Curcumin as an Antioxidant Against Ziprasidone Induced Lipid Peroxidation in Human Plasma: Potential Relevance to Cortico Subcortical Circuit Function
Abstract
1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Material
4.2. Inclusion Criteria of Healthy Controls
4.3. Isolation and Incubation of Plasma with Ziprasidone and Curcumin
4.4. Estimation of Thiobarbituric Acid-Reactive Substances (TBARS) in Plasma
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trofin, D.-M.; Sardaru, D.-P.; Trofin, D.; Onu, I.; Tutu, A.; Onu, A.; Onită, C.; Galaction, A.I.; Matei, D.V. Oxidative Stress in Brain Function. Antioxidants 2025, 14, 297. [Google Scholar] [CrossRef]
- Halliwell, B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006, 97, 1634–1658. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Gorzelańczyk, E.J. Functional anatomy, physiology and clinical aspects of basal ganglia. In Neuroimaging for Clinicians—Combining Research and Practice; Peres, J., Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 1–20. [Google Scholar] [CrossRef]
- E Alexander, G.; DeLong, M.R.; Strick, P.L. Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annu. Rev. Neurosci. 1986, 9, 357–381. [Google Scholar] [CrossRef]
- Haber, S.N.; Knutson, B. The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology 2009, 35, 4–26. [Google Scholar] [CrossRef]
- Perkins, D.O.; Jeffries, C.D.; Do, K.Q. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol. Psychiatry 2020, 88, 326–336. [Google Scholar] [CrossRef]
- Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 2015, 9, 91. [Google Scholar] [CrossRef]
- Bhatt, S.; Upadhyay, T.; Patil, C.; Pai, K.S.R.; Chellappan, D.K.; Dua, K. Role of Oxidative Stress in Pathophysiological Progression of Schizophrenia. Curr. Psychiatry Res. Rev. 2023, 19, 11–27. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Olas, B.; Rabe-Jablonska, J. Oxidative stress in blood platelets from schizophrenic patients. Platelets 2005, 16, 386–391. [Google Scholar] [CrossRef]
- Mahadik, S.P.; Mukherjee, S.; Scheffer, R.; E Correnti, E.; Mahadik, J.S. Elevated Plasma Lipid Peroxides at the Onset of Nonaffective Psychosis. Biol. Psychiatry 1998, 43, 674–679. [Google Scholar] [CrossRef]
- Reddy, R. Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr. Res. 2003, 62, 205–212. [Google Scholar] [CrossRef]
- De Simone, G.; Mazza, B.; Vellucci, L.; Barone, A.; Ciccarelli, M.; de Bartolomeis, A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants 2023, 12, 975. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A. Oxidative Stress in Schizophrenia. In Studies on Psychiatric Disorders: Oxidative Stress in Applied Basic Research and Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2015; pp. 43–72. ISBN 2197-7224. [Google Scholar]
- Parikh, V.; Khan, M.M.; Mahadik, S.P. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res. 2003, 37, 43–51. [Google Scholar] [CrossRef]
- Sagara, Y. Induction of Reactive Oxygen Species in Neurons by Haloperidol. J. Neurochem. 1998, 71, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Cuenod, M.; Steullet, P.; Cabungcal, J.-H.; Dwir, D.; Khadimallah, I.; Klauser, P.; Conus, P.; Do, K.Q. Caught in vicious circles: A perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol. Psychiatry 2021, 27, 1886–1897. [Google Scholar] [CrossRef]
- Picca, A.; Calvani, R.; Coelho-Júnior, H.J.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants 2020, 9, 647. [Google Scholar] [CrossRef]
- Howes, O.D.; Kapur, S. The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- Do, K.Q.; Cabungcal, J.H.; Frank, A.; Steullet, P.; Cuenod, M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr. Opin. Neurobiol. 2009, 19, 220–230. [Google Scholar] [CrossRef]
- Steullet, P.; Cabungcal, J.; Monin, A.; Dwir, D.; O’Donnell, P.; Cuenod, M.; Do, K. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology? Schizophr. Res. 2016, 176, 41–51. [Google Scholar] [CrossRef]
- Saia-Cereda, V.M.; Cassoli, J.S.; Martins-De-Souza, D.; Nascimento, J.M. Psychiatric disorders biochemical pathways unraveled by human brain proteomics. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 267, 3–17. [Google Scholar] [CrossRef]
- Murray, A.J.; Rogers, J.C.; Katshu, M.Z.U.H.; Liddle, P.F.; Upthegrove, R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front. Psychiatry 2021, 12, 703452. [Google Scholar] [CrossRef]
- Pistis, G.; Vázquez-Bourgon, J.; Fournier, M.; Jenni, R.; Cleusix, M.; Papiol, S.; Smart, S.E.; Pardiñas, A.F.; Walters, J.T.R.; MacCabe, J.H.; et al. Gene set enrichment analysis of pathophysiological pathways highlights oxidative stress in psychosis. Mol. Psychiatry 2022, 27, 5135–5143. [Google Scholar] [CrossRef]
- Rambaud, V.; Marzo, A.; Chaumette, B. Oxidative Stress and Emergence of Psychosis. Antioxidants 2022, 11, 1870. [Google Scholar] [CrossRef]
- Caruso, G.; Grasso, M.; Fidilio, A.; Tascedda, F.; Drago, F.; Caraci, F. Antioxidant Properties of Second-Generation Antipsychotics: Focus on Microglia. Pharmaceuticals 2020, 13, 457. [Google Scholar] [CrossRef] [PubMed]
