 340. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Han, J.; Qu, Y.; Wang, J.; Joyce, B.T.; Kim, K.; Nannini, D.R.; Musa, J.; Imade, G.E.; Anorlu, R.; et al. DNA methylation biomarkers for cervical cancer risk prediction in HIV-positive Nigerian women. Int. J. Cancer 2025, 157, 1363–1375. [Google Scholar] [CrossRef]
- Schaafsma, M.; van den Helder, R.; Mom, C.H.; Steenbergen, R.D.M.; Bleeker, M.C.G.; van Trommel, N.E. Recurrent cervical cancer detection using DNA methylation markers in self-collected samples from home. Int. J. Cancer 2025, 156, 659–667. [Google Scholar] [CrossRef]
- Denis, H.; Ndlovu, M.N.; Fuks, F. Regulation of mammalian DNA methyltransferases: A route to new mechanisms. EMBO Rep. 2011, 12, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Gömöri, E.; Pál, J.; Kovács, B.; Dóczi, T. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas. Diagn. Pathol. 2012, 7, 8. [Google Scholar] [CrossRef]
- Duymich, C.E.; Charlet, J.; Yang, X.; Jones, P.A.; Liang, G. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat. Commun. 2016, 7, 11453. [Google Scholar] [CrossRef]
- Shah, M.Y.; Vasanthakumar, A.; Barnes, N.Y.; Figueroa, M.E.; Kamp, A.; Hendrick, C.; Ostler, K.R.; Davis, E.M.; Lin, S.; Anastasi, J.; et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res. 2010, 70, 5840–5850. [Google Scholar] [CrossRef]
- Al-Imam, M.J.; Hussein, U.A.; Sead, F.F.; Faqri, A.M.A.; Mekkey, S.M.; Khazel, A.J.; Almashhadani, H.A. The interactions between DNA methylation machinery and long non-coding RNAs in tumor progression and drug resistance. DNA Repair 2023, 128, 103526. [Google Scholar] [CrossRef]
- Merry, C.R.; Forrest, M.E.; Sabers, J.N.; Beard, L.; Gao, X.H.; Hatzoglou, M.; Jackson, M.W.; Wang, Z.; Markowitz, S.D.; Khalil, A.M. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum. Mol. Genet. 2015, 24, 6240–6253. [Google Scholar] [CrossRef]
- Xavier Raj, I.; Kyun Koh, W.; Harrison, J.; Zhang, C.R.; Soares, B.; Amato, R.; Krishnan, A.; O’Leary, D.R.; Bjeije, H.; Parsons, T.M.; et al. Non-canonical functions of DNMT3A in hematopoietic stem cells regulate telomerase activity and genome integrity. Cell Stem Cell 2025, 32, 1251–1266. [Google Scholar] [CrossRef]
- Mohan, K.N. DNMT1: Catalytic and non-catalytic roles in different biological processes. Epigenomics 2022, 14, 629–643. [Google Scholar] [CrossRef]
- Mohd Kamal, K.; Ghazali, A.R.; Ab Mutalib, N.S.; Abu, N.; Chua, E.W.; Masre, S.F. The role of DNA methylation and DNA methyltransferases (DNMTs) as potential biomarker and therapeutic target in non-small cell lung cancer (NSCLC). Heliyon 2024, 10, e38663. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Pei, Y.; Lu, F.; Jiang, H.; Bi, Y.; Cheng, J.; Qin, J. Identification of Potential Hub Genes and miRNA-mRNA Pairs Related to the Progression and Prognosis of Cervical Cancer Through Integrated Bioinformatics Analysis. Front. Genet. 2021, 12, 775006. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.R.; Cui, Y.; Lubecka, K.; Stefanska, B.; Irudayaraj, J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 2016, 7, 46545–46556. [Google Scholar] [CrossRef] [PubMed]




| Gene or DNA Region | Assay | Results | Study Population | Cite |
|---|---|---|---|---|
| ZNF671 | GynTect® | Methylation in its promoter exhibited the highest AUC of 0.811 (95% C.I.: 0.734–0.888) for identifying CIN3+ cases with positive HR-HPV DNA | 38 and 61 normal and CC cytology samples from Chinese women | [182] |
| ASTN1 DLX1 ITGA4 RXFP3 SOX17 ZNF671 | GynTect® | The methylation of these 6 genes showed a sensitivity of 88.5% and specificity of 87.2% in the triage of HPV-positive women (CIN3+) | 51 CC LBC and 45 CIN3 LBC samples of women from different regions of China | [183] |
| CADM1 MAL | ddPCR | Methylation in their promoters presented an AUC = 0.912, 100% specificity, and 70% sensitivity | 12 CC biopsies samples of HPV-positive Russian women | [187] |
| miR-124-2 MAL | ddMSP | Identification of methylation in their promoters: positivity in 73.17% samples, with 73.71 (95% C.I.: 59.61–86.73) sensitivity and 77.23% (95% C.I.: 74.11–80.35) specificity | 41 CIN3+ scrape (HPV16/33 positives) samples from Northern Portuguese woman | [188] |
| SOX1 | qMSP/BSP/Pyrosequencing | Diagnostic value of hypermethylation in its promoter was 68.95 (95% C.I.: 27.63–172.07), with an AUC of 0.92 | 1024 CC tissue and 2189 exfoliated cells from different populations worldwide | [189] |
