Altered Cytokine Levels in the First Episode of Major Depression and in Antidepressant-Naïve Patients: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Definition of Study Group
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Risk of Bias
3.4. First Episode of Depression Versus Healthy Controls
3.4.1. IL-6
3.4.2. TNF-α
3.4.3. IL-2
3.4.4. IL-1β
3.4.5. IL-4
3.4.6. IL-8
3.4.7. Other Cytokines
3.5. Drug-Naïve Patients (DN) Versus Healthy Controls (HCs)
3.5.1. IL-6
3.5.2. TNF-α
3.5.3. IL-1β
3.5.4. TGF-β1
3.5.5. IL-4
3.5.6. IL-10
3.5.7. IFN-γ
3.5.8. IL-2
3.5.9. Other Cytokines
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 5-HT | Serotonin |
| ACTH | Adrenocorticotropic hormone |
| BDNF | Brain-derived neurotrophic factor |
| CRP | C-reactive protein |
| CSF | Cerebrospinal fluid |
| DN | Drug-naïve |
| DSM-5 | Diagnostic and Statistical Manual of Mental Disorders |
| ELISA | Enzyme-linked immunosorbent assay |
| FE | First-episode |
| GR | Glucocorticoid receptors |
| HAM-D | Hamilton Depression Rating Scale |
| HC | Healthy controls |
| HPA | Hypothalamic–pituitary–adrenal axis |
| ICD-10 | International Classification of Diseases, tenth revision |
| IDO | Indoleamine-2,3-dioxygenase |
| IFN-γ | Interferon γ |
| IL-1β | Interleukin 1β |
| IL-2 | Interleukin 2 |
| IL-3 | Interleukin 3 |
| IL-4 | Interleukin 4 |
| IL-5 | Interleukin 5 |
| IL-6 | Interleukin 6 |
| IL-7 | Interleukin 7 |
| IL-8 | Interleukin 8 |
| IL-10 | Interleukin 10 |
| IL-12 | Interleukin 12 |
| IL-17 | Interleukin 17 |
| IL-18 | Interleukin 18 |
| IQR | Interquartile ranges |
| MDD | Major depressive disorder |
| NOS | Newcastle–Ottawa Scale |
| PRISMA | Preferred reporting items for systematic review and meta-analysis |
| SMD | Standardized mean difference |
| TGF-β1 | Transforming growth factor β1 |
| TNF-α | Tumor necrosis factor α |
| TrkB | Tropomyosin receptor kinase B |
| WHO | World Health Organization |
References
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Bromet, E.J. The Epidemiology of Depression Across Cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Kupfer, D.J.; Frank, E.; Phillips, M.L. Major Depressive Disorder: New Clinical, Neurobiological, and Treatment Perspectives. Lancet 2012, 379, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Lépine, J.P.; Briley, M. The increasing burden of depression. Neuropsychiatr Dis Treat. 2011, 7, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, D.R.; Bekhbat, M.; Mehta, N.D.; Felger, J.C. Inflammation-Related Functional and Structural Dysconnectivity as a Pathway to Psychopathology. Biol. Psychiatry 2023, 93, 405–418. [Google Scholar] [CrossRef]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of Low-Grade Inflammation in Depression: A Systematic Review and Meta-Analysis of CRP Levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory Markers in Depression: A Meta-Analysis of Mean Differences and Variability in 5166 Patients and 5083 Controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef]
- Wang, A.K.; Miller, B.J. Meta-Analysis of Cerebrospinal Fluid Cytokine and Tryptophan Catabolite Alterations in Psychiatric Patients: Comparisons Between Schizophrenia, Bipolar Disorder, and Depression. Schizophr. Bull. 2018, 44, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Green, C.; Shen, X.; Stevenson, A.J.; Conole, E.L.S.; Harris, M.A.; Barbu, M.C.; Hawkins, E.L.; Adams, M.J.; Hillary, R.F.; Lawrie, S.M.; et al. Structural Brain Correlates of Serum and Epigenetic Markers of Inflammation in Major Depressive Disorder. Brain Behav. Immun. 2021, 92, 39–48. [Google Scholar] [CrossRef]
- Tartter, M.; Hammen, C.; Bower, J.E.; Brennan, P.A.; Cole, S. Effects of Chronic Interpersonal Stress Exposure on Depressive Symptoms Are Moderated by Genetic Variation at IL6 and IL1β in Youth. Brain Behav. Immun. 2015, 46, 104–111. [Google Scholar] [CrossRef]