- Dietrich-Muszalska, A.; Kolodziejczyk-Czepas, J.; Nowak, P. Comparative Study of the Effects of Atypical Antipsychotic Drugs on Plasma and Urine Biomarkers of Oxidative Stress in Schizophrenic Patients. Neuropsychiatr. Dis. Treat. 2021, 17, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Dempster, K.; Jeon, P.; MacKinley, M.; Williamson, P.; Théberge, J.; Palaniyappan, L. Early treatment response in first episode psychosis: A 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol. Psychiatry 2020, 25, 1640–1650. [Google Scholar] [CrossRef]
- Li, H.; Yang, P.; Knight, W.; Guo, Y.; Perlmutter, J.S.; Benzinger, T.L.S.; Morris, J.C.; Xu, J. The interactions of dopamine and oxidative damage in the striatum of patients with neurodegenerative diseases. J. Neurochem. 2019, 152, 235–251. [Google Scholar] [CrossRef]
- Salvatore, M.F. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function—Not a New Concept, but Neglected Reality. Int. J. Mol. Sci. 2024, 25, 1131. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Rahmouni, F.; Hamdaoui, L.; Saoudi, M.; Badraoui, R.; Rebai, T. Antioxidant and antiproliferative effects of Teucrium polium extract: Computational and in vivo study in rats. Toxicol. Mech. Methods 2024, 34, 495–506. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Johnson, F.; Giulivi, C. Superoxide dismutases and their impact upon human health. Mol. Asp. Med. 2005, 26, 340–352. [Google Scholar] [CrossRef]
- DiGiovanni, L.F.; Khroud, P.K.; Carmichael, R.E.; Schrader, T.A.; Gill, S.K.; Germain, K.; Jomphe, R.Y.; Wiesinger, C.; Boutry, M.; Kamoshita, M.; et al. ROS transfer at peroxisome-mitochondria contact regulates mitochondrial redox. Science 2025, 389, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Halliwell, B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free. Radic. Res. 1999, 31, 261–272. [Google Scholar] [CrossRef]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715S–725S. [Google Scholar] [CrossRef]
- Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis 2007, 12, 913–922. [Google Scholar] [CrossRef]
- Vázquez-Meza, H.; Vilchis-Landeros, M.M.; Vázquez-Carrada, M.; Uribe-Ramírez, D.; Matuz-Mares, D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants 2023, 12, 834. [Google Scholar] [CrossRef]
- Lennon, S.V.; Martin, S.J.; Cotter, T.G. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991, 24, 203–214. [Google Scholar] [CrossRef]
- Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 2008, 11, 851–876. [Google Scholar] [CrossRef]
- Nunes, P.I.G.; Benjamin, S.R.; Brito, R.d.S.; de Aguiar, M.R.; Neves, L.B.; de Bruin, V.M.S. Mitochondria, Oxidative Stress, and Psychiatric Disorders: An Integrative Perspective on Brain Bioenergetics. Clin. Bioenerg. 2025, 1, 6. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, L.; Cai, Y. Progress in the study of oxidative stress damage in patients with schizophrenia: Challenges and opportunities. Front. Psychiatry 2025, 16, 1505397. [Google Scholar] [CrossRef] [PubMed]
- Dietrich-Muszalska, A.; Chauhan, V.; Grignon, S. Studies on Psychiatric Disorders; Springer Nature: Durham, NC, USA, 2015; ISBN 9781493904396. [Google Scholar]
- Skinner, A.O.; Mahadik, S.P.; Garver, D.L. Thiobarbituric acid reactive substances in the cerebrospinal fluid in schizophrenia. Schizophr. Res. 2005, 76, 83–87. [Google Scholar] [CrossRef]
- Khan, M. Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr. Res. 2002, 58, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mahadik, S.; Scheffer, R. Oxidative injury and potential use of antioxidants in schizophrenia. Prostaglandins, Leukot. Essent. Fat. Acids 1996, 55, 45–54. [Google Scholar] [CrossRef]
- Tsai, M.-C.; Liou, C.-W.; Lin, T.-K.; Lin, I.-M.; Huang, T.-L. Changes in oxidative stress markers in patients with schizophrenia: The effect of antipsychotic drugs. Psychiatry Res. 2013, 209, 284–290. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, Z.; He, L.; Wan, C. A meta-analysis of oxidative stress markers in schizophrenia. Sci. China Life Sci. 2010, 53, 112–124. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Olas, B. Isoprostenes as indicators of oxidative stress in schizophrenia. World J. Biol. Psychiatry 2009, 10, 27–33. [Google Scholar] [CrossRef]
- Goff, D.C. The Pharmacologic Treatment of Schizophrenia—2021. JAMA 2020, 325, 175–176. [Google Scholar] [CrossRef]
- Sommerfeld-Klatta, K.; Jiers, W.; Rzepczyk, S.; Nowicki, F.; Łukasik-Głębocka, M.; Świderski, P.; Zielińska-Psuja, B.; Żaba, Z.; Żaba, C. The Effect of Neuropsychiatric Drugs on the Oxidation-Reduction Balance in Therapy. Int. J. Mol. Sci. 2024, 25, 7304. [Google Scholar] [CrossRef]