| ITGA4 | HT sequencing | ITGA4 methylation showed an AUC of 0.866 (95% C.I.: 0.806–0.925), specificity of 96.45% (95% C.I.: 0.936–0.981), and sensitivity of 75.32% (95% C.I.: 0.647–0.836) for detecting CIN2+ patients with HR-HPV infection | 57 CIN2, 7 CIN3, and 14 CC smear samples from Chinese women | [190] |
| ZNF671 | qMSP* | Methylation in this gene promoter presented an AUC of 0.945, sensitivity of 91.5%, and specificity of 92.4% | 21 HSIL and 47 CC smear samples from China | [184] |
| PAX1 NREP-AS1 | 850k EPIC methylation array | PAX1 and NREP-AS1 methylation showed an AUC of 0.77, with a sensitivity of 83% and a specificity of 87% for CIN3+ patients | 73 CIN3 and 54 CC LBC samples from UK and Greek women | [191] |
| PAX1 JAM3 | CISCER® | Methylation in these gene promoters revealed a sensitivity of 74.9% (95% CI, 68.3–81.4%) and a specificity of 89.1% (95% CI 87.6–90.6%) for detecting CIN3+ | 149 CIN3 and 18 CC tissue samples from China | [192] |
| PAX1 JAM3 | PAX1 and JAM3 gene methylation detection kit | Methylation in PAX1 and JAM3 promoters was detected in all CC patients and in 89.6% of CIN3+ cases, with an AUC of 0.790 (95% CI, 0.747–0.832) | 95 CIN3 and 23 CC LBC samples from China | [193] |
| ZSCAN18 | Pyrosequencing/qMSP/MSP | ZSCAN18 promoter methylation presented an AUC of 0.9421 | 167 normal and 596 CC tissue samples from TCGA, GEO databases, and China | [185] |
| METloc001 METloc002 | qMSP | Identification of methylation: positivity in 37.1% samples, with 93.8 (95% C.I.: 69.8–99.8) sensitivity and 75.3% (95% C.I.: 63.9–84.7) specificity | 89 CIN3+ LBC samples from Danish women aged 45+ with a TZ3 | [194] |
| FAM19A4 miR-124-2 | QIAsure® | Methylation observed in 100% of CC cases | 6 CC LBC samples from Greek women | [186] |
| Gene/DNA Region | Assay | Results | Study Population | Cite |
|---|---|---|---|---|
| ASTN1 DLX1 ITGA4 RXFP3 SOX17 ZNF671 | GynTect® | GynTect® showed an AUC of 0.715 (95% C.I.: 0.592–0.837), with a specificity of 70.4% and sensitivity of 72.5% in predicting postoperative specimen histology | 28 CIN2 and 50 CIN3 tissue samples from Chinese women | [195] |
| PRMD8 MIR520H | Infinium MethylationEPIC BeadChip array | A 24 CpGs signature with aberrant methylation was identified, including hypermethylation in tumor-suppressor genes as PRMD8 and hypomethylation in oncogenes such as MIR520H. A total of 92.9% sensitivity and 88.6% specificity was observed in predicting CC risk | A total of 538 tissue samples were analyzed, including CC and HIV-positive Nigerian women | [196] |
| ASCL1 LHX8 GHSR SST ZIC1 | qMSP and precursor-M Gold methylation assay | DNA methylation positivity in 77.8% of patients with recurrence | Cervicovaginal samples of 47 patients without recurrence and 20 patients with recurrence from the Netherlands | [197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmerón-Bárcenas, E.G.; Martínez-Zayas, A.; Vargas-Mejía, M.; Villegas-Sepúlveda, N.; Briseño-Díaz, P.; Aguilar-Rojas, A.; Baños-Hernández, C.J.; Torres-Rojas, F.I.; Antaño-Arias, R.; Hernández-Rivas, R. DNMT Enzymes and Their Impact on Cervical Cancer: A State-of-the-Art Review. Int. J. Mol. Sci. 2025, 26, 10496. https://doi.org/10.3390/ijms262110496
Salmerón-Bárcenas EG, Martínez-Zayas A, Vargas-Mejía M, Villegas-Sepúlveda N, Briseño-Díaz P, Aguilar-Rojas A, Baños-Hernández CJ, Torres-Rojas FI, Antaño-Arias R, Hernández-Rivas R. DNMT Enzymes and Their Impact on Cervical Cancer: A State-of-the-Art Review. International Journal of Molecular Sciences. 2025; 26(21):10496. https://doi.org/10.3390/ijms262110496
Chicago/Turabian StyleSalmerón-Bárcenas, Eric Genaro, Andrea Martínez-Zayas, Miguel Vargas-Mejía, Nicolas Villegas-Sepúlveda, Paola Briseño-Díaz, Arturo Aguilar-Rojas, Christian Johana Baños-Hernández, Francisco Israel Torres-Rojas, Ramón Antaño-Arias, and Rosaura Hernández-Rivas. 2025. "DNMT Enzymes and Their Impact on Cervical Cancer: A State-of-the-Art Review" International Journal of Molecular Sciences 26, no. 21: 10496. https://doi.org/10.3390/ijms262110496
APA StyleSalmerón-Bárcenas, E. G., Martínez-Zayas, A., Vargas-Mejía, M., Villegas-Sepúlveda, N., Briseño-Díaz, P., Aguilar-Rojas, A., Baños-Hernández, C. J., Torres-Rojas, F. I., Antaño-Arias, R., & Hernández-Rivas, R. (2025). DNMT Enzymes and Their Impact on Cervical Cancer: A State-of-the-Art Review. International Journal of Molecular Sciences, 26(21), 10496. https://doi.org/10.3390/ijms262110496

