Regulatory T Cell-Based Adoptive Cell Therapy in Autoimmunity
Abstract
1. Introduction
2. Treg Historical Perspective
3. Treg Biology
3.1. Treg Development, Modulation, and Types
3.2. CD4+ Treg-Mediated Suppression
4. Treg in Human Autoimmune Disease
4.1. IPEX Syndrome and IPEX-like Monogenic Diseases
4.2. Treg in Multifactorial and Polygenic Autoimmune Diseases
5. Treg-Based Therapies in Autoimmunity
6. Treg-Based ACT in Autoimmunity
6.1. Polyclonal Treg Therapy
6.2. Polyclonal vs. Antigen-Specific Treg Therapies
6.3. Antigen-Specific Induced Treg Therapy
6.4. Engineered Treg Therapy
7. Challenges and Future Perspectives on the Field of Treg Therapies
7.1. Challenges in TCR-Treg-Based Therapies
7.2. Challenges in CAR-Treg-Based Therapies
7.3. Challenges in Engineering Strategies of Artificial Receptors and Treg Functionality
8. Manufacturability and Scalability of Treg Therapies
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pisetsky, D.S. Pathogenesis of Autoimmune Disease. Nat. Rev. Nephrol. 2023, 19, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S.; Mikami, N.; Wing, J.B.; Tanaka, A.; Ichiyama, K.; Ohkura, N. Regulatory T Cells and Human Disease. Annu. Rev. Immunol. 2020, 38, 541–566. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.T.; Frazee, C.S.; Herman, P.J.; Chen, S.; Chen, A.; Kuo, Y.; Ellebrecht, C.T. Current Advancements in Cellular Immunotherapy for Autoimmune Disease. Semin. Immunopathol. 2025, 47, 7. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.W. The Increasing Prevalence of Autoimmunity and Autoimmune Diseases: An Urgent Call to Action for Improved Understanding, Diagnosis, Treatment, and Prevention. Curr. Opin. Immunol. 2023, 80, 102266. [Google Scholar] [CrossRef]
- Bulliard, Y.; Freeborn, R.; Uyeda, M.J.; Humes, D.; Bjordahl, R.; de Vries, D.; Roncarolo, M.G. From Promise to Practice: CAR T and Treg Cell Therapies in Autoimmunity and Other Immune-Mediated Diseases. Front. Immunol. 2024, 15, 1509956. [Google Scholar] [CrossRef]
- Conrad, N.; Misra, S.; Verbakel, J.; Verbeke, G.; Molenberghs, G.; Taylor, P.; Mason, J.; Sattar, N.; Mcmurray, J.; Mcinnes, I.; et al. Op0007 incidence, prevalence and co-occurrence of autoimmune disorders, trends over time and by age, sex and socioeconomic status. a population-based study in 22 million individuals. Ann. Rheum. Dis. 2023, 82, 5–6. [Google Scholar] [CrossRef]
- Moorman, C.D.; Sohn, S.J.; Phee, H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T Cell Therapy, and IL-2 Therapy. Front. Immunol. 2021, 12, 657768. [Google Scholar] [CrossRef]
- Yu, L.; Fu, Y.; Miao, R.; Cao, J.; Zhang, F.; Liu, L.; Mei, L.; Ou, M. Regulatory T Cells and Their Derived Cell Pharmaceuticals as Emerging Therapeutics Against Autoimmune Diseases. Adv. Funct. Mater. 2024, 34, 2405133. [Google Scholar] [CrossRef]
- Eggenhuizen, P.J.; Ng, B.H.; Ooi, J.D. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int. J. Mol. Sci. 2020, 21, 7015. [Google Scholar] [CrossRef]
- Glück, T.; Kiefmann, B.; Grohmann, M.; Falk, W.; Straub, R.H.; Schölmerich, J. Immune Status and Risk for Infection in Patients Receiving Chronic Immunosuppressive Therapy. J. Reumatol. 2005, 32, 1473–1480. [Google Scholar]
- Singh, S.; George, J.; Boland, B.S.; Vande, C.N.; Sandborn, W.J. Primary Non-Response to Tumor Necrosis Factor Antagonists Is Associated with Inferior Response to Second-Line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. J. Crohn's Colitis 2018, 12, 635–643. [Google Scholar] [CrossRef]