- Rael, L.T.; Thomas, G.W.; Craun, M.L.; Curtis, C.G.; Bar-Or, R.; Bar-Or, D. Lipid Peroxidation and the Thiobarbituric Acid Assay: Standardization of the Assay When Using Saturated and Unsaturated Fatty Acids. BMB Rep. 2004, 37, 749–752. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Kontek, B.; Rabe-Jabłońska, J. Quetiapine, Olanzapine and Haloperidol Affect Human Plasma Lipid Peroxidation in vitro. Neuropsychobiology 2011, 63, 197–201. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Kontek, B. Lipid peroxidation in patients with schizophrenia. Psychiatry Clin. Neurosci. 2010, 64, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Dietrich-Muszalska, A.; Olas, B. Inhibitory effects of polyphenol compounds on lipid peroxidation caused by antipsychotics (haloperidol and amisulpride) in human plasma in vitro. World J. Biol. Psychiatry 2009, 11, 1–6. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Kolińska-Łukaszuk, J. Comparative effects of aripiprazole and selected antipsychotic drugs on lipid peroxidation in plasma. Psychiatry Clin. Neurosci. 2018, 72, 329–336. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Kopka, J.; Kontek, B. Polyphenols from Berries of Aronia melanocarpa Reduce the Plasma Lipid Peroxidation Induced by Ziprasidone. Schizophr. Res. Treat. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Flatow, J.; Buckley, P.; Miller, B.J. Meta-Analysis of Oxidative Stress in Schizophrenia. Biol. Psychiatry 2013, 74, 400–409. [Google Scholar] [CrossRef]
- Padurariu, M.; Ciobica, A.; Dobrin, I.; Stefanescu, C. Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci. Lett. 2010, 479, 317–320. [Google Scholar] [CrossRef]
- Ji, X.; Chai, J.; Zhao, S.; Zhao, Y. Plant-derived polyphenolic compounds for managing schizophrenia: Mechanisms and therapeutic potential. Front. Pharmacol. 2025, 16, 1605027. [Google Scholar] [CrossRef]
- Perveen, S.; Kanwal, S.; Alqahtani, A.S.; Rao, F.; Asghar, A.; Irfan, A.; Khan, M.A.; Ullah, R. Roleof phytochemicals inmanagement of schizophrenia. In New Approaches to the Management and Diagnosis of Schizophrenia; Hocaoglu, W.C., Ed.; InTechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wójcik, E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols—Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 2258. [Google Scholar] [CrossRef]
- Arnold, L.M.; McElroy, S.L.; E Keck, P. Ziprasidone: A new atypical antipsychotic. Expert Opin. Pharmacother. 2001, 2, 1033–1042. [Google Scholar] [CrossRef]
- Greenberg, W.M.; Citrome, L. Ziprasidone for Schizophrenia and Bipolar Disorder: A Review of the Clinical Trials. CNS Drug Rev. 2007, 13, 137–177. [Google Scholar] [CrossRef]
- Chaudhari, G.; Randhawan, B.; Mule, G.; Munot, N.; Javane, N.; Damale, A.; Bhavar, P.; Maske, V. Ziprasidone: A potent drug as an antipsychotic. Int. J. Pharm. Sci. 2025, 3, 2709–2717. [Google Scholar] [CrossRef]
- Schatzberg, A.F.; Nemeroff, C.B. The American Psychiatric Publishing Textbook of Psychopharmacology, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2017; ISBN 978-1-58562-523-9. [Google Scholar]
- Davis, R.; Markham, A. Ziprasidone. CNS Drugs 1997, 8, 153–159, Erratum in CNS Drugs 1998, 9, 280. [Google Scholar] [CrossRef]
- Stahl, S.M.; Shayegan, D.K. The psychopharmacology of Ziprasidone: Receptor-binding properties and real-world psychiatric practice. J. Clin. Psychiatry 2003, 64 (Suppl. 19), 6–12. [Google Scholar]
- Dietrich-Muszalska, A.; Kopka, J.; Kwiatkowska, A. The Effects of Ziprasidone, Clozapine and Haloperidol on Lipid Peroxidation in Human Plasma (in vitro): Comparison. Neurochem. Res. 2013, 38, 1490–1495. [Google Scholar] [CrossRef]
- Rapti, E.; Adamantidi, T.; Efthymiopoulos, P.; Kyzas, G.Z.; Tsoupras, A. Potential Applications of the Anti-Inflammatory, Antithrombotic and Antioxidant Health-Promoting Properties of Curcumin: A Critical Review. Nutraceuticals 2024, 4, 562–595. [Google Scholar] [CrossRef]
- Bachmeier, B.E. Novel Insights into the Therapeutic Potential of Curcumin and Derivatives. Int. J. Mol. Sci. 2023, 24, 8837. [Google Scholar] [CrossRef]
- Chanda, S.; Ramachandra, T.V. Phytochemical and pharmacological importance of turmeric (Curcuma longa): A review. Res. Rev. A J. Pharmacol. 2019, 9, 16–23. [Google Scholar]
- Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res. 2013, 57, 1529–1542. [Google Scholar] [CrossRef]
- Gurunani, S.G.; Ali, S.A.A.Q.; Tiwari, N.G.; Pasha, M.U.W.; Dubey, S.A. Curcumin—A Chemopreventive Agent: A Comprehensive Review. Int. J. Res. Publ. Rev. 2025, 6, 6476–6481. [Google Scholar] [CrossRef]
- Moon, D.-O. Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management. Int. J. Mol. Sci. 2024, 25, 2911. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 01021. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Drummond, P.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. J. Affect. Disord. 2017, 207, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Pi, C.; Shen, H.; Zhou, B.; Wei, Y.; Dechsupa, N.; Zhao, L. Potential therapeutic benefits of curcumin in depression or anxiety induced by chronic diseases: A systematic review of mechanistic and clinical evidence. Front. Pharmacol. 2025, 16, 1638645. [Google Scholar] [CrossRef]
- Wei, Y.-S.; Liu, K.-L.; Feng, K.; Wang, Y. Active Targeting Strategies for Improving the Bioavailability of Curcumin: A Systematic Review. Foods 2025, 14, 3331. [Google Scholar] [CrossRef] [PubMed]