- Udina, M.; Moreno-España, J.; Navinés, R.; Giménez, D.; Langohr, K.; Gratacòs, M.; Capuron, L.; de la Torre, R.; Solà, R.; Martín-Santos, R. Serotonin and Interleukin-6: The Role of Genetic Polymorphisms in IFN-Induced Neuropsychiatric Symptoms. Psychoneuroendocrinology 2013, 38, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Hassamal, S. Chronic Stress, Neuroinflammation, and Depression: An Overview of Pathophysiological Mechanisms and Emerging Anti-Inflammatories. Front. Psychiatry 2023, 14, 1130989. [Google Scholar] [CrossRef] [PubMed]
- Harsanyi, S.; Kupcova, I.; Danisovic, L.; Klein, M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int. J. Mol. Sci. 2022, 24, 578. [Google Scholar] [CrossRef] [PubMed]
- Eltokhi, A.; Sommer, I.E. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front. Neurosci. 2022, 16, 852506. [Google Scholar] [CrossRef]
- Belmaker, R.H.; Agam, G.; Bains, N.; Abdijadid, S. Major Depressive Disorder. N. Engl. J. Med. 2025, 358, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Wei, Y.B.; Strawbridge, R.; Bao, Y.; Chang, S.; Shi, L.; Que, J.; Gadad, B.S.; Trivedi, M.H.; Kelsoe, J.R.; et al. Peripheral Cytokine Levels and Response to Antidepressant Treatment in Depression: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2020, 25, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Sohan, M.; Daria, S.; Masud, A.A.; Ahmed, M.U.; Roy, A.; Shahriar, M. Evaluation of Inflammatory Cytokines in Drug-Naïve Major Depressive Disorder: A Systematic Review and Meta-Analysis. Int. J. Immunopathol. Pharmacol. 2023, 37, 03946320231198828. [Google Scholar] [CrossRef] [PubMed]
- Çakici, N.; Sutterland, A.L.; Penninx, B.; Dalm, V.A.; de Haan, L.; van Beveren, N.J.M. Altered Peripheral Blood Compounds in Drug-Naive First-Episode Patients with Either Schizophrenia or Major Depressive Disorder: A Meta-Analysis. Brain Behav. Immun. 2020, 88, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; White, I.R.; Anzures-Cabrera, J. Meta-Analysis of Skewed Data: Combining Results Reported on Log-Transformed or Raw Scales. Stat. Med. 2008, 27, 6072–6092. [Google Scholar] [CrossRef] [PubMed]
- University, H.K.B. Mean Variance Estimation Calculator. Available online: https://www.math.hkbu.edu.hk/~tongt/papers/median2mean.html (accessed on 31 March 2025).
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally Estimating the Sample Mean from the Sample Size, Median, Mid-Range, and/or Mid-Quartile Range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Sutcigil, L.; Oktenli, C.; Musabak, U.; Bozkurt, A.; Cansever, A.; Uzun, O.; Sanisoglu, S.Y.; Yesilova, Z.; Ozmenler, N.; Ozsahin, A.; et al. Pro- and Anti-Inflammatory Cytokine Balance in Major Depression: Effect of Sertraline Therapy. Clin. Dev. Immunol. 2007, 2007, 76396. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Chen, X.; Zhou, H.F.; Fu, J.H.; Yu, Q.; Liu, Y. Changes of Serum Melatonin, Interleukin-6, Homocysteine, and Complement C3 and C4 Levels in Patients with Depression. Front. Psychol. 2020, 11, 1271. [Google Scholar] [CrossRef]
- Mao, L.; Ren, X.; Wang, X.; Tian, F. Associations between Autoimmunity and Depression: Serum IL-6 and IL-17 Have Directly Impact on the HAMD Scores in Patients with First-Episode Depressive Disorder. J. Immunol. Res. 2022, 2022, 6724881. [Google Scholar] [CrossRef]
- Emekdar, G.; Tas, H.I.; Sehitoglu, H. Investigation of the Relationship between Inflammation and Oxidative Stress Markers and Treatment Response in First-Attack Major Depression Patients: A Follow-Up Study. Turk. Psikiyatr. Derg. 2023, 34, 89–99. [Google Scholar] [CrossRef]
