Roles of Selected Bioactive Compounds in Inhibiting the Development and Progression of Cancer—A Review
Abstract
1. Introduction
2. Effects of Selected Bioactive Compounds on Modulation of Tumour Proliferation and Inflammatory Processes
2.1. In Vitro Studies
2.1.1. Berberine (BBR)
2.1.2. Curcumin
2.1.3. Quercetin (QCT)
2.1.4. Resveratrol
2.1.5. Lycopene (LycT)
2.2. In Vivo Studies (Animal Models)
2.2.1. Berberine (BBR)
2.2.2. Curcumin
2.2.3. Quercetin (QCT)
2.2.4. Lycopene (LycT)
2.2.5. Resveratrol
2.3. In Vivo Studies Involving Humans
2.3.1. Curcumin
2.3.2. Berberine (BBR)
2.3.3. Lycopene (LycT)
2.3.4. Quercetin (QCT) and Resveratrol
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Fan, Y.; Mao, R.; Yang, J. NF-ΚB and STAT3 Signaling Pathways Collaboratively Link Inflammation to Cancer. Protein Cell 2013, 4, 176–185. [Google Scholar] [CrossRef]
- Akkız, H.; Şimşek, H.; Balcı, D.; Ülger, Y.; Onan, E.; Akçaer, N.; Delik, A. Inflammation and Cancer: Molecular Mechanisms and Clinical Consequences. Front. Oncol. 2025, 15, 1564572. [Google Scholar] [CrossRef]
- Bojková, B.; Winklewski, P.J.; Wszedybyl-Winklewska, M. Dietary Fat and Cancer—Which Is Good, Which Is Bad, and the Body of Evidence. Int. J. Mol. Sci. 2020, 21, 4114. [Google Scholar] [CrossRef] [PubMed]
- Mosoh, D.A.; Mosoh, D.A. Recent Advances in Phytochemical Research for Cancer Treatment; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020, 25, 5319. [Google Scholar] [CrossRef]
- Wu, X.; Li, M.; Xiao, Z.; Daglia, M.; Dragan, S.; Delmas, D.; Vong, C.T.; Wang, Y.; Zhao, Y.; Shen, J.; et al. Dietary Polyphenols for Managing Cancers: What Have We Ignored? Trends Food Sci. Technol. 2020, 101, 150–164. [Google Scholar] [CrossRef]
- Delgado-Gonzalez, P.; Garza-Treviño, E.N.; De La, G.; Kalife, D.A.; Quiroz, R.; Hernández-Tobías, A.; Bioactive, E.A.; Delgado-Gonzalez, P.; Garza-Treviño, E.N.; De La Garza Kalife, D.A.; et al. Bioactive Compounds of Dietary Origin and Their Influence on Colorectal Cancer as Chemoprevention. Life 2023, 13, 1977. [Google Scholar] [CrossRef]
- Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Ummul Maqsummiya, Z.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Plant-Derived Bioactive Compounds in Colon Cancer Treatment: An Updated Review. Biomed. Pharmacother. 2022, 153, 113384. [Google Scholar] [CrossRef] [PubMed]
- Auti, A.; Tathode, M.; Marino, M.M.; Vitiello, A.; Ballini, A.; Miele, F.; Mazzone, V.; Ambrosino, A.; Boccellino, M. Nature’s Weapons: Bioactive Compounds as Anti-Cancer Agents. AIMS Public Health 2024, 11, 747–772. [Google Scholar] [CrossRef]
- Yudaev, P.; Aleksandrova, Y.; Neganova, M. Recent Insights into the Creation of Histone Deacetylase Inhibitors for the Treatment of Human Diseases. Int. J. Mol. Sci. 2025, 26, 8629. [Google Scholar] [CrossRef]
- Hui, Z.; Wen, H.; Zhu, J.; Deng, H.; Jiang, X.; Ye, X.Y.; Wang, L.; Xie, T.; Bai, R. Discovery of Plant-Derived Anti-Tumor Natural Products: Potential Leads for Anti-Tumor Drug Discovery. Bioorg. Chem. 2024, 142, 106957. [Google Scholar] [CrossRef]
- Yudaev, P.; Tupikov, A.; Chistyakov, E. Organocyclophosphazenes and Materials Based on Them for Pharmaceuticals and Biomedicine. Biomolecules 2025, 15, 262. [Google Scholar] [CrossRef]
- Dogra, A.; Kumar, J. Biosynthesis of Anticancer Phytochemical Compounds and Their Chemistry. Front. Pharmacol. 2023, 14, 1136779. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Jamroży, M.; Krzan, M. Biomaterials in Drug Delivery: Advancements in Cancer and Diverse Therapies—Review. Int. J. Mol. Sci. 2024, 25, 3126. [Google Scholar] [CrossRef]
- Castañeda, A.M.; Meléndez, C.M.; Uribe, D.; Pedroza-Díaz, J. Synergistic Effects of Natural Compounds and Conventional Chemotherapeutic Agents: Recent Insights for the Development of Cancer Treatment Strategies. Heliyon 2022, 8, e09519. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, M.; Cao, H.; Du, X.; Zhang, X.; Wang, J.; Bi, X. Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs. Pharmaceuticals 2023, 16, 1734. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Xie, H.; Shen, W.; Shao, L.; Zeng, L.; Huang, X.; Zhu, Q.; Zhai, X.; Li, K.; Qiu, Z.; et al. The Synergism of Natural Compounds and Conventional Therapeutics against Colorectal Cancer Progression and Metastasis. Front. Biosci. 2022, 27, 263. [Google Scholar] [CrossRef]
- Xu, J.; Long, Y.; Ni, L.; Yuan, X.; Yu, N.; Wu, R.; Tao, J.; Zhang, Y. Anticancer Effect of Berberine Based on Experimental Animal Models of Various Cancers: A Systematic Review and Meta-Analysis. BMC Cancer 2019, 19, 589. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, N.; Chai, Y.; Nie, Y.; Liu, K.; Liu, Y.; Yang, Y.; Su, J.; Zhang, C. Apoptosis Induction, a Sharp Edge of Berberine to Exert Anti-Cancer Effects, Focus on Breast, Lung, and Liver Cancer. Front. Pharmacol. 2022, 13, 803717. [Google Scholar] [CrossRef] [PubMed]
- Jabbarzadeh Kaboli, P.; Leong, M.P.Y.; Ismail, P.; Ling, K.H. Antitumor Effects of Berberine against EGFR, ERK1/2, P38 and AKT in MDA-MB231 and MCF-7 Breast Cancer Cells Using Molecular Modelling and in Vitro Study. Pharmacol. Rep. 2019, 71, 13–23. [Google Scholar] [CrossRef]