- El Nebrisi, E.; Javed, H.; Ojha, S.K.; Oz, M.; Shehab, S. Neuroprotective Effect of Curcumin on the Nigrostriatal Pathway in a 6-Hydroxydopmine-Induced Rat Model of Parkinson’s Disease is Mediated by α7-Nicotinic Receptors. Int. J. Mol. Sci. 2020, 21, 7329. [Google Scholar] [CrossRef] [PubMed]
- El Nebrisi, E. Neuroprotective Activities of Curcumin in Parkinson’s Disease: A Review of the Literature. Int. J. Mol. Sci. 2021, 22, 11248. [Google Scholar] [CrossRef]
- González-Granillo, A.E.; Gnecco, D.; Díaz, A.; Garcés-Ramírez, L.; de la Cruz, F.; Juarez, I.; Morales-Medina, J.C.; Flores, G. Curcumin induces cortico-hippocampal neuronal reshaping and memory improvements in aged mice. J. Chem. Neuroanat. 2022, 121, 102091. [Google Scholar] [CrossRef]
- Choi, G.-Y.; Kim, H.-B.; Hwang, E.-S.; Lee, S.; Kim, M.-J.; Choi, J.-Y.; Lee, S.-O.; Kim, S.-S.; Park, J.-H. Curcumin Alters Neural Plasticity and Viability of Intact Hippocampal Circuits and Attenuates Behavioral Despair and COX-2 Expression in Chronically Stressed Rats. Mediat. Inflamm. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, D.; Li, S.; Li, G.; Shyamala, S.G.; Barish, P.A.; Vernon, M.M.; Pan, J.; Ogle, W.O. Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology 2009, 57, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, S.; Vernon, M.M.; Pan, J.; Chen, L.; Barish, P.A.; Zhang, Y.; Acharya, A.P.; Yu, J.; Govindarajan, S.S.; et al. Curcumin prevents corticosterone-induced neurotoxicity and abnormalities of neuroplasticity via 5-HT receptor pathway. J. Neurochem. 2011, 118, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, M.H.; Charousaei, H.; Charousaei, A. Evaluation of Nanocurcumin Effects on Depressive-Like Behaviors in Rats and Determination of Serum BDNF and Serotonin Levels. Brain Behav. 2025, 15, e70320, Erratum in Brain Behav. 2025, 15, e70523. [Google Scholar] [CrossRef]
- Moosavi, M.; Soukhaklari, R.; Bagheri-Mohammadi, S.; Firouzan, B.; Javadpour, P.; Ghasemi, R. Nanocurcumin prevents memory impairment, hippocampal apoptosis, Akt and CaMKII-α signaling disruption in the central STZ model of Alzheimer’s disease in rat. Behav. Brain Res. 2024, 471, 115129. [Google Scholar] [CrossRef]
- Salah, A.; Yousef, M.; Kamel, M.; Hussein, A. The Neuroprotective and Antioxidant Effects of Nanocurcumin Oral Suspension against Lipopolysaccharide-Induced Cortical Neurotoxicity in Rats. Biomedicines 2022, 10, 3087. [Google Scholar] [CrossRef]
- Lamanna-Rama, N.; Romero-Miguel, D.; Desco, M.; Soto-Montenegro, M.L. An Update on the Exploratory Use of Curcumin in Neuropsychiatric Disorders. Antioxidants 2022, 11, 353. [Google Scholar] [CrossRef]
- Goff, D.C.; Baldessarini, R.J.; Walsh, C.B.E.S.E. Drug Interactions With Antipsychotic Agents. J. Clin. Psychopharmacol. 1993, 13, 57–67. [Google Scholar] [CrossRef]
- Rabiee, R.; Hooshiar, S.H.; Ghaderi, A.; Jafarnejad, S. Schizophrenia, Curcumin and Minimizing Side Effects of Antipsychotic Drugs: Possible Mechanisms. Neurochem. Res. 2022, 48, 713–724. [Google Scholar] [CrossRef]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef]
- Stip, E.; Zhornitsky, S.; Moteshafi, H.; Létourneau, G.; Stikarovska, I.; Potvin, S.; Tourjman, V. Ziprasidone for Psychotic Disorders: A Meta-Analysis and Systematic Review of the Relationship Between Pharmacokinetics, Pharmacodynamics, and Clinical Profile. Clin. Ther. 2011, 33, 1853–1867. [Google Scholar] [CrossRef]
- Meltzer, H.; Massey, B. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr. Opin. Pharmacol. 2011, 11, 59–67. [Google Scholar] [CrossRef]
- Schlagenhauf, F.; Sterzer, P.; Schmack, K.; Ballmaier, M.; Rapp, M.; Wrase, J.; Juckel, G.; Gallinat, J.; Heinz, A. Reward Feedback Alterations in Unmedicated Schizophrenia Patients: Relevance for Delusions. Biol. Psychiatry 2009, 65, 1032–1039. [Google Scholar] [CrossRef]
- Dinakaran, D.; Sreeraj, V.S.; Venkatasubramanian, G. Role of Curcumin in the Management of Schizophrenia: A Narrative Review. Indian J. Psychol. Med. 2021, 44, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.D.; Roberts, L. The isoprostanes: Unique bioactive products of lipid peroxidation. Prog. Lipid Res. 1997, 36, 1–21. [Google Scholar] [CrossRef]
- Milne, G.L.; Yin, H.; Hardy, K.D.; Davies, S.S.; Roberts, L.J. Isoprostane Generation and Function. Chem. Rev. 2011, 111, 5973–5996. [Google Scholar] [CrossRef]
- Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990, 9, 515–540. [Google Scholar] [CrossRef]
- Montuschi, P.; Barnes, P.J.; Roberts, L.J., 2nd. Isoprostanes: Markers and mediators of oxidative stress. FASEB J. 2004, 18, 1791–1800. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Pan, M.-H.; Cheng, A.-L.; Lin, L.-I.; Ho, Y.-S.; Hsieh, C.-Y.; Lin, J.-K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, 15, 1867–1876. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef]