- Xi, Y.Q.; Wang, Z.Q.; Li, G.J.; Hao, Z.Q.; Nie, J.H.; Li, J.X.; Tan, Y.T.; Hu, X.D.; Wang, G.W.; Liu, S.; et al. Association of Inflammation Cytokines with Cognitive Function in First-Episode Major Depressive Disorder. Front. Psychiatry 2025, 15, 1473418. [Google Scholar] [CrossRef]
- Nishuty, N.L.; Khandoker, M.M.H.; Karmoker, T.R.; Ferdous, S.; Shahriar, M.; Qusar, M.; Islam, M.S.; Kadir, M.F.; Islam, M.R. Evaluation of Serum Interleukin-6 and C-Reactive Protein Levels in Drug-Naive Major Depressive Disorder Patients. Cureus J. Med. Sci. 2019, 11, e3868. [Google Scholar] [CrossRef] [PubMed]
- Twayej, A.J.; Al-Hakeim, H.K.; Al-Dujaili, A.H.; Maes, M. Lowered Zinc and Copper Levels in Drug-Naive Patients with Major Depression: Effects of Antidepressants, Ketoprofen and Immune Activation. World J. Biol. Psychiatry 2020, 21, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakeim, H.K.; Twayej, A.J.; Al-Dujaili, A.H.; Maes, M. Plasma Indoleamine-2,3-Dioxygenase (IDO) Is Increased in Drug-Naive Major Depressed Patients and Treatment with Sertraline and Ketoprofen Normalizes IDO in Association with Pro-Inflammatory and Immune-Regulatory Cytokines. CNS Neurol. Disord.-Drug Targets 2020, 19, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.H.; Chang, K.A. Sex Difference in Peripheral Inflammatory Biomarkers in Drug-Naive Patients with Major Depression in Young Adulthood. Biomedicines 2021, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Liu, H.Y.; Chen, L.X.; Zhao, K.; Zhang, Y.Y.; Zheng, K.; Zhu, C.; Zheng, T.S.; Liu, J.H.; Wang, D.D.; et al. Inflammatory Cytokines, Complement Factor H and Anhedonia in Drug-Naive Major Depressive Disorder. Brain Behav. Immun. 2021, 95, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.P.; Zeng, X.L.; Zhou, S.J.; Gu, Z.W.; Pan, J.Y. Correlation Between Serum High-Sensitivity C-Reactive Protein, Tumor Necrosis Factor-Alpha, Serum Interleukin-6 and White Matter Integrity Before and After the Treatment of Drug-Naive Patients with Major Depressive Disorder. Front. Neurosci. 2022, 16, 948637. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Xie, J.; Yang, Y.; Li, M.J.; Li, G.; Zhang, X.; Li, J. The Relationship Between Plasma Interleukin-6 and Cognition Based on Curve Correlation in Drug-Naïve Patients with Major Depressive Disorder. J. Affect. Disord. 2025, 369, 211–217. [Google Scholar] [CrossRef]
- Zou, W.; Feng, R.J.; Yang, Y. Changes in the Serum Levels of Inflammatory Cytokines in Antidepressant Drug-Naïve Patients with Major Depression. PLoS ONE 2018, 13, e0197267. [Google Scholar] [CrossRef]
- Muthuramalingam, A.; Menon, V.; Rajkumar, R.P.; Negi, V. Is Depression an Inflammatory Disease? Findings from a Cross-Sectional Study at a Tertiary Care Center. Indian J. Psychol. Med. 2016, 38, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Jeenger, J.; Singroha, V.; Sharma, M.; Mathur, D.M. C-Reactive Protein, Brain-Derived Neurotrophic Factor, Interleukin-2, and Stressful Life Events in Drug-Naive First-Episode and Recurrent Depression: A Cross-Sectional Study. Indian. J. Psychiatry 2018, 60, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.F.; Zhou, Y.L.; Wu, F.C.; Wu, K.; Zhan, Y.N.; Wang, C.Y.; Zheng, W.; Yu, M.; Deng, X.R.; Ning, Y.P. The Relationship between Plasma Cytokine Levels and Antidepressant Response in Patients with First-Episode Major Depressive Disorder. J. Affect. Disord. 2021, 287, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.C.; Liu, M.N.; Liou, Y.J.; Hu, L.Y.; Yang, B.H.; Chou, Y.H. Interleukin-1 Family and Serotonin Transporter in First-Episode, Drug-Naive Major Depressive Disorder: A Pilot Study. J. Psychiatr. Res. 2021, 135, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Sowa-Kućma, M.; Legutko, B.; Szewczyk, B.; Novak, K.; Znojek, P.; Poleszak, E.; Papp, M.; Pilc, A.; Nowak, G. Antidepressant-like Activity of Zinc: Further Behavioral and Molecular Evidence. J. Neural Transm. 