- Samad, M.A.; Saiman, M.Z.; Abdul Majid, N.; Yaacob, J.S.; Karsani, S.A. Berberine Inhibits Telomerase Activity and Induces Cell Cycle Arrest and Telomere Erosion in Colorectal Cancer Cell Line, HCT 116. Molecules 2021, 26, 376. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, W.; Li, Y.; Xian, X.; Zhao, Z.; Liu, C.; Zou, J.; Li, J.; Fang, X.; Zhu, Y. Berberine Suppresses Colon Cancer Cell Proliferation by Inhibiting the SCAP/SREBP-1 Signaling Pathway-Mediated Lipogenesis. Biochem. Pharmacol. 2020, 174, 113776. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, K.; Du, G.; Wang, J.; Zhao, J. Berberine Enhances the Radiosensitivity of Osteosarcoma by Targeting Rad51 and Epithelial-Mesenchymal Transition. J. Cancer Res. Ther. 2020, 16, 215–221. [Google Scholar] [CrossRef]
- Wang, N.; Feng, Y.; Zhu, M.; Tsang, C.M.; Man, K.; Tong, Y.; Tsao, S.W. Berberine Induces Autophagic Cell Death and Mitochondrial Apoptosis in Liver Cancer Cells: The Cellular Mechanism. J. Cell Biochem. 2010, 111, 1426–1436. [Google Scholar] [CrossRef]
- Han, B.; Wang, K.; Tu, Y.; Tan, L.; He, C. Low-Dose Berberine Attenuates the Anti-Breast Cancer Activity of Chemotherapeutic Agents via Induction of Autophagy and Antioxidation. Dose Response 2020, 18, 1559325820939751. [Google Scholar] [CrossRef]
- Xu, M.; Ren, L.; Fan, J.; Huang, L.; Zhou, L.; Li, X.; Ye, X. Berberine Inhibits Gastric Cancer Development and Progression by Regulating the JAK2/STAT3 Pathway and Downregulating IL-6. Life Sci. 2022, 290, 120266. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Banerjee, S.; Chakraborty, T. Vanadium Quercetin Complex Attenuates Mammary Cancer by Regulating the P53, Akt/MTOR Pathway and Downregulates Cellular Proliferation Correlated with Increased Apoptotic Events. BioMetals 2018, 31, 647–671. [Google Scholar] [CrossRef]
- Ávila-Gálvez, M.Á.; González-Sarrías, A.; Martínez-Díaz, F.; Abellán, B.; Martínez-Torrano, A.J.; Fernández-López, A.J.; Giménez-Bastida, J.A.; Espín, J.C. Disposition of Dietary Polyphenols in Breast Cancer Patients’ Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol. Nutr. Food Res. 2021, 65, 2100163. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hang, Y.; Liu, J.; Hou, Y.; Wang, N.; Wang, M. Anticancer Effect of Curcumin Inhibits Cell Growth through MiR-21/PTEN/Akt Pathway in Breast Cancer Cell. Oncol. Lett. 2017, 13, 4825–4831. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gao, S.; Yang, Y.; Zhao, X.; Fan, Y.; Ma, W.; Yang, D.; Yang, A.; Yu, Y. Antitumor Activity of Curcumin by Modulation of Apoptosis and Autophagy in Human Lung Cancer A549 Cells through Inhibiting PI3K/Akt/MTOR Pathway. Oncol. Rep. 2018, 39, 1523–1531. [Google Scholar] [CrossRef]
- Deng, L.; Wu, X.; Zhu, X.; Yu, Z.; Liu, Z.; Wang, J.; Zheng, Y. Combination Effect of Curcumin with Docetaxel on the PI3K/AKT/MTOR Pathway to Induce Autophagy and Apoptosis in Esophageal Squamous Cell Carcinoma. Am. J. Transl. Res. 2021, 13, 57. [Google Scholar] [PubMed]
- Ma, X.; Sun, X.; Wang, R.; Guo, Y.; Xu, M. Effects of Curcumin on 5-Fluorouracil Resistance of Colon Cancer Cells through the PI3K/AKT/MTOR Pathway via MACC1. Eur. J. Integr. Med. 2022, 56, 102202. [Google Scholar] [CrossRef]
- Lim, T.G.; Lee, S.Y.; Huang, Z.; Lim, D.Y.; Chen, H.; Jung, S.K.; Bode, A.M.; Lee, K.W.; Dong, Z. Curcumin Suppresses Proliferation of Colon Cancer Cells by Targeting CDK2. Cancer Prev. Res. 2014, 7, 466–474. [Google Scholar] [CrossRef]
- Lim, W.; Yang, C.; Park, S.; Bazer, F.W.; Song, G. Inhibitory Effects of Quercetin on Progression of Human Choriocarcinoma Cells Are Mediated Through PI3K/AKT and MAPK Signal Transduction Cascades. J. Cell Physiol. 2017, 232, 1428–1440. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jiang, Y.; Shi, L.; Du, L.; Xu, X.; Wang, E.; Sun, Y.; Guo, X.; Zou, B.; Wang, H.; et al. 7-O-Geranylquercetin Induces Apoptosis in Gastric Cancer Cells via ROS-MAPK Mediated Mitochondrial Signaling Pathway Activation. Biomed. Pharmacother. 2017, 87, 527–538. [Google Scholar] [CrossRef]
- Tubtimsri, S.; Chuenbarn, T.; Manmuan, S. Quercetin Triggers Cell Apoptosis-Associated ROS-Mediated Cell Death and Induces S and G2/M-Phase Cell Cycle Arrest in KON Oral Cancer Cells. BMC Complement. Med. Ther. 2025, 25, 34, 1–25. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M. Antitumor Effect of Quercetin on Y79 Retinoblastoma Cells via Activation of JNK and P38 MAPK Pathways. BMC Complement. Altern. Med. 2017, 17, 531. [Google Scholar] [CrossRef]
- Roy, S.; Das, R.; Ghosh, B.; Chakraborty, T. Deciphering the Biochemical and Molecular Mechanism Underlying the in Vitro and in Vivo Chemotherapeutic Efficacy of Ruthenium Quercetin Complex in Colon Cancer. Mol. Carcinog. 2018, 57, 700–721. [Google Scholar] [CrossRef]
- Maurya, A.K.; Vinayak, M. Quercetin Attenuates Cell Survival, Inflammation, and Angiogenesis via Modulation of AKT Signaling in Murine T-Cell Lymphoma. Nutr. Cancer 2017, 69, 470–480. [Google Scholar] [CrossRef]
- Pradhan, R.; Chatterjee, S.; Hembram, K.C.; Sethy, C.; Mandal, M.; Kundu, C.N. Nano Formulated Resveratrol Inhibits Metastasis and Angiogenesis by Reducing Inflammatory Cytokines in Oral Cancer Cells by Targeting Tumor Associated Macrophages. J. Nutr. Biochem. 2021, 92, 108624. [Google Scholar] [CrossRef]
- Sun, X.; Xu, Q.; Zeng, L.; Xie, L.; Zhao, Q.; Xu, H.; Wang, X.; Jiang, N.; Fu, P.; Sang, M. Resveratrol Suppresses the Growth and Metastatic Potential of Cervical Cancer by Inhibiting STAT3Tyr705 Phosphorylation. Cancer Med. 2020, 9, 8685–8700. [Google Scholar] [CrossRef]
- Resveratrol Inhibits the Progression of Cervical Cancer by Suppressing the Transcription and Expression of HPV E6 and E7 Genes. Available online: https://www.spandidos-publications.com/10.3892/ijmm.2020.4789 (accessed on 13 August 2025).