- Salah, R.S.; Mahmoud, A.A.; El-Shiekh, R.A.; El-Dessouki, A.M.; Hassan, A.G.A.-E.; Khalaf, S.S. A comprehensive review of the impact of natural products in preventing drug-induced ototoxicity. Inflammopharmacology 2025, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Na, K.-S. Neuroprotection in Schizophrenia and Its Therapeutic Implications. Psychiatry Investig. 2017, 14, 383–391. [Google Scholar] [CrossRef]
- Kolodziejczyk, J.; Olas, B.; Saluk-Juszczak, J.; Wachowicz, B. Antioxidative properties of curcumin in the protection of blood platelets against oxidative stress in vitro. Platelets 2011, 22, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Akkol, E.K.; Bardakcı, H.; Yücel, Ç.; Karatoprak, G.Ş.; Karpuz, B.; Khan, H. A New Perspective on the Treatment of Alzheimer’s Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help? Oxidative Med. Cell. Longev. 2022, 2022, 6168199. [Google Scholar] [CrossRef]
- Buhrmann, C.; Mobasheri, A.; Busch, F.; Aldinger, C.; Stahlmann, R.; Montaseri, A.; Shakibaei, M. Curcumin Modulates Nuclear Factor κB (NF-κB)-mediated Inflammation in Human Tenocytes in Vitro. J. Biol. Chem. 2011, 286, 28556–28566. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin Suppresses the Paclitaxel-Induced Nuclear Factor-κB Pathway in Breast Cancer Cells and Inhibits Lung Metastasis of Human Breast Cancer in Nude Mice. Clin. Cancer Res. 2005, 11, 7490–7498. [Google Scholar] [CrossRef]
- Tan, X.; Poulose, E.M.; Raveendran, V.V.; Zhu, B.-T.; Stechschulte, D.J.; Dileepan, K.N. Regulation of the expression of cyclooxygenases and production of prostaglandin I2 and E2 in human coronary artery endothelial cells by curcumin. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2011, 62, 21–28. [Google Scholar]
- Camacho-Barquero, L.; Villegas, I.; Sánchez-Calvo, J.M.; Talero, E.; Sánchez-Fidalgo, S.; Motilva, V.; de la Lastra, C.A. Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int. Immunopharmacol. 2007, 7, 333–342. [Google Scholar] [CrossRef]
- Beevers, C.S.; Huang, S. Pharmacological and clinical properties of curcumin. Bot. Targets Ther. 2011, 2011, 5–18. [Google Scholar] [CrossRef]
- Fang, J.; Lu, J.; Holmgren, A. Thioredoxin Reductase Is Irreversibly Modified by Curcumin: A novel molecular mechanism for its anticancer activity. J. Biol. Chem. 2005, 280, 25284–25290. [Google Scholar] [CrossRef]
- Zhou, H.; Beevers, C.S.; Huang, S. The Targets of Curcumin. Curr. Drug Targets 2011, 12, 332–347. [Google Scholar] [CrossRef]
- Leu, T.-H.; Su, S.L.; Chuang, Y.-C.; Maa, M.-C. Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity. Biochem. Pharmacol. 2003, 66, 2323–2331. [Google Scholar] [CrossRef]
- Reddy, S.; Aggarwal, B.B. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Lett. 1994, 341, 19–22. [Google Scholar] [CrossRef]
- Takeuchi, T.; Ishidoh, T.; Iijima, H.; Kuriyama, I.; Shimazaki, N.; Koiwai, O.; Kuramochi, K.; Kobayashi, S.; Sugawara, F.; Sakaguchi, K.; et al. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase λ. Genes Cells 2006, 11, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Jankun, E.; Zhou, K.; McCabe, N.P.; Selman, S.H.; Jankun, J. Structure of curcumin in complex with lipoxygenase and its significance in cancer. Int. J. Mol. Med. 2003, 12, 17–24. [Google Scholar] [CrossRef]
- Gupta, K.K.; Bharne, S.S.; Rathinasamy, K.; Naik, N.R.; Panda, D. Dietary antioxidant curcumin inhibits microtubule assembly through tubulin binding. FEBS J. 2006, 273, 5320–5332. [Google Scholar] [CrossRef]
- Ishihara, M.; Sakagami, H. Re-evaluation of cytotoxicity and iron chelation activity of three beta-diketones by semiempirical molecular orbital method. In Vivo 2005, 19, 119–123. [Google Scholar]
- Basnet, P.; Skalko-Basnet, N. Curcumin: An Anti-Inflammatory Molecule from a Curry Spice on the Path to Cancer Treatment. Molecules 2011, 16, 4567–4598. [Google Scholar] [CrossRef]
- Hill-Kapturczak, N.; Thamilselvan, V.; Liu, F.; Nick, H.S.; Agarwal, A. Mechanism of heme oxygenase-1 gene induction by curcumin in human renal proximal tubule cells. Am. J. Physiol. Physiol. 2001, 281, F851–F859. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, A.R.; Chung, H.Y.; Han, S.Y.; Kim, B.S.; Choi, J.S. In vitro peroxynitrite scavenging activity of diarylheptanoids from Curcuma longa. Phytotherapy Res. 2003, 17, 481–484. [Google Scholar] [CrossRef]
- Joe, B.; Lokesh, B. Role of capsaicin, curcumin and dietary n—3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 1994, 1224, 255–263. [Google Scholar] [CrossRef]
- Jain, S.K.; Rains, J.; Jones, K. Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels. Free Radic. Biol. Med. 2006, 41, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Rajakrishnan, V.; Viswanathan, P.; Rajasekharan, K.N.; Menon, V.P. Neuroprotective role of curcumin from Curcuma longa on ethanol-induced brain damage. Phytother. Res. 1999, 13, 571–574. [Google Scholar] [CrossRef]
- Durgaprasad, S.; Pai, C.G.; Vasanthkumar; Alvres, J.F.; Namitha, S. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J. Med. Res. 2005, 122, 315–318. Available online: https://pubmed.ncbi.nlm.nih.gov/16394323/ (accessed on 25 September 2025).