2008, 115, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.A.; Freitas, T.H.; Stubbs, B.; Maes, M.; Solmi, M.; Veronese, N.; de Andrade, N.Q.; Morris, G.; Fernandes, B.S.; Brunoni, A.R.; et al. Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Mol. Neurobiol. 2018, 55, 4195–4206. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Carvalho, A.F. The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder. Mol. Neurobiol. 2018, 55, 8885–8903. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral Cytokine and Chemokine Alterations in Depression: A Meta-Analysis of 82 Studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H. Advancing an Inflammatory Subtype of Major Depression. Am. J. Psychiatry 2025, 182, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Molero, P.; De Lorenzi, F.; Gędek, A.; Strater, C.; Popescu, E.; Ortuño, F.; Van Der Does, W.; Martínez-González, M.A.; Molendijk, M.L. Diet Quality and Depression Risk: A Systematic Review and Meta-Analysis of Prospective Studies. J. Affect. Disord. 2025, 382, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Dou, Y.; Wang, M.; Wang, Y.; Yan, Y.; Fan, H.; Fan, N.; Yang, X.; Ma, X. Efficacy and Acceptability of Anti-Inflammatory Agents in Major Depressive Disorder: A Systematic Review and Meta-Analysis. Front. Psychiatry 2024, 15, 1407529. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, W.; Yang, Y. Effects of IL-6 and Cortisol Fluctuations in Post-Stroke Depression. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2016, 36, 732–735. [Google Scholar] [CrossRef]
- Fan, N.; Luo, Y.; Ou, Y.; He, H. Altered Serum Levels of TNF-α, IL-6, and IL-18 in Depressive Disorder Patients. Hum. Psychopharmacol. 2017, 32, e2588. [Google Scholar] [CrossRef]
- Ye, G.; Yin, G.Z.; Tang, Z.; Fu, J.L.; Chen, J.; Chen, S.S.; Li, J.; Fu, T.; Yu, X.; Xu, D.W.; et al. Association between Increased Serum Interleukin-6 Levels and Sustained Attention Deficits in Patients with Major Depressive Disorder. Psychol. Med. 2018, 48, 2508–2514. [Google Scholar] [CrossRef]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Cumulative Meta-Analysis of Interleukins 6 and 1β, Tumour Necrosis Factor α and C-Reactive Protein in Patients with Major Depressive Disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef]
- Maes, M.; Meltzer, H.Y.; Bosmans, E.; Bergmans, R.; Vandoolaeghe, E.; Ranjan, R.; Desnyder, R. Increased Plasma Concentrations of Interleukin-6, Soluble Interleukin-6, Soluble Interleukin-2 and Transferrin Receptor in Major Depression. J. Affect. Disord. 1995, 34, 301–309. [Google Scholar] [CrossRef]
- Maes, M.; Bosmans, E.; De Jongh, R.; Kenis, G.; Vandoolaeghe, E.; Neels, H. INCREASED SERUM IL-6 AND IL-1 RECEPTOR ANTAGONIST CONCENTRATIONS IN MAJOR DEPRESSION AND TREATMENT RESISTANT DEPRESSION. Cytokine 1997, 9, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Kakeda, S.; Watanabe, K.; Katsuki, A.; Sugimoto, K.; Igata, N.; Ueda, I.; Igata, R.; Abe, O.; Yoshimura, R.; Korogi, Y. Relationship between Interleukin (IL)-6 and Brain Morphology in Drug-Naive, First-Episode Major Depressive Disorder Using Surface-Based Morphometry. Sci. Rep. 2018, 8, 10054. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jinxiang, T.; Shu, Y.; Yadong, P.; Ying, L.; Meng, Y.; Ping, Z.; Xiao, H.; Yixiao, F. Childhood Trauma and the Plasma Levels of IL-6, TNF-α Are Risk Factors for Major Depressive Disorder and Schizophrenia in Adolescents: A Cross-Sectional and Case-Control Study. J. Affect. Disord. 2022, 305, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Lavebratt, C.; Herring, M.P.; Liu, J.J.; Wei, Y.B.; Bossoli, D.; Hallgren, M.; Forsell, Y. Interleukin-6 and Depressive Symptom Severity in Response to Physical Exercise. Psychiatry Res. 2017, 252, 270–276. [Google Scholar] [CrossRef]