- Chen, L.; Xia, J.S.; Wu, J.H.; Chen, Y.G.; Qiu, C.J. Resveratrol Inhibits Oral Squamous Cell Carcinoma Cells Proliferation While Promoting Apoptosis through Inhibition of CBX7 Protein. Environ. Toxicol. 2020, 35, 1234–1240. [Google Scholar] [CrossRef]
- LI, W.; LI, C.; MA, L.; JIN, F. Resveratrol Inhibits Viability and Induces Apoptosis in the Small-Cell Lung Cancer H446 Cell Line via the PI3K/Akt/c-Myc Pathway. Oncol. Rep. 2020, 44, 1821–1830. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, L.; Luo, Y.; Li, X.; Chen, G.; Wang, Y. Resveratrol Inhibits the Proliferation and Induces the Apoptosis in Ovarian Cancer Cells via Inhibiting Glycolysis and Targeting AMPK/MTOR Signaling Pathway. J. Cell Biochem. 2018, 119, 6162–6172. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Sun, X.; Zhu, H.; Xie, L.; Wang, X.; Jiang, N.; Fu, P.; Sang, M. Hydroxypropyl-β-Cyclodextrin-Complexed Resveratrol Enhanced Antitumor Activity in a Cervical Cancer Model: In Vivo Analysis. Front. Pharmacol. 2021, 12, 573909. [Google Scholar] [CrossRef]
- Hedayati, N.; Safari, M.H.; Milasi, Y.E.; Kahkesh, S.; Farahani, N.; Khoshnazar, S.M.; Dorostgou, Z.; Alaei, E.; Alimohammadi, M.; Rahimzadeh, P.; et al. Modulation of the PI3K/Akt Signaling Pathway by Resveratrol in Cancer: Molecular Mechanisms and Therapeutic Opportunity. Discov. Oncol. 2025, 16, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Bahroudi, Z.; Shoorei, H.; Hussen, B.M.; Talebi, S.F.; Baig, S.G.; Taheri, M.; Ayatollahi, S.A. Disease-Associated Regulation of Gene Expression by Resveratrol: Special Focus on the PI3K/AKT Signaling Pathway. Cancer Cell Int. 2022, 22, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Lim, J.W.; Kim, H. Lycopene Inhibits Reactive Oxygen Species-Mediated NF-ΚB Signaling and Induces Apoptosis in Pancreatic Cancer Cells. Nutrients 2019, 11, 762. [Google Scholar] [CrossRef]
- Langner, E.; Lemieszek, M.K.; Rzeski, W. Lycopene, Sulforaphane, Quercetin, and Curcumin Applied Together Show Improved Antiproliferative Potential in Colon Cancer Cells in Vitro. J. Food Biochem. 2019, 43, e12802. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.Y.; Wang, X.; Shen, P.; Jia, Q.; Yu, S.; Wang, Y.; Li, X.; Chen, W.; Wang, A.; et al. Lycopene Prevents Carcinogen-Induced Cutaneous Tumor by Enhancing Activation of the Nrf2 Pathway through P62-Triggered Autophagic Keap1 Degradation. Aging 2020, 12, 8167–8190. [Google Scholar] [CrossRef]
- Koul, A.; Bansal, M.P.; Aniqa, A.; Chaudhary, H.; Chugh, N.A. Lycopene Enriched Tomato Extract Suppresses Chemically Induced Skin Tumorigenesis in Mice. Int. J. Vitam. Nutr. Res. 2020, 90, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, S.H.; Lim, J.W.; Kim, H. Lycopene Induces Apoptosis by Inhibiting Nuclear Translocation of β-Catenin in Gastric Cancer Cells. J. Physiol. Pharmacol. 2019, 70, 10-26402. [Google Scholar] [CrossRef]
- Park, B.; Lim, J.W.; Kim, H. Lycopene Treatment Inhibits Activation of Jak1/Stat3 and Wnt/β-Catenin Signaling and Attenuates Hyperproliferation in Gastric Epithelial Cells. Nutr. Res. 2019, 70, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Tjahjodjati; Sugandi, S.; Umbas, R.; Satari, M. The Protective Effect of Lycopene on Prostate Growth Inhibitory Efficacy by Decreasing Insulin Growth Factor-1 in Indonesian Human Prostate Cancer Cells. Res. Rep. Urol. 2020, 12, 137–143. [Google Scholar] [CrossRef]
- Meshkini, F.; Ramezani-Jolfaie, N.; Sargazi, S.; Clark, C.C.T.; Soltani, S. The Effects of Lycopene Supplementation on Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins: A Systematic Review of Randomized Controlled Trials. Phytother. Res. 2022, 36, 1633–1643. [Google Scholar] [CrossRef]
- Chuang, T.Y.; Wu, H.L.; Min, J.; Diamond, M.; Azziz, R.; Chen, Y.H. Berberine Regulates the Protein Expression of Multiple Tumorigenesis-Related Genes in Hepatocellular Carcinoma Cell Lines. Cancer Cell Int. 2017, 17, 59. [Google Scholar] [CrossRef]
- Wang, K.; Yu, G.; Lin, J.; Wang, Z.; Lu, Q.; Gu, C.; Yang, T.; Liu, S.; Yang, H. Berberine Sensitizes Human Hepatoma Cells to Regorafenib via Modulating Expression of Circular RNAs. Front. Pharmacol. 2021, 12, 632201. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Cao, S.; Sun, Y.; He, X.; Jiang, B.; Yu, Y.; Duan, J.; Qiu, F.; Kang, N. Berberine Represses Human Gastric Cancer Cell Growth in Vitro and in Vivo by Inducing Cytostatic Autophagy via Inhibition of MAPK/MTOR/P70S6K and Akt Signaling Pathways. Biomed. Pharmacother. 2020, 128, 110245. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Yuan, C.; Wang, Z.; Xu, Z.; Wu, Z.; Wang, M.; Xu, M.; Wang, Z.; Sun, Y. Berberine Modulates Ovarian Cancer Autophagy and Glycolysis through the LINC01123/P65/MAPK10 Signaling Axis. Phytomedicine 2024, 135, 156121. [Google Scholar] [CrossRef]
- Chen, Z.; Vallega, K.A.; Chen, H.; Zhou, J.; Ramalingam, S.S.; Sun, S.Y. The Natural Product Berberine Synergizes with Osimertinib Preferentially against MET-Amplified Osimertinib-Resistant Lung Cancer via Direct MET Inhibition. Pharmacol. Res. 2022, 175, 105998. [Google Scholar] [CrossRef]
- Malyla, V.; De Rubis, G.; Paudel, K.R.; Chellappan, D.K.; Hansbro, N.G.; Hansbro, P.M.; Dua, K. Berberine Nanostructures Attenuate β-Catenin, a Key Component of Epithelial Mesenchymal Transition in Lung Adenocarcinoma. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 3595–3603. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, C.; Huang, T.; Han, B.; Wang, M.; Ma, H.; Li, Z.; Ye, X.; Li, X. 8-Cetylberberine Inhibits Growth of Lung Cancer in Vitro and in Vivo. Life Sci. 2018, 192, 259–269. [Google Scholar] [CrossRef]
- Curcumin Attenuates Hyperglycemia-Driven EGF-Induced Invasive and Migratory Abilities of Pancreatic Cancer via Suppression of the ERK and AKT Pathways. Available online: https://www.spandidos-publications.com/10.3892/or.2018.6833 (accessed on 11 August 2025).