- Kroon, M.A.G.M.; Berbee, J.K.; Majait, S.; Swart, N.E.L.; van Tellingen, O.; van Laarhoven, H.W.M.; Kemper, E.M. Plasma concentrations of curcumin in individuals using curcumin with adjuvants or lipid formulated cur-cumin supplements: A real world cohort. medRxiv 2023. [Google Scholar] [CrossRef]
- Kroon, M.A.G.M.; Berbee, J.K.; Majait, S.; Swart, E.L.; van Tellingen, O.; van Laarhoven, H.W.M.; Kemper, E.M. Non-therapeutic plasma levels in individuals utilizing curcumin supplements in daily life. Front. Nutr. 2023, 10, 1267035. [Google Scholar] [CrossRef]
- Jabur, L.; Pandey, R.; Mikhael, M.; Niedermayer, G.; Gyengesi, E.; Mahns, D.; Münch, G. Pharmacokinetic Analysis of the Bioavailability of AQUATURM®, a Water-Soluble Curcumin Formulation, in Comparison to a Conventional Curcumin Tablet, in Human Subjects. Pharmaceuticals 2025, 18, 1073. [Google Scholar] [CrossRef]
- Lao, C.D.; Ruffin, M.T., 4th; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006, 6, 10. [Google Scholar] [CrossRef]
- Biswas, S.K.; McClure, D.; Jimenez, L.A.; Megson, I.L.; Rahman, I. Curcumin Induces Glutathione Biosynthesis and Inhibits NF-κB Activation and Interleukin-8 Release in Alveolar Epithelial Cells: Mechanism of Free Radical Scavenging Activity. Antioxidants Redox Signal. 2005, 7, 32–41. [Google Scholar] [CrossRef]
- Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory Effects of Curcumin in Microglial Cells. Front. Pharmacol. 2018, 9, 386. [Google Scholar] [CrossRef]
- Esmaealzadeh, N.; Miri, M.S.; Mavaddat, H.; Peyrovinasab, A.; Zargar, S.G.; Kabiri, S.S.; Razavi, S.M.; Abdolghaffari, A.H. The regulating effect of curcumin on NF-κB pathway in neurodegenerative diseases: A review of the underlying mechanisms. Inflammopharmacology 2024, 32, 2125–2151. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, M.; Armeli, F.; Mengoni, B.; Menin, M.; Crudeli, M.L.; Businaro, R. Curcumin Modulation of the Gut–Brain Axis for Neuroinflammation and Metabolic Disorders Prevention and Treatment. Nutrients 2025, 17, 1430. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Nitesh, Y.; Kothapalli, U.T.; Manaswi, K.; Alekhya, R.; Harani, A. Eco-Friendly Assessment of Turmeric-Assisted Approach in Developing and Validating a Method for the Quantification of Atropine Sulphate in Bulk and Tablet Dosage Form using UV-Visible Spectrophotometry. Green Anal. Chem. 2024, 9, 100114. [Google Scholar] [CrossRef]
- Jayaprakash, P.; Isaev, D.; Shabbir, W.; Lorke, D.E.; Sadek, B.; Oz, M. Curcumin Potentiates α7 Nicotinic Acetylcholine Receptors and Alleviates Autistic-Like Social Deficits and Brain Oxidative Stress Status in Mice. Int. J. Mol. Sci. 2021, 22, 7251. [Google Scholar] [CrossRef]
- ElNebrisi, E.; Lozon, Y.; Oz, M. The Role of α7-Nicotinic Acetylcholine Receptors in the Pathophysiology and Treatment of Parkinson’s Disease. Int. J. Mol. Sci. 2025, 26, 3210. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.-B.; Li, Y.-H.; Xu, Y.; Wu, H.-L.; Li, X.-J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 2008, 1210, 84–91. [Google Scholar] [CrossRef]
- Hegde, M.; Girisa, S.; BharathwajChetty, B.; Vishwa, R.; Kunnumakkara, A.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega 2023, 8, 10713–10746. [Google Scholar] [CrossRef]
- Morella, I.; Hallum, H.; Brambilla, R. Dopamine D1 and Glutamate Receptors Co-operate With Brain-Derived Neurotrophic Factor (BDNF) and TrkB to Modulate ERK Signaling in Adult Striatal Slices. Front. Cell. Neurosci. 2020, 14, 564106. [Google Scholar] [CrossRef]
- Sudarshan, K.; Yarlagadda, S.; Sengupta, S. Recent Advances in the Synthesis of Diarylheptanoids. Chem.–Asian J. 2024, 19, e202400380. [Google Scholar] [CrossRef]
- Kulkarni, S.K.; Bhutani, M.K.; Bishnoi, M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology 2008, 201, 435–442. [Google Scholar] [CrossRef]
- Hadadi, M.; Farazi, M.M.; Mehrabani, M.; Tashakori-Miyanroudi, M.; Behroozi, Z. Curcumin reduces pain after spinal cord injury in rats by decreasing oxidative stress and increasing GABAA receptor and GAD65 levels. Sci. Rep. 2025, 15, 1–14. [Google Scholar] [CrossRef]
- Drugs.com. Turmeric and Curcumin 95 Interactions. Available online: https://www.drugs.com/drug-interactions/turmeric,curcumin-95.html (accessed on 25 September 2025).