- Karlović, D.; Serretti, A.; Vrkić, N.; Martinac, M.; Marčinko, D. Serum Concentrations of CRP, IL-6, TNF-α and Cortisol in Major Depressive Disorder with Melancholic or Atypical Features. Psychiatry Res. 2012, 198, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Hannestad, J.; DellaGioia, N.; Bloch, M. The Effect of Antidepressant Medication Treatment on Serum Levels of Inflammatory Cytokines: A Meta-Analysis. Neuropsychopharmacology 2011, 36, 2452–2459. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Yang, N.; Du, J.; Liu, P.; Dai, W.; Dong, Q. Differences Between Adolescent Depression and Healthy Controls in Biomarkers Associated with Immune or Inflammatory Processes: A Systematic Review and Meta-Analysis. Psychiatry Investig. 2025, 22, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, K.K.; Daouk, J.; Kurkinen, K.; Kraav, S.L.; Eriksson, P.; Tolmunen, T.; Kanninen, K.M. Blood Cytokines in Major Depressive Disorder in Drug-Naïve Adolescents: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2025, 372, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Suhee, F.I.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Elevated Serum IL-2 Levels Are Associated with Major Depressive Disorder: A Case-Control Study. Clin. Pathol. 2023, 16, 2632010X231180797. [Google Scholar] [CrossRef]
- Tian, X.; Dong, Y.Q.; Yuan, J.Y.; Gao, Y.; Zhang, C.H.; Li, M.J.; Li, J. Association between Peripheral Plasma Cytokine Levels and Suicidal Ideation in First-Episode, Drug-Naïve Major Depressive Disorder. Psychoneuroendocrinology 2024, 165, 107042. [Google Scholar] [CrossRef]
- Himmerich, H.; Patsalos, O.; Lichtblau, N.; Ibrahim, M.A.A.; Dalton, B. Cytokine Research in Depression: Principles, Challenges, and Open Questions. Front. Psychiatry 2019, 10, 30. [Google Scholar] [CrossRef]
- Sarmin, N.; Roknuzzaman, A.S.M.; Mouree, T.Z.; Islam, M.R.; Al Mahmud, Z. Evaluation of Serum Interleukin-12 and Interleukin-4 as Potential Biomarkers for the Diagnosis of Major Depressive Disorder. Sci. Rep. 2024, 14, 1652. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Qusar, M.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Altered Serum Interleukin-7 and Interleukin-10 Are Associated with Drug-Free Major Depressive Disorder. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320916655. [Google Scholar] [CrossRef] [PubMed]
- Gazal, M.; Jansen, K.; Souza, L.D.; Oses, J.P.; Magalhães, P.V.; Pinheiro, R.; Ghisleni, G.; Quevedo, L.; Kaster, M.P.; Kapczinski, F.; et al. Association of Interleukin-10 Levels with Age of Onset and Duration of Illness in Patients with Major Depressive Disorder. Braz. J. Psychiatry 2015, 37, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.; Ormstad, H.; Aass, H.C.D.; Malt, U.F.; Bendz, L.T.; Sandvik, L.; Brundin, L.; Andreassen, O.A. The Plasma Levels of Various Cytokines Are Increased during Ongoing Depression and Are Reduced to Normal Levels after Recovery. Psychoneuroendocrinology 2014, 45, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Daria, S.; Proma, M.A.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Serum Interferon-Gamma Level Is Associated with Drug-Naive Major Depressive Disorder. SAGE Open Med. 2020, 8, 2050312120974169. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.; Tam, W.W.; Zhang, M.W.; Ho, C.S.; Husain, S.F.; McIntyre, R.S.; Ho, R.C. IL-1β, IL-6, TNF-α and CRP in Elderly Patients with Depression or Alzheimer’s Disease: Systematic Review and Meta-Analysis. Sci. Rep. 2018, 8, 12050. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Kim, Y.-K. Transforming Growth Factor-Β1 and Major Depressive Disorder with and without Attempted Suicide: Preliminary Study. Psychiatry Res. 2010, 178, 92–96. [Google Scholar] [CrossRef]