- Hong, W.; Guo, F.; Yu, N.; Ying, S.; Lou, B.; Wu, J.; Gao, Y.; Ji, X.; Wang, H.; Li, A.; et al. A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment. Drug Des. Devel Ther. 2021, 15, 2843–2855. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Li, J. Quercetin Promotes ATG5-Mediating Autophagy-Dependent Ferroptosis in Gastric Cancer. J. Mol. Histol. 2024, 55, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fang, Z.; Zha, Z.; Sun, Q.; Wang, H.; Sun, M.; Qiao, B. Quercetin Inhibits Cell Viability, Migration and Invasion by Regulating MiR-16/HOXA10 Axis in Oral Cancer. Eur. J. Pharmacol. 2019, 847, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Lee, E.Y.; Kim, D.J.; Kim, H.J.; Park, H.R. Quercetin Inhibits Cell Survival and Metastatic Ability via the EMT-Mediated Pathway in Oral Squamous Cell Carcinoma. Molecules 2020, 25, 757. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-H.; Jiang, L.-N.; Liu, Y.-B. Lycopene Exerts Anti-Inflammatory Effect to Inhibit Prostate Cancer Progression. Asian J. Androl. 2019, 21, 80–85. [Google Scholar] [CrossRef]
- Hayashi, F.; Kasamatsu, A.; Endo-Sakamoto, Y.; Eizuka, K.; Hiroshima, K.; Kita, A.; Saito, T.; Koike, K.; Tanzawa, H.; Uzawa, K. Increased Expression of Tripartite Motif (TRIM) like 2 Promotes Tumoral Growth in Human Oral Cancer. Biochem. Biophys. Res. Commun. 2019, 508, 1133–1138. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, K.H.; Jeong, B.Y.; Park, C.G.; Lee, H.Y. Zeb1 for RCP-Induced Oral Cancer Cell Invasion and Its Suppression by Resveratrol. Exp. Mol. Med. 2020, 52, 1152–1163. [Google Scholar] [CrossRef]
- Kim, S.E.; Shin, S.H.; Lee, J.Y.; Kim, C.H.; Chung, I.K.; Kang, H.M.; Park, H.R.; Park, B.S.; Kim, I.R. Resveratrol Induces Mitochondrial Apoptosis and Inhibits Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Cells. Nutr. Cancer 2018, 70, 125–135. [Google Scholar] [CrossRef]
- Vijay, K.; Sowmya, P.R.R.; Arathi, B.P.; Shilpa, S.; Shwetha, H.J.; Raju, M.; Baskaran, V.; Lakshminarayana, R. Low-Dose Doxorubicin with Carotenoids Selectively Alters Redox Status and Upregulates Oxidative Stress-Mediated Apoptosis in Breast Cancer Cells. Food Chem. Toxicol. 2018, 118, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Kim, W.K.; Ha, A.W.; Kim, M.H.; Chang, M.J. Anti-Inflammatory Effect of Lycopene in SW480 Human Colorectal Cancer Cells. Nutr. Res. Pract. 2017, 11, 90–96. [Google Scholar] [CrossRef]
- Berberine, a Natural Plant Alkaloid, Synergistically Sensitizes Human Liver Cancer Cells to Sorafenib. Available online: https://www.spandidos-publications.com/10.3892/or.2018.6552 (accessed on 13 August 2025).
- Ibrahim, N.; Alsadi, N.; Yasavoli-Sharahi, H.; Shahbazi, R.; Hebbo, M.J.; Kambli, D.; Balcells, F.; Matar, C. Berberine Inhibits Breast Cancer Stem Cell Development and Decreases Inflammation: Involvement of MiRNAs and IL-6. Curr. Dev. Nutr. 2025, 9, 104532. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.Q.; Chen, F.; Gao, X.; Yang, L.; Jin, X.; Wink, M.; Sharopov, F.S.; Sethi, G. Berberine Inhibits Breast Carcinoma Proliferation and Metastasis under Hypoxic Microenvironment Involving Gut Microbiota and Endogenous Metabolites. Pharmacol. Res. 2023, 193, 106817. [Google Scholar] [CrossRef]
- Tabrez, S.; Jabir, N.R.; Adhami, V.M.; Khan, M.I.; Moulay, M.; Kamal, M.A.; Mukhtar, H. Nanoencapsulated Dietary Polyphenols for Cancer Prevention and Treatment: Successes and Challenges. Nanomedicine 2020, 15, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Saadh, M.J.; Ahmed, H.H.; Chandra, M.; Al-Hussainy, A.F.; Hamid, J.A.; Mishra, A.; Taher, W.M.; Alwan, M.; Jawad, M.J.; Al-Nuaimi, A.M.A.; et al. Therapeutic Effects of Quercetin in Oral Cancer Therapy: A Systematic Review of Preclinical Evidence Focused on Oxidative Damage, Apoptosis and Anti-Metastasis. Cancer Cell Int. 2025, 25, 66. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.C.; da Silva, G.N.; de Souza, D.V.; de Moraes Malinverni, A.C.; Aguiar, O.; Estadella, D.; Ribeiro, D.A. Resveratrol Effects in Oral Cancer Cells: A Comprehensive Review. Med. Oncol. 2021, 38, 97. [Google Scholar] [CrossRef]
- Yu, X.-D.; Yang, J.-L.; Zhang, W.-L.; Liu, D.-X. Resveratrol Inhibits Oral Squamous Cell Carcinoma through Induction of Apoptosis and G2/M Phase Cell Cycle Arrest. Tumor Biol. 2016, 37, 2871–2877. [Google Scholar] [CrossRef]
- Horak, I.; Prylutska, S.; Krysiuk, I.; Luhovskyi, S.; Hrabovsky, O.; Tverdokhleb, N.; Franskevych, D.; Rumiantsev, D.; Senenko, A.; Evstigneev, M.; et al. Nanocomplex of Berberine with C60 Fullerene Is a Potent Suppressor of Lewis Lung Carcinoma Cells Invasion In Vitro and Metastatic Activity In Vivo. Materials 2021, 14, 6114. [Google Scholar] [CrossRef]
- Ni, L.; Sun, P.; Fan, X.; Li, Z.; Ren, H.; Li, J. Berberine Inhibits FOXM1 Dependent Transcriptional Regulation of POLE2 and Interferes With the Survival of Lung Adenocarcinoma. Front. Pharmacol. 2022, 12, 775514. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Liu, K.; Zhao, Y.; Xu, B.; Xu, L.; Tan, L.; Tian, Y.; Li, C.; Zhang, W.; et al. Berberine Inhibits Colitis-Associated Tumorigenesis via Suppressing Inflammatory Responses and the Consequent EGFR Signaling-Involved Tumor Cell Growth. Lab. Investig. 2017, 97, 1343–1353. [Google Scholar] [CrossRef]
- Zhang, H.; Li, G.; Ni, L.; Wang, R.; Peng, L.; Zang, L.; Lu, C.; Wang, Z.; Liu, J. Berberine Hydrochloride Inhibits the Proliferation and Metastasis of P53 Mutant Gallbladder Cancer Cells by Regulating the IL6/STAT3 Pathway. Sci. Rep. 2025, 15, 26808. [Google Scholar] [CrossRef] [PubMed]
- Mahalunkar, S.; Yadav, A.S.; Gorain, M.; Pawar, V.; Braathen, R.; Weiss, S.; Bogen, B.; Gosavi, S.W.; Kundu, G.C. Functional Design of PH-Responsive Folate-Targeted Polymer-Coated Gold Nanoparticles for Drug Delivery and in Vivo Therapy in Breast Cancer. Int. J. Nanomed. 2019, 14, 8285–8302. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Su, J.; Jiang, S.; Xu, Y.; Dou, B.; Li, T.; Zhu, J.; He, K. Transcriptomics and Metabonomics Study on the Effect of Exercise Combined with Curcumin Supplementation on Breast Cancer in Mice. Heliyon 2024, 10, e28807. [Google Scholar] [CrossRef]