- Fontenot, J.D.; Rasmussen, J.P.; Williams, L.M.; Dooley, J.L.; Farr, A.G.; Rudensky, A.Y. Regulatory T Cell Lineage Specification by the Forkhead Transcription Factor Foxp3. Immunity 2005, 22, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Pillars Article: Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells. Nat. Immunol. 2003, 4, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Hori, S.; Nomura, T.; Sakaguchi, S. Pillars Article: Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science 2003, 299, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Brunkow, M.E.; Jeffery, E.W.; Hjerrild, K.A.; Paeper, B.; Clark, L.B.; Yasayko, S.-A.; Wilkinson, J.E.; Galas, D.; Ziegler, S.F.; Ramsdell, F. Disruption of a New Forkhead/Winged-Helix Protein, Scurfin, Results in the Fatal Lymphoproliferative Disorder of the Scurfy Mouse. Nat. Genet. 2001, 27, 68–73. [Google Scholar] [CrossRef]
- Gershon, R.K.; Kondo, K. Cell Interactions in the Induction of Tolerance: The Role of Thymic Lymphocytes. Immunology 1970, 18, 723–737. [Google Scholar]
- Green, D.R.; Flood, P.M.; Gershon, R.K. Immunoregulatory T-Cell Pathways. Annu. Rev. Immunol. 1983, 1, 439–461. [Google Scholar] [CrossRef]
- Kronenberg, M.; Steinmetz, M.; Kobori, J.; Kraig, E.; Kapp, J.A.; Pierce, C.W.; Sorensen, C.M.; Suzuki, G.; Tada, T.; Hood, L. RNA Transcripts for I-J Polypeptides Are Apparently Not Encoded between the I-A and I-E Subregions of the Murine Major Histocompatibility Complex. Proc. Natl. Acad. Sci. USA 1983, 80, 5704–5708. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Wing, K.; Miyara, M. Regulatory T Cells—A Brief History and Perspective. Eur. J. Immunol. 2007, 37, S116–S123. [Google Scholar] [CrossRef]
- Kappler, J.W.; Roehm, N.; Marrack, P. T Cell Tolerance by Clonal Elimination in the Thymus. Cell 1987, 49, 273–280. [Google Scholar] [CrossRef]
- Kisielow, P.; Blüthmann, H.; Staerz, U.D.; Steinmetz, M.; von Boehmer, H. Tolerance in T-Cell-Receptor Transgenic Mice Involves Deletion of Nonmature CD4+8+ Thymocytes. Nature 1988, 333, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Goodnow, C.C.; Cyster, J.G.; Hartley, S.B.; Bell, S.E.; Cooke, M.P.; Healy, J.I.; Akkaraju, S.; Rathmell, J.C.; Pogue, S.L.; Shokat, K.P. Self-Tolerance Checkpoints in B Lymphocyte Development. Adv. Immunol. 1995, 59, 279–368. [Google Scholar] [CrossRef]
- Nishizuka, Y.; Sakakura, T. Thymus and Reproduction: Sex-Linked Dysgenesia of the Gonad after Neonatal Thymectomy in Mice. Science 1969, 166, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Penhale, W.J.; Farmer, A.; McKenna, R.P.; Irvine, W.J. Spontaneous Thyroiditis in Thymectomized and Irradiated Wistar Rats. Clin. Exp. Immunol. 1973, 15, 225–236. [Google Scholar] [PubMed]
- Sakaguchi, S.; Takahashi, T.; Nishizuka, Y. Study on Cellular Events in Post-Thymectomy Autoimmune Oophoritis in Mice. II. Requirement of Lyt-1 Cells in Normal Female Mice for the Prevention of Oophoritis. J. Exp. Med. 1982, 156, 1577–1586. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Takahashi, T.; Nishizuka, Y. Study on Cellular Events in Postthymectomy Autoimmune Oophoritis in Mice. I. Requirement of Lyt-1 Effector Cells for Oocytes Damage after Adoptive Transfer. J. Exp. Med. 1982, 156, 1565–1576. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Sakaguchi, N. Organ-Specific Autoimmune Disease Induced in Mice by Elimination of T Cell Subsets. V. Neonatal Administration of Cyclosporin A Causes Autoimmune Disease. J. Immunol. 1989, 142, 471–480. [Google Scholar] [CrossRef]
- Asano, M.; Toda, M.; Sakaguchi, N.; Sakaguchi, S. Autoimmune Disease as a Consequence of Developmental Abnormality of a T Cell Subpopulation. J. Exp. Med. 1996, 184, 387–396. [Google Scholar] [CrossRef]
- Sakaguchi, S. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of selftolerance causes various autoimmune diseases. J. Immunol. 1995, 155, 1151–1164. [Google Scholar] [CrossRef]
- McKeever, U.; Mordes, J.P.; Greiner, D.L.; Appel, M.C.; Rozing, J.; Handler, E.S.; Rossini, A.A. Adoptive Transfer of Autoimmune Diabetes and Thyroiditis to Athymic Rats. Proc. Natl Acad. Sci. USA 1990, 87, 7618–7622. [Google Scholar] [CrossRef]
- Powrie, F.; Mason, D. OX-22high CD4+ T Cells Induce Wasting Disease with Multiple Organ Pathology: Prevention by the OX-22low Subset. J. Exp. Med. 1990, 172, 1701–1708. [Google Scholar] [CrossRef]