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015; pp. 124–146. [Google Scholar]
- Gilhotra, N.; Dhingra, D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010, 1352, 167–175. [Google Scholar] [CrossRef]
- Singhal, S.S.; Awasthi, S.; Pandya, U.; Piper, J.T.; Saini, M.K.; Cheng, J.-Z.; Awasthi, Y.C. The effect of curcumin on glutathione-linked enzymes in K562 human leukemia cells. Toxicol. Lett. 1999, 109, 87–95. [Google Scholar] [CrossRef]
- Strasser, E.-M.; Wessner, B.; Manhart, N.; Roth, E. The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells. Biochem. Pharmacol. 2005, 70, 552–559. [Google Scholar] [CrossRef]
- Dickinson, D.A.; Iles, K.E.; Zhang, H.; Blank, V.; Forman, H.J. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J. 2003, 17, 1–26. [Google Scholar] [CrossRef]
- Jiao, Y.; Wilkinson, J.T.; Di, X.; Wang, W.; Hatcher, H.; Kock, N.D.; D’Agostino, R., Jr.; Knovich, M.A.; Torti, F.M.; Torti, S.V. Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 2009, 113, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Kong, L.; Chen, Y. Antidepressant activity of aqueous extracts of Curcuma longa in mice. J. Ethnopharmacol. 2002, 83, 161–165. [Google Scholar] [CrossRef]
- Pampaloni, F.; Reynaud, E.G.; Stelzer, E.H.K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 2007, 8, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T. Thoughts on limitations of animal models. Park. Relat. Disord. 2008, 14, S81–S83. [Google Scholar] [CrossRef]
- van der Worp, H.B.; Howells, D.W.; Sena, E.S.; Porritt, M.J.; Rewell, S.; O’Collins, V.; Macleod, M.R. Can Animal Models of Disease Reliably Inform Human Studies? PLOS Med. 2010, 7, e1000245. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Balker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. S20), 22–33. [Google Scholar]
- Wachowicz, B.; Kustroń, J. Effect of cisplatin on lipid peroxidation in pig blood platelets. Cytobios 1992, 70, 41–47. [Google Scholar] [PubMed]
- Hill, T.; Lewicki, P. Statistics. Methods and Applications. A Comprehensive Reference for Science, Industry, and Data Mining; StatSoft Inc.: Tulsa, OK, USA, 2006; 832p. [Google Scholar]
- Stanisz, A. Przystępny Kurs Statystyki z Zastosowaniem STATISTICA PL na Przykładach z Medycyny, T. 1. Statystyki Pod-Stawowe. An Accessible Course in Statistics with the Use of STATISTICA PL on Examples from Medicine, V. 1. Basic Statistics; StatSoft Polska, Sp. z o.o.: Cracov, Poland, 2006; 532p. [Google Scholar]






| Concentration | Mean ± SEM | p | Inhibition % | |
|---|---|---|---|---|
| Curcumin (A) | Ziprasidone (ZIP) | |||
| A1: 5 µg/mL | and ZIP1: 40 ng/mL | 0.831 ± 0.118 | 6.1 × 10−5 | 46.7 |
| A2: 12.5 µg/mL | and ZIP1: 40 ng/mL | 0.468 ± 0.069 | 8.9 × 10−9 | 70.0 |
| A3: 25 µg/mL | and ZIP1: 40 ng/mL | 0.680 ± 0.076 | 1.3 × 10−6 | 56.4 |
| A4: 50 µg/mL | and ZIP1: 40 ng/mL | 0.879 ± 0.179 | 4.4 × 10−3 | 43.6 |
| A1: 5 µg/mL | and ZIP2: 139 ng/mL | 0.852 ± 0.122 | 2.0 × 10−4 | 45.4 |
| A2: 12.5 µg/mL | and ZIP2: 139 ng/mL | 0.462 ± 0.052 | 1.0 × 10−9 | 70.4 |
| A3: 25 µg/mL | and ZIP2: 139 ng/mL | 0.665 ± 0.084 | 1.9 × 10−6 | 57.4 |
| A4: 50 µg/mL | and ZIP2: 139 ng/mL | 0.722 ± 0.049 | 2.0 × 10−7 | 53.8 |
| A1: 5 µg/mL | and ZIP3: 250 ng/mL | 0.706 ± 0.082 | 2.6 × 10−7 | 54.7 |
| A2: 12.5 µg/mL | and ZIP3: 250 ng/mL | 0.570 ± 0.092 | 3.0 × 10−6 | 63.5 |