- Dou, H.; Shen, R.; Tao, J.; Huang, L.; Shi, H.; Chen, H.; Wang, Y.; Wang, T. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via MiR-130a. Front. Pharmacol. 2017, 8, 296954. [Google Scholar] [CrossRef]
- Rajitha, B.; Nagaraju, G.P.; Shaib, W.L.; Alese, O.B.; Snyder, J.P.; Shoji, M.; Pattnaik, S.; Alam, A.; El-Rayes, B.F. Novel Synthetic Curcumin Analogs as Potent Antiangiogenic Agents in Colorectal Cancer. Mol. Carcinog. 2017, 56, 288–299. [Google Scholar] [CrossRef]
- Herrero de la Parte, B.; Rodeño-Casado, M.; Iturrizaga Correcher, S.; Mar Medina, C.; García-Alonso, I. Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows in Vivo Growth of Liver Metastases in Rats. Biomedicines 2021, 9, 1183. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Diagaradjane, P.; Guha, S.; Deorukhkar, A.; Shentu, S.; Aggarwal, B.B.; Krishnan, S. Curcumin Sensitizes Human Colorectal Cancer Xenografts in Nude Mice to γ-Radiation by Targeting Nuclear Factor-ΚB–Regulated Gene Products. Clin. Cancer Res. 2008, 14, 2128–2136. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Liang, Y.; Chen, L.; Sun, H.; Chen, Q. Effect of Quercetin on the Progression of Breast Cancer in Mice with Chronic Stress by Regulating the Polarization of Microglia. J. Funct. Foods 2024, 119, 106294. [Google Scholar] [CrossRef]
- Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Siddiqui, I.A.; Panackal, J.E.; Mintie, C.A.; Ahmad, N. Quercetin–Resveratrol Combination for Prostate Cancer Management in TRAMP Mice. Cancers 2020, 12, 2141. [Google Scholar] [CrossRef]
- Ramos, Y.A.L.; Souza, O.F.; Novo, M.C.T.; Guimarães, C.F.C.; Popi, A.F. Quercetin Shortened Survival of Radio-Resistant B-1 Cells in Vitro and in Vivo by Restoring MiR15a/16 Expression. Oncotarget 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Alvarez, M.C.; Maso, V.; Torello, C.O.; Ferro, K.P.; Saad, S.T.O. The Polyphenol Quercetin Induces Cell Death in Leukemia by Targeting Epigenetic Regulators of Pro-Apoptotic Genes. Clin. Epigenetics 2018, 10, 139. [Google Scholar] [CrossRef]
- Gupta, P.; Bhatia, N.; Bansal, M.P.; Koul, A. Lycopene Modulates Cellular Proliferation, Glycolysis and Hepatic Ultrastructure during Hepatocellular Carcinoma. World J. Hepatol. 2016, 8, 1222–1233. [Google Scholar] [CrossRef]
- Bhatia, N.; Singh, B.; Koul, A. Lycopene Treatment Stalls the Onset of Experimentally Induced Hepatocellular Carcinoma: A Radioisotopic, Physiological and Biochemical Analysis. Hepatoma Res. 2018, 4, 9. [Google Scholar] [CrossRef]
- Sahin, K.; Yenice, E.; Tuzcu, M.; Orhan, C.; Mizrak, C.; Ozercan, I.H.; Sahin, N.; Yilmaz, B.; Bilir, B.; Ozpolat, B.; et al. Lycopene Protects Against Spontaneous Ovarian Cancer Formation in Laying Hens. J. Cancer Prev. 2018, 23, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Xu, F.; Wu, K.; Li, L.; Qiao, T.; Li, Z.; Chen, T.; Sun, C. Anticancer Effects and Possible Mechanisms of Lycopene Intervention on N-Methylbenzylnitrosamine Induced Esophageal Cancer in F344 Rats Based on PPARγ1. Eur. J. Pharmacol. 2020, 881, 173230. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wu, H.; Zhao, W.; Ding, X.; You, Q.; Zhu, F.; Qian, M.; Yu, P. Lycopene Improves the Efficiency of Anti-PD-1 Therapy via Activating IFN Signaling of Lung Cancer Cells. Cancer Cell Int. 2019, 19, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yuan, X.; Li, X.; Zhang, Y. Resveratrol Significantly Inhibits the Occurrence and Development of Cervical Cancer by Regulating Phospholipid Scramblase 1. J. Cell Biochem. 2019, 120, 1527–1531. [Google Scholar] [CrossRef]
- Rytsyk, O.; Soroka, Y.; Shepet, I.; Vivchar, Z.; Andriichuk, I.; Lykhatskyi, P.; Fira, L.; Nebesna, Z.; Kramar, S.; Lisnychuk, N. Experimental Evaluation of the Effectiveness of Resveratrol as an Antioxidant in Colon Cancer Prevention. Nat. Product. Commun. 2020, 15, 6. [Google Scholar] [CrossRef]
- Qian, K.; Tang, C.Y.; Chen, L.Y.; Zheng, S.; Zhao, Y.; Ma, L.S.; Xu, L.; Fan, L.H.; Yu, J.D.; Tan, H.S.; et al. Berberine Reverses Breast Cancer Multidrug Resistance Based on Fluorescence Pharmacokinetics in Vitro and in Vivo. ACS Omega 2021, 6, 10645–10654. [Google Scholar] [CrossRef]
- Kaur, K.; Al-Khazaleh, A.K.; Bhuyan, D.J.; Li, F.; Li, C.G. A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities. Antioxidants 2024, 13, 1092. [Google Scholar] [CrossRef]
- Fawzy, N.G.; Panda, S.S.; Fayad, W.; El-Manawaty, M.A.; Srour, A.M.; Girgis, A.S. Novel Curcumin Inspired Antineoplastic 1-Sulfonyl-4-Piperidones: Design, Synthesis and Molecular Modeling Studies. Anti-Cancer Agents Med. Chem. 2019, 19, 1069–1078. [Google Scholar] [CrossRef]
- Smith, R.B.; Roberts, W.; Upenieks, M.; Gibson, M.Z.; Wentzel, M.T.; Grice, K.A.; Zingales, S.K. Synthesis and Conformational Analysis of N-BOC-Protected-3,5-Bis(Arylidene)-4-Piperidone EF-24 Analogs as Anti-Cancer Agents. Heterocycl. Comm. 2023, 29, 20220162. [Google Scholar] [CrossRef]
- Gregory, M.; Dandavati, A.; Lee, M.; Tzou, S.; Savagian, M.; Brien, K.A.; Satam, V.; Patil, P.; Lee, M. Synthesis, Cytotoxicity, and Structure-Activity Insight of NH- and N-Methyl-3,5-Bis-(Arylidenyl)-4-Piperidones. Med. Chem. Res. 2013, 22, 5588–5597. [Google Scholar] [CrossRef]
- Bian, P.; Hu, W.; Liu, C.; Li, L. Resveratrol Potentiates the Anti-Tumor Effects of Rapamycin in Papillary Thyroid Cancer: PI3K/AKT/MTOR Pathway Involved. Arch. Biochem. Biophys. 2020, 689, 108461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, C.; Chen, F.; He, Y.; Yin, S.; Peng, Y.; Li, W. Phytochemicals and Glioma: Results from Dietary Mixed Exposure. Brain Sci. 2023, 13, 902. [Google Scholar] [CrossRef]
- Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rotmann, A.R.; et al. Efficacy and Safety of Curcumin in Combination with Paclitaxel in Patients with Advanced, Metastatic Breast Cancer: A Comparative, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Phytomedicine 2020, 70, 153218. [Google Scholar] [CrossRef]