- Smith, H. Tolerance mechanism in experimental ovarian and gastric autoimmune disease. J. Immunol. 1992, 149, 2212–2218. [Google Scholar] [CrossRef] [PubMed]
- Sugihara, S.; Izumi, Y.; Yoshioka, T.; Yagi, H.; Tsujimura, T.; Tarutani, O.; Kohno, Y.; Murakami, S.; Hamaoka, T.; Fujiwara, H. Autoimmune Thyroiditis Induced in Mice Depleted of Particular T Cell Subsets. I: Requirement of Lyt-1dull L3T4bright Normal T Cells for the Induction of Thyroiditis. J. Immunol. 1988, 141, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Liston, A. (Ed.) Regulatory T Cells in Health and Disease, 1st ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 129, ISBN 978-0-12-803415-6. [Google Scholar]
- Khattri, R.; Cox, T.; Yasayko, S.-A.; Ramsdell, F. An Essential Role for Scurfin in CD4+CD25+ T Regulatory Cells. Nat. Immunol. 2003, 4, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Chatila, T.A.; Blaeser, F.; Ho, N.; Lederman, H.M.; Voulgaropoulos, C.; Helms, C.; Bowcock, A.M. JM2, Encoding a Fork Head–Related Protein, Is Mutated in X-Linked Autoimmunity–Allergic Disregulation Syndrome. J. Clin. Investig. 2000, 106, R75–R81. [Google Scholar] [CrossRef]
- Wildin, R.S.; Ramsdell, F.; Peake, J.; Faravelli, F.; Casanova, J.-L.; Buist, N.; Levy-Lahad, E.; Mazzella, M.; Goulet, O.; Perroni, L.; et al. X-Linked Neonatal Diabetes Mellitus, Enteropathy and Endocrinopathy Syndrome Is the Human Equivalent of Mouse Scurfy. Nat. Genet. 2001, 27, 18–20. [Google Scholar] [CrossRef]
- Bennett, C.L.; Christie, J.; Ramsdell, F.; Brunkow, M.E.; Ferguson, P.J.; Whitesell, L.; Kelly, T.E.; Saulsbury, F.T.; Chance, P.F.; Ochs, H.D. The Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked Syndrome (IPEX) Is Caused by Mutations of FOXP3. Nat. Genet. 2001, 27, 20–21. [Google Scholar] [CrossRef]
- Dominguez-Villar, M.; Hafler, D.A. Regulatory T Cells in Autoimmune Disease. Nat. Immunol. 2018, 19, 665–673. [Google Scholar] [CrossRef]
- Shan, F.; Somasundaram, A.; Bruno, T.C.; Workman, C.J.; Vignali, D.A.A. Therapeutic Targeting of Regulatory T Cells in Cancer. Trends Cancer 2022, 8, 944–961. [Google Scholar] [CrossRef]
- Grover, P.; Goel, P.N.; Greene, M.I. Regulatory T Cells: Regulation of Identity and Function. Front. Immunol. 2021, 12, 750542. [Google Scholar] [CrossRef]
- Gootjes, C.; Zwaginga, J.J.; Roep, B.O.; Nikolic, T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024, 13, 941. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.L; Sjaastad, L.E.; Farrar, M.A. Regulatory T Cell Development in the Thymus. J. Immunol. 2019, 203, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- Lio, C.-W.J.; Hsieh, C.-S. A Two-Step Process for Thymic Regulatory T Cell Development. Immunity 2008, 28, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Burchill, M.A.; Yang, J.; Vogtenhuber, C.; Blazar, B.R.; Farrar, M.A. IL-2 Receptor Beta-Dependent STAT5 Activation Is Required for the Development of Foxp3+ Regulatory T Cells. J. Immunol. 2007, 178, 280–290. [Google Scholar] [CrossRef]
- Dikiy, S.; Li, J.; Bai, L.; Jiang, M.; Janke, L.; Zong, X.; Hao, X.; Hoyos, B.; Wang, Z.-M.; Xu, B.; et al. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 2021, 54, 931–946.e11. [Google Scholar] [CrossRef]
- Mahmud, S.A.; Manlove, L.S.; Farrar, M.A. Interleukin-2 and STAT5 in regulatory T cell development and function. JAK-STAT 2013, 2, e23154. [Google Scholar] [CrossRef]
- Salomon, B.; Lenschow, D.J.; Rhee, L.; Ashourian, N.; Singh, B.; Sharpe, A.; Bluestone, J.A. B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4+CD25+ Immunoregulatory T Cells That Control Autoimmune Diabetes. Immunity 2000, 12, 431–440. [Google Scholar] [CrossRef]
- Hayes, E.T.; Mittelsteadt, K.L.; Campbell, D.J. ICOS signaling limits regulatory T cell accumulation and function in visceral adipose tissue. J. Exp. Med. 2020, 218. [Google Scholar] [CrossRef]
- Nazzal, D.; Gradolatto, A.; Truffault, F