- Elgellaie, A.; Thomas, S.J.; Kaelle, J.; Bartschi, J.; Larkin, T. Pro-Inflammatory Cytokines IL-1α, IL-6 and TNF-α in Major Depressive Disorder: Sex-Specific Associations with Psychological Symptoms. Eur. J. Neurosci. 2023, 57, 1913–1928. [Google Scholar] [CrossRef]
- Yin, M.; Zhou, H.; Li, J.; Wang, L.; Zhu, M.; Wang, N.; Yang, P.; Yang, Z. The Change of Inflammatory Cytokines after Antidepressant Treatment and Correlation with Depressive Symptoms. J. Psychiatr. Res. 2025, 184, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Gędek, A.; Szular, Z.; Antosik, A.Z.; Mierzejewski, P.; Dominiak, M. Celecoxib for Mood Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 3497. [Google Scholar] [CrossRef]
- Dominiak, M.; Gędek, A.; Sikorska, M.; Mierzejewski, P.; Wojnar, M.; Antosik-Wójcińska, A.Z. Acetylsalicylic Acid and Mood Disorders: A Systematic Review. Pharmaceuticals 2022, 16, 67. [Google Scholar] [CrossRef]
- Kappelmann, N.; Lewis, G.; Dantzer, R.; Jones, P.B.; Khandaker, G.M. Antidepressant Activity of Anti-Cytokine Treatment: A Systematic Review and Meta-Analysis of Clinical Trials of Chronic Inflammatory Conditions. Mol. Psychiatry 2018, 23, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Bosmans, E.; Suy, E.; Vandervorst, C.; DeJonckheere, C.; Raus, J. Depression-Related Disturbances in Mitogen-Induced Lymphocyte Responses and Interleukin-1β and Soluble Interleukin-2 Receptor Production. Acta Psychiatr. Scand. 1991, 84, 379–386. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Scott, L.V.; Dinan, T.G. Cytokines: Abnormalities in Major Depression and Implications for Pharmacological Treatment. Hum. Psychopharmacol. Clin. Exp. 2004, 19, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.; Mathias, C. Inflammation and Its Relevance to Psychiatry. Adv. Psychiatr. Treat. 2008, 14, 248–255. [Google Scholar] [CrossRef]
- de Kloet, E.R.; Vreugdenhil, E.; Oitzl, M.S.; Joёls, M. Brain Corticosteroid Receptor Balance in Health and Disease. Endocr. Rev. 1998, 19, 269–301. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M.; Lightman, S.L. The HPA Axis in Major Depression: Classical Theories and New Developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Stetler, C.; Miller, G.E. Depression and Hypothalamic-Pituitary-Adrenal Activation: A Quantitative Summary of Four Decades of Research. Biopsychosoc. Sci. Med. 2011, 73, 114–126. [Google Scholar] [CrossRef]
- Connor, T.J.; Starr, N.; O’Sullivan, J.B.; Harkin, A. Induction of Indolamine 2,3-Dioxygenase and Kynurenine 3-Monooxygenase in Rat Brain Following a Systemic Inflammatory Challenge: A Role for IFN-Gamma? Neurosci. Lett. 2008, 441, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Galecki, P.; Verkerk, R.; Rief, W. Somatization, but Not Depression, Is Characterized by Disorders in the Tryptophan Catabolite (TRYCAT) Pathway, Indicating Increased Indoleamine 2,3-Dioxygenase and Lowered Kynurenine Aminotransferase Activity. Neuro Endocrinol. Lett. 2011, 32, 264–273. [Google Scholar] [PubMed]
- Lichtblau, N.; Schmidt, F.M.; Schumann, R.; Kirkby, K.C.; Himmerich, H. Cytokines as Biomarkers in Depressive Disorder: Current Standing and Prospects. Int. Rev. Psychiatry 2013, 25, 592–603. [Google Scholar] [CrossRef]
- Mechawar, N.; Savitz, J. Neuropathology of Mood Disorders: Do We See the Stigmata of Inflammation? Transl. Psychiatry 2016, 6, e946. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, W.; Liu, W.; Wang, C.; Zhan, Y.; Li, H.; Chen, L.; Ning, Y. Cross-Sectional Relationship between Kynurenine Pathway Metabolites and Cognitive Function in Major Depressive Disorder. Psychoneuroendocrinology 2019, 101, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Nava, R.G.; Adri, A.S.; Filgueiras, I.S.; Nóbile, A.L.; Barcelos, P.M.; Corrêa, Y.L.G.; de Oliveira, S.F.; Cabral-Miranda, G.; Dias, H.D.; Schimke, L.F.; et al. Modulation of Neuroimmune Cytokine Networks by Antidepressants: Implications in Mood Regulation. Transl. Psychiatry 2025, 15, 314. [Google Scholar] [CrossRef] [PubMed]