- Kuriakose, M.A.; Ramdas, K.; Dey, B.; Iyer, S.; Rajan, G.; Elango, K.K.; Suresh, A.; Ravindran, D.; Kumar, R.R.; Prathiba, R.; et al. A Randomized Double-Blind Placebo-Controlled Phase Iib Trial of Curcumin in Oral Leukoplakia. Cancer Prev. Res. 2016, 9, 683–691. [Google Scholar] [CrossRef]
- Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; et al. Phytosome Complex of Curcumin as Complementary Therapy of Advanced Pancreatic Cancer Improves Safety and Efficacy of Gemcitabine: Results of a Prospective Phase II Trial. Pharmacol. Res. 2018, 132, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Mahammedi, H.; Planchat, E.; Pouget, M.; Durando, X.; Curé, H.; Guy, L.; Van-Praagh, I.; Savareux, L.; Atger, M.; Bayet-Robert, M.; et al. The New Combination Docetaxel, Prednisone and Curcumin in Patients with Castration-Resistant Prostate Cancer: A Pilot Phase II Study. Oncology 2016, 90, 69–78. [Google Scholar] [CrossRef] [PubMed]
- PastorelliCarroll, R.E.; Benya, R.V.; Turgeon, D.K.; Vareed, S.; Neuman, M.; Rodriguez, L.; Kakarala, M.; Carpenter, P.M.; McLaren, C.; Meyskens, F.L.; et al. Phase IIa Clinical Trial of Curcumin for the Prevention of Colorectal Neoplasia. Cancer Prev. Res. 2011, 4, 354–364, Erratum in Cancer Prev. Res. 2012, 12, 1407. [Google Scholar] [CrossRef]
- Cruz-Correa, M.; Hylind, L.M.; Marrero, J.H.; Zahurak, M.L.; Murray-Stewart, T.; Casero, R.A.; Montgomery, E.A.; Iacobuzio-Donahue, C.; Brosens, L.A.; Offerhaus, G.J.; et al. Efficacy and Safety of Curcumin in Treatment of Intestinal Adenomas in Patients With Familial Adenomatous Polyposis. Gastroenterology 2018, 155, 668–673. [Google Scholar] [CrossRef]
- Ravera, S.; Ghiotto, F.; Tenca, C.; Gugiatti, E.; Santamaria, S.; Ledda, B.; Ibatici, A.; Cutrona, G.; Mazzarello, A.N.; Bagnara, D.; et al. Berberine Affects Mitochondrial Activity and Cell Growth of Leukemic Cells from Chronic Lymphocytic Leukemia Patients. Sci. Rep. 2020, 10, 16519. [Google Scholar] [CrossRef] [PubMed]
- Mohammadlou, M.; Abdollahi, M.; Hemati, M.; Baharlou, R.; Doulabi, E.M.; Pashaei, M.; Ghahremanfard, F.; Faranoush, M.; Kokhaei, P. Apoptotic Effect of Berberine via Bcl-2, ROR1, and Mir-21 in Patients with B-Chronic Lymphocytic Leukemia. Phytother. Res. 2021, 35, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, L.; Jiang, C.; Guo, J.; Xie, Y.; Kang, L.; Cheng, Z. Berberine Inhibits the LPS-Induced Proliferation and Inflammatory Response of Stromal Cells of Adenomyosis Tissues Mediated by the LPS/TLR4 Signaling Pathway. Exp. Ther. Med. 2017, 14, 6125–6130. [Google Scholar] [CrossRef]
- Kapała, A.; Szlendak, M.; Motacka, E. The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies. Nutrients 2022, 14, 5152. [Google Scholar] [CrossRef]
- Paur, I.; Lilleby, W.; Bøhn, S.K.; Hulander, E.; Klein, W.; Vlatkovic, L.; Axcrona, K.; Bolstad, N.; Bjøro, T.; Laake, P.; et al. Tomato-Based Randomized Controlled Trial in Prostate Cancer Patients: Effect on PSA. Clin. Nutr. 2017, 36, 672–679. [Google Scholar] [CrossRef]
- Moody, L.; Crowder, S.L.; Fruge, A.D.; Locher, J.L.; Demark-Wahnefried, W.; Rogers, L.Q.; Delk-Licata, A.; Carroll, W.R.; Spencer, S.A.; Black, M.; et al. Epigenetic Stratification of Head and Neck Cancer Survivors Reveals Differences in Lycopene Levels, Alcohol Consumption, and Methylation of Immune Regulatory Genes. Clin. Epigenetics 2020, 12, 138. [Google Scholar] [CrossRef]
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; et al. Potential Mechanisms of Quercetin in Cancer Prevention: Focus on Cellular and Molecular Targets. Cancer Cell Int. 2022, 22, 257. [Google Scholar] [CrossRef]
- Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The Role of Resveratrol in Cancer Therapy. Int. J. Mol. Sci. 2017, 18, 2589. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Lu, M.S.; Wang, L.; Mo, X.F.; Luo, W.P.; Du, Y.F.; Zhang, C.X. Specific Serum Carotenoids Are Inversely Associated with Breast Cancer Risk among Chinese Women: A Case-Control Study. Br. J. Nutr. 2016, 115, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.; Choi, I.J.; Kim, Y.I.; Kwon, O.; Kim, H.; Kim, J. Dietary Carotenoids Intake and the Risk of Gastric Cancer: A Case—Control Study in Korea. Nutrients 2018, 10, 1031. [Google Scholar] [CrossRef]
- Rowles, J.L.; Ranard, K.M.; Smith, J.W.; An, R.; Erdman, J.W. Increased Dietary and Circulating Lycopene Are Associated with Reduced Prostate Cancer Risk: A Systematic Review and Meta-Analysis. Prostate Cancer Prostatic Dis. 2017, 20, 361–377. [Google Scholar] [CrossRef] [PubMed]
| Reference Source | Compound | Study Group/Tumour Type | Impact on the Organism/Mechanism of Action |
|---|---|---|---|
| [26] | BBR | Human hepatic carcinoma cell lines (HepG2 and MHCC97-L) | Induction of autophagy and apoptosis |
| [59] | Human hepatic carcinoma cell lines (HepG2, Hep3B, and SNU-182) | ↓ Cell proliferation | |
| [60] | Human hepatic carcinoma cell lines (Huh7 and HepG2) | Enhancement of radiosensitivity (via suppression of the Nrf2 signalling pathway) | |
| [27] | Human hepatic carcinoma cell lines (SMMC-7721 and HepG2) | ↓ Cell proliferation, induction of apoptosis | |
| [61] | GC cell line (BGC-823) | ↓ Cell proliferation, enhancement of autophagy | |
| [28] | GC cell lines (MKN-45 and HGC-27) | ↓ Cell proliferation, induction of apoptosis, cell cycle arrest at the G0/G1 phase, ↓ migration and invasion of GC cells | |
| [27] | Breast cancer cell line (MCF-7) | ↓ Autophagy, ↓ cell proliferation | |
| [62] | Human ovarian cancer cell lines (SKOV3 and HEY) | ↓ Cell proliferation | |
| [63] | Human lung cancer cell lines (EGFRm NSCLC) | ↓ Cell survival, ↓ cell proliferation | |
| [64] | Adenocarcinoma human alveolar basal epithelial cell line (A549) | Downregulation of β-catenin gene and protein expression | |