| A3: 25 µg/mL | and ZIP3: 250 ng/mL | 0.590 ± 0.061 | 1.8 × 10−8 | 62.2 |
| A4: 50 µg/mL | and ZIP3: 250 ng/mL | 0.793 ± 0.084 | 2.4 × 10−5 | 49.2 |
| TBARS 1 h | Mean | SEM | p | K | Inhibition % |
|---|---|---|---|---|---|
| Control | 1.185 | 0.038 | 100.0 | ||
| A1 5/L1 40 ng/mL | 0.493 | 0.112 | 0.003458 | 41.6 | 58.4 |
| A2 12.5/L1 40 ng/mL | 0.533 | 0.119 | 0.007488 | 45.0 | 55.0 |
| A3 25/L1 40 ng/mL | 0.454 | 0.098 | 0.001407 | 38.3 | 61.7 |
| A4 50/L1 40 ng/mL | 0.570 | 0.188 | 0.029623 | 48.1 | 51.9 |
| A1 5/L2 139 ng/mL | 0.389 | 0.055 | 5.13 × 10−5 | 32.8 | 67.2 |
| A2 12.5/L2 139 ng/mL | 0.294 | 0.035 | 7.71 × 10−6 | 24.8 | 75.2 |
| A3 25/L2 139 ng/mL | 0.469 | 0.041 | 2.32 × 10−5 | 39.6 | 60.4 |
| A4 50/L2 139 ng/mL | 0.427 | 0.099 | 0.000572 | 36.0 | 64.0 |
| A1 5/L3 250 ng/mL | 0.327 | 0.053 | 1.32 × 10−5 | 27.6 | 72.4 |
| A2 12.5/L3 250 ng/mL | 0.294 | 0.058 | 3.94 × 10−5 | 24.8 | 75.2 |
| A3 25/L3 250 ng/mL | 0.366 | 0.034 | 2.88 × 10−6 | 30.8 | 69.2 |
| A4 50/L3 250 ng/mL | 0.446 | 0.121 | 0.000959 | 37.7 | 62.3 |
| TBARS 24 h | mean | SEM | p | K | inhibition % |
| Control | 1.560 | 0.074 | 100.0 | ||
| A1 5/L1 40 ng/mL | 0.831 | 0.118 | 6.15 × 10−5 | 53.3 | 46.7 |
| A2 12.5/L1 40 ng/mL | 0.468 | 0.069 | 8.87 × 10−9 | 30.0 | 70.0 |
| A3 25/L1 40 ng/mL | 0.680 | 0.076 | 1.26 × 10−6 | 43.6 | 56.4 |
| A4 50/L1 40 ng/mL | 0.879 | 0.179 | 0.004428 | 56.4 | 43.6 |
| A1 5/L2 139 ng/mL | 0.852 | 0.122 | 0.000199 | 54.6 | 45.4 |
| A2 12.5/L2 139 ng/mL | 0.462 | 0.052 | 1.03 × 10−9 | 29.6 | 70.4 |
| A3 25/L2 139 ng/mL | 0.665 | 0.084 | 1.92 × 10−6 | 42.6 | 57.4 |
| A4 50/L2 139 ng/mL | 0.722 | 0.049 | 1.99 × 10−7 | 46.2 | 53.8 |
| A1 5/L3 250 ng/mL | 0.706 | 0.082 | 2.6 × 10−7 | 45.3 | 54.7 |
| A2 12.5/L3 250 ng/mL | 0.570 | 0.092 | 3.01 × 10−6 | 36.5 | 63.5 |
| A3 25/L3 250 ng/mL | 0.590 | 0.061 | 1.81 × 10−8 | 37.8 | 62.2 |
| A4 50/L3 250 ng/mL | 0.793 | 0.084 | 2.42 × 10−5 | 50.8 | 49.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietrich-Muszalska, A.; Kamiński, P.; Kontek, B.; Gorzelańczyk, E.J. Curcumin as an Antioxidant Against Ziprasidone Induced Lipid Peroxidation in Human Plasma: Potential Relevance to Cortico Subcortical Circuit Function. Int. J. Mol. Sci. 2025, 26, 10430. https://doi.org/10.3390/ijms262110430
Dietrich-Muszalska A, Kamiński P, Kontek B, Gorzelańczyk EJ. Curcumin as an Antioxidant Against Ziprasidone Induced Lipid Peroxidation in Human Plasma: Potential Relevance to Cortico Subcortical Circuit Function. International Journal of Molecular Sciences. 2025; 26(21):10430. https://doi.org/10.3390/ijms262110430
Chicago/Turabian StyleDietrich-Muszalska, Anna, Piotr Kamiński, Bogdan Kontek, and Edward Jacek Gorzelańczyk. 2025. "Curcumin as an Antioxidant Against Ziprasidone Induced Lipid Peroxidation in Human Plasma: Potential Relevance to Cortico Subcortical Circuit Function" International Journal of Molecular Sciences 26, no. 21: 10430. https://doi.org/10.3390/ijms262110430
APA StyleDietrich-Muszalska, A., Kamiński, P., Kontek, B., & Gorzelańczyk, E. J. (2025). Curcumin as an Antioxidant Against Ziprasidone Induced Lipid Peroxidation in Human Plasma: Potential Relevance to Cortico Subcortical Circuit Function. International Journal of Molecular Sciences, 26(21), 10430. https://doi.org/10.3390/ijms262110430