| Author, Year, Country | Population, Diagnosis, Number of Patients | FE or DN | Cytokines and Sample Sources | Matched for Age and Sex | Sample Source and Units | Results |
|---|---|---|---|---|---|---|
| Sutcigil et al., 2007 [26], Turkey | Adults, MDD: n = 23 HCs: n = 25 | FE | IL-2, IL-4, TNF-α, IL-12, TGF-β1 | Yes | Plasma, pg/mL, mean | IL-4 and TGF-β1 were lower in the MDD group, whereas IL-2, IL-12, and TNF-α were higher (for all, p < 0.001). |
| Muthura-malingam et al., 2016 [39], India | Adults, MDD: n = 55 HCs: n = 42 | DN | TNF-α, IL-6, TGF-β1 | Yes | Blood, no info, median | TNF-α and IL-6 were significantly higher in the MDD group (for both, p < 0.001), while TGF-β1 was not (p > 0.05). |
| Zou et al., 2018 [38], China | Adults, MDD: n = 117 HCs: n = 102 | DN | IL-1β, IL-6, IL-8, TNF-α, IL-10, TGF-β1 | Yes | Serum, pg/mL, mean | IL-1β, IL-10, and TNF-α were significantly higher in the MDD group (for all, p < 0.01). IL-8 was significantly lower (p < 0.01). No difference in IL-6 or TGF-β1 was observed (for both, p > 0.05). |
| Jeenger et al., 2018 [40], India | Adults, MDD: n = 52 HCs: n = 50 | FE and DN | IL-2 | Yes | Serum, pg/mL, mean | IL-2 was higher in FE DN MDD patients (p = 0.008). |
| Nishuty et al., 2019 [31], Bangladesh | Adults, MDD: n = 88 HCs: n = 86 | DN | IL-6 | Yes | Serum, pg/mL, mean | IL-6 was significantly higher in the MDD group (p < 0.001). |
| Tao et al., 2020 [27], China | Adults, MDD: n = 43 HCs: n = 45 | FE | IL-6 | Yes | Serum, pg/mL, mean | IL-6 was higher in DN MDD patients (p = 0.027). |
| Twayej et al., 2020 [32], Iraq | Adults, MDD: n = 133 HCs: n = 40 | DN | IL-1β, IL-4, IL-6, IL-18, IFN-γ, TGF-β1 | Yes | Serum, pg/mL, mean (logarithm) | IL-1β, IL-4, IL-6, IL-18, IFN-γ, and TGFβ1 were higher in MDD patients (for all, p ≤ 0.001). |
| Al.-Hakeim et al., 2020b [33], Iraq | Adults, MDD: n = 140 HCs: n = 40 | DN | IFN-γ, TGF-β1, IL-4 | Yes | Serum, pg/mL, mean (logarithm) | IFN-γ, TGF-β1, and IL-4 were higher in MDD patients (for all, p < 0.001). |
| Lan et al., 2021 [41], China | Adults, MDD: n = 54 HCs: n = 60 | FE and DN | IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, TNF-α, IFN-γ | Yes | Plasma, pg/mL, mean (logarithm) | IL-2, IL-5, IL-6, IL-7, IL-10, IFN-γ (for all, p < 0.001), TNF-α (p = 0.002), and IL-1β (p = 0.001) were higher in the MDD group. There was no difference in IL-4 or IL-8 (for both, p > 0.05). |
| Kim et al., 2021 [34], Korea | Adults, MDD: n = 50 HCs: n = 50 | DN | IL-1β, IL-6, TNF-α, IL-17 | Yes | Serum, pg/mL, mean | IL-1β and IL-17 were significantly higher in the MDD group (p < 0.01); (p = 0.0042). There was no difference for IL-6 and TNF-α (for both, p > 0.05). |
| Yang et al., 2021 [42], Taiwan | Adults, MDD: n = 34 HCs: n = 34 | FE and DN | IL-1β | Yes | Plasma, pg/mL, mean | IL-1β was lower in the MDD group (p = 0.001). |
| Tang et al., 2021 [35], China | Adults, MDD: n = 139 HCs: n = 76 | DN | IL-6, IL10, TNF-α | Yes | Plasma, pg/mL, mean | IL-10 and TNF-α were higher in the MDD group (for all, p < 0.001). There was no difference for IL-6 (p > 0.05). |
| Mao et al., 2022 [28], China | Adults, MDD: n = 40 HCs: n = 40 | FE | IL-6, IL-17 | Yes | Serum, pg/mL, mean | IL-6 and IL-17 were significantly higher in the MDD group (for both, p < 0.001). |
| Chen et al., 2022 [36], China | Adults, MDD: n = 29 HCs: n = 25 | DN | IL-6, TNF-α | Yes | Plasma, pg/mL, mean | IL-6 and TNF-α did not differ significantly between groups (for both, p > 0.05). |