| [65] | Human non-small lung cancer cell line (A549) | Induction of cell cycle arrest at the G1 phase (disruption of cyclin D1 and E1 expression), ↓ apoptosis (induction of the caspase pathway) | |
| [23] | Colorectal cancer cell line (HCT 116) | Cell cycle arrest at the G0/G1 phase, ↓ telomerase activity in cancer cells, ↓ concentration of TERT and TERC | |
| [24] | Colon cancer cell lines (DLD-1 and Caco-2) | ↓ Cell proliferation, cell cycle arrest at the G0/G1 phase | |
| [25] | Osteosarcoma cell line (MG-63) | ↓ Cell viability, induction of apoptosis after X-ray exposure, cell cycle arrest at the G2/M phase | |
| [35] | Curcumin | Human colon cancer cells (HCT116) | ↓ CDK2 kinase activity, ↓ cell proliferation, induction of cell cycle arrest at the G1 phase |
| [66] | Human pancreatic cancer cell line (BxPC-3) | ↓ Activation of the EGF/ERK and EGF/AKT signalling pathways | |
| [67] | Cervical cancer cell line (HeLa) | Anticancer activity | |
| [36] | QCT | Human choriocarcinoma cells (JAR and JEG3) | ↓ Cell proliferation, stimulation of ROS production, disruption of MMP1, cell cycle arrest at the sub-G1 phase |
| [37] | GC cells (SGC-7901 and MGC-803) | ↓ viability of SGC-7901 and MGC-803 cells, induction of apoptosis, cell cycle arrest at the G2/M phase | |
| [68] | GC cell (AGS, MKN45, MKN7, and TMK1) | Suppression of cell viability and reduction in tumour volume, ↓ concentration of GSH, MDA, and ROS | |
| [39] | Retinoblastoma cells (Y79) | ↓ Viability of cells, cell cycle arrest at the G1 phase, ↑ ROS | |
| [69] | Oral cancer cell (HSC-6 cells) | ↓ Cell viability, tumour cell migration and invasive potential, ↓ concentration of MMP-2 and MMP-9 | |
| [70] | OSCC cells (OSC20, SAS, and HN2) | Suppression of cell viability, cell cycle arrest at the G2/M phase | |
| [38] | KON oral cancer cells | Cell cycle arrest at the S and G2/M phase, activation of apoptosis, ↑ ROS | |
| [71] | Prostate cancer cells (LNCaP, PC3, and DU145) | ↓ Tumour cell growth (in a dose- and time-dependent manner), ↓ concentration of IL-1, IL-6, IL-8, and TNF-α | |
| [42] | Resveratrol | Oral cancer cells (H-357) and human leukaemic monocyte cells (THP-1) | ↓ Cytokine concentration in CSC-enriched cells; ↓ invasion, cell proliferation, and CSC expansion; ↓ metastatic markers (CD133, ALDH1, CXCR4) and angiogenic factors (MMP-2, iNOS, VEGF-A) |
| [45] | OSCC cells (SCC-VII, SCC-25, YD-38) | Cell cycle arrest at the G2/M phase; ↑ expression of Tyr15, cyclin A2, and cyclin B1 in cells | |
| [72] | OSCC cells (HSC-3) | ↓ Cell proliferation (cell cycle arrest at the G1 phase); ↓ expression of CDK4, CDK6, and cyclin D1; ↑ expression of p21Cip1 and p27Kip1 | |
| [45] | OSCC cells (HSC-3) | ↓ Cell proliferation, induction of apoptosis (inhibition of the CBX7/AKT pathway and activation of p16 signalling cascades) | |
| [73] | OSCC cells (YD-9 and YD-38) | Inactivation of EGFR and downstream Zeb1 signalling | |
| [74] | Human tongue squamous cell carcinoma cells (CAL-27, SCC15, and SCC25) | Inhibition of EMT-inducing transcription factors | |
| [75] | LycT | Breast cancer cells (MCF-7 and MDA-MB-23) | ↑ Apoptosis |
| [52] | Human colon adenocarcinoma cells (HT-29 and LS174T) | ↓ Cell proliferation | |
| [76] | Human colorectal cancer cells (SW480) | ↓ mRNA TNF-α, IL-1β, IL-6, iNOS, COX-2; ↓ synthesis of NO and PGE2; ↓ NF-κB, IκB, and JNK protein expression (with ERK and p38 affected only at higher concentrations) | |
| [51] | Human pancreatic cancer cell (PANC-1) | ↓ ROS and MMP1, ↓ OCR, inhibition of NF-κB (reduced DNA binding, IκBα phosphorylation), ↓ NF-κB-dependent gene expression (cIAP1, cIAP2, survivin), ↑ caspase-3 activity and Bax/Bcl-2 ratio (induction of apoptosis) |
| Reference Source | Compound | Study Group/Tumour Type | Impact on the Organism/Mechanism of Action |
|---|---|---|---|
| [28] | BBR | MKN-45 xenograft mice (GC) | ↓ Tumour growth, ↓ concentration of IL-6 |
| [84] | Mouse model of Lewis lung carcinoma cells | ↓ Pulmonary metastasis | |
| [85] | C57BL/6 mice (Lewis tumour xenograft mice) | ↓ Tumour growth | |
| [65] | A549 tumour xenograft mice (lung cancer) | ↓ Tumour growth | |
| [23] | Female BALB/c nude mice (breast cancer) | ↑ Antitumour efficacy of doxorubicin | |
| [86] | C57BL/6J-ApcMin/+ mice | ↓ Concentration of IL-6 and TNF-α in macrophages, ↓ EGFR-ERK pathway activity | |
| [87] | Male BALB/c nude mice (liver tumour) | ↓ Tumour growth | |
| [88] | Curcumin | Female BALB/c mice (breast cancer) | ↓ Cell migration, high antitumour efficacy |
| [89] | Female BALB/c mice (breast cancer) | ↓ Tumour growth | |
| [90] | Mice xenograft model (SW480) (colorectal cancer) | ↓ Tumour growth, ↑ survival of mice, ↓ cell proliferation, induction of apoptosis, potential involvement of Wnt/β-catenin pathway inhibition | |
| [91] | Female athymic (immunodeficient) nude mice (colorectal cancer) (HCT116 and HT-29, EF31 and UBS109) | ↓ Tumour growth, enhancement of the therapeutic effects of oxaliplatin and 5-FU, ↓ expression of HIF-1α, COX-2, p-STAT-3, and VEGF | |
| [92] | Rats (colorectal cancer and liver metastasis) | ↓ Cell viability | |
| [93] | Human colorectal cancer xenografts in nude mice (SKOV3ip1, HeyA8) | ↓ Tumour growth by 49–55% when administered alone and by 77–96% in combination with docetaxel, ↓ proliferation, ↑ apoptosis, ↓ NF-κB, STAT3, and pro-angiogenic cytokines (VEGF, COX-2) | |
| [29] | QCT | Female Sprague–Dawley rats (breast cancer) | Significant regression of hyperplastic lesions, ↑ apoptosis, ↑ expression of Bcl-2 protein, ↓ expression levels of Bax and p53 |
| [94] | C57BL/6J female mice (breast cancer) | ↓ STAT1 transcription factor expression in microglia No significant effect on breast tumour mass and volume under physiological conditions, ↓ tumour growth under stress conditions | |
| [95] | TRAMP mice (prostate cancer) | ↓ tumour volume and weight, ↓ concentration of Nrf2, modulation of genes involved in AR, PI3K/AKT, and PTEN signalling pathways, ↓ concentration of IGF1 | |