| Emekdar et al., 2023 [29], Turkey | Adults, MDD: n = 30 HCs: n = 30 | FE | IL-6, TNF-α | No | Serum, ng/L, median | IL-6 was higher in the MDD group (p = 0.015). There was no difference in TNF-α between the groups (p > 0.05). |
| Xi et al., 2025 [30], China | Adults, MDD: n = 22 HCs: n = 27 | FE | IL-6, TNF-α | Yes | Serum, pg/mL, median | IL-6 and TNF-α were higher in the MDD group (p = 0.008; p = 0.001). |
| Wang et al., 2025 [37], China | Adults, MDD: n = 237 HCs: n = 89 | DN | IL-6 | No | Plasma, pg/mL, median | IL-6 levels were significantly higher in MDD patients (p < 0.001). |
| Studies | Selection | Comparability | Exposure | Total | |||||
|---|---|---|---|---|---|---|---|---|---|
| Is the Case Definition Adequate? | Representativeness of the Cases | Selection of Controls | Definition of Controls | Comparability of Cases and Controls on the Basis of the Design or Analysis | Assessment of Exposure | Same Method of Ascertainment for Cases and Controls | Non-Response Rate | ||
| Sutcigil et al., 2007 [26], Turkey | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
| Muthura-malingam et al., 2016 [39], India | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 6 |
| Zou et al., 2018 [38], China | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Jeenger et al., 2018 [40], India | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
| Nishuty et al., 2019 [31], Bangladesh | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Tao et al., 2020 [27], China | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
| Twayej et al., 2020 [32], Iraq | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Al.-Hakeim et al., 2020b [33], Iraq | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Lan et al., 2021 [41], China | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Kim et al., 2021 [34], Korea | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Yang et al., 2021 [42], Taiwan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 |
| Tang et al., 2021 [35], China | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Mao et al., 2022 [28], China | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Chen et al., 2022 [36], China | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Emekdar et al., 2023 [29], Turkey | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 6 |
| Xi et al., 2025 [30], China | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 |
| Wang et al., 2025 [37], China | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gędek, A.; Modrzejewski, S.; Materna, M.; Iwański, M.; Wichniak, A.; Dominiak, M. Altered Cytokine Levels in the First Episode of Major Depression and in Antidepressant-Naïve Patients: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 10362. https://doi.org/10.3390/ijms262110362
Gędek A, Modrzejewski S, Materna M, Iwański M, Wichniak A, Dominiak M. Altered Cytokine Levels in the First Episode of Major Depression and in Antidepressant-Naïve Patients: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2025; 26(21):10362. https://doi.org/10.3390/ijms262110362
Chicago/Turabian StyleGędek, Adam, Szymon Modrzejewski, Michał Materna, Marcin Iwański, Adam Wichniak, and Monika Dominiak. 2025. "Altered Cytokine Levels in the First Episode of Major Depression and in Antidepressant-Naïve Patients: A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 26, no. 21: 10362. https://doi.org/10.3390/ijms262110362
APA StyleGędek, A., Modrzejewski, S., Materna, M., Iwański, M., Wichniak, A., & Dominiak, M. (2025). Altered Cytokine Levels in the First Episode of Major Depression and in Antidepressant-Naïve Patients: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 26(21), 10362. https://doi.org/10.3390/ijms262110362