| [40] | Male Wistar rats (colon cancer) | ↑ Concentration of SOD, CAT, GSH; ↑ expression of p53 and Bax proteins; ↓ concentration of Bcl-2 | |
| [96] | NOD/SCID mice (chronic lymphocytic leukaemia) | ↓ Expression of Bcl-2, normalisation of miR-15a/16 levels, ↓ proliferation and migration of irradiated B-1 cells to the liver | |
| [97] | Mice (human xenograft acute myeloid leukaemia models) | ↓ Concentration of DNMT, ↓ expression of STAT3 and p-STAT3 proteins, ↓ concentration of HDAC1 and HDAC2, ↑ expression of DAPK1, Bax, APAF1, and BCL2L11 | |
| [41,98] | Mice (murine T-cell lymphoma) | ↓ Cell viability, ↓ inflammation and angiogenesis through modulation of AKT signalling | |
| [98] | LycT | Female Balb/c mice (hepatocellular carcinoma) | Stabilisation of metabolic and morphological parameters, ↑ numbers of apoptotic cells and macrophages |
| [99] | Female Balb/c mice (hepatocellular carcinoma) | Normalisation of haematological parameters; ↓ concentrations of TNF-α, IL-1β, and IL-6; enhancement of the antioxidant system | |
| [100] | Laying hens: (ovarian cancer) | ↓ Overall incidence of ovarian tumours, ↓ number and size of tumours, ↓ concentration of MDA | |
| [101] | Rats (oesophageal cancer) | ↑ Expression levels of PPARγ and caspase-3 proteins, ↓ expression of NF-κB and COX-2 protein in oesophageal tissue | |
| [102] | Mice (Lewis lung carcinoma) | ↓ Tumour size and weight, ↑ levels of IL-1 and IFN-γ, ↓ levels of IL-4 and IL-10 in spleen | |
| [53] | Mice | Modulation of proliferation and apoptosis in keratinocytes exposed to UVB radiation | |
| [54] | Male BALB/C mice (skin cancer) | ↓ Cell proliferation, ↓ mRNA and protein expression of proliferating cell nuclear antigen | |
| [42] | Resveratrol | Mice xenograft model (Balb/c mice) (oral cancer) | ↓ Tumour size, ↓ expression of CD44 in liver, CXCR4 and Nanog in kidney and CXCR4 and VEGF-A in brain compared with control mice |
| [103] | Male Balb/c nude mice (cervical cancer) | ↓ Tumour growth | |
| [43] | Female athymic BALB/C nude mice (cervical cancer) | ↓ Tumour size and weight, ↓ cell proliferation HeLa (in a dose-dependent manner) | |
| [48] | Female athymic BALB/C nude mice (cervical cancer) | ↓ Tumour size, ↓ expression of HPV E6 and E7, ↑ concentration of p53 and Rb1 | |
| [44] | Female athymic BALB/C nude mice (cervical cancer) | ↓ Tumour size and weight, ↓ E6 and E7 transcription and translation, cell cycle arrest at the G1phase | |
| [104] | Male Wistar rats (colorectal cancer) | Reduced body weight loss, ↓ concentration of ROS, ↑ concentration of GPx and GR | |
| [95] | TRAMP mice (prostate cancer) | ↓ Tumour size and weight; ↓ concentration of Nrf2; modulation of genes involved in AR, PI3K/AKT, and PTEN signalling pathways; ↓ concentration of IGF1 |
| Reference Source | Compound | Study Group/Tumour Type | Impact on the Organism/Mechanism of Action |
|---|---|---|---|
| [112] | Curcumin | Patients with advanced metastatic breast cancer | 51% Objective response rate, ↓ fatigue, ↑ patients’ self-assessed overall physical performance |
| [30] | Patients with breast cancer | Cell cycle arrest, induction of apoptosis (induction of the p53/p21 pathway) | |
| [113] | Participants with clinical symptoms of oral leukoplakia | A clinical response (complete or partial) was observed in 67.5% of the study participants undergoing chemopreventive treatment for oral leukoplakia after 6 months of intervention | |
| [114] | Participants with pancreatic cancer | ↑ Effectiveness of GEM treatment | |
| [115] | Participants with PCa | High response rates during supportive treatment, with good patient acceptability and tolerability | |
| [116] | Smokers with eight or more ACF | 40% Reduction in the number of ACF following a 4 g dose | |
| [117] | Patients with familial adenomatous polyposis | No significant changes in the number or size of polyps | |
| [118] | BBR | Patients with chronic lymphocytic leukaemia | ↓ Cell activation, ↓ anti-apoptotic protein expression (Mcl-1, Bcl-XL), disruption of oxidative phosphorylation, ↑ cellular sensitivity to venetoclax |
| [119] | Patients with B-chronic lymphocytic leukaemia | ↓ Bcl-2 levels and ROR1 receptor expression, ↑ Bax/Bcl-2 ratio | |
| [120] | Patients with adenomyosis | ↓ Cell proliferation (in a dose- and time-dependent manner), cell cycle arrest at the G0/G1 phase, ↑ apoptosis, ↓ expression of IL-6, IL-8, TGF-β, EGF, VEGF, and MMP-2 | |
| [121] | LycT | Men with PCa | ↓ PSA, improvement in quality of life, inhibition of tumour progression |
| [122] | Patients with non-metastatic PCa | ↓ Median PSA levels | |
| [123] | Participants with head and neck cancer | Hypomethylation of CD8A and ↑ CD8 and CD8+ T cells, hypermethylation of CD40LG and TEC | |
| [124] | QCT | Patients with lung cancer | Regulation of miRNA (let-7, miR-146a), ↓ miR-17 (oncogenic) |
| [125] | Resveratrol | Patients with colorectal cancer | ↓ Proliferation (Ki67 ↓), high tissue concentration in the intestinal epithelium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godyla-Jabłoński, M.; Raczkowska, E. Roles of Selected Bioactive Compounds in Inhibiting the Development and Progression of Cancer—A Review. Int. J. Mol. Sci. 2025, 26, 10343. https://doi.org/10.3390/ijms262110343
Godyla-Jabłoński M, Raczkowska E. Roles of Selected Bioactive Compounds in Inhibiting the Development and Progression of Cancer—A Review. International Journal of Molecular Sciences. 2025; 26(21):10343. https://doi.org/10.3390/ijms262110343
Chicago/Turabian StyleGodyla-Jabłoński, Michaela, and Ewa Raczkowska. 2025. "Roles of Selected Bioactive Compounds in Inhibiting the Development and Progression of Cancer—A Review" International Journal of Molecular Sciences 26, no. 21: 10343. https://doi.org/10.3390/ijms262110343
APA StyleGodyla-Jabłoński, M., & Raczkowska, E. (2025). Roles of Selected Bioactive Compounds in Inhibiting the Development and Progression of Cancer—A Review. International Journal of Molecular Sciences, 26(21), 10343. https://doi.org/10.3390/ijms262110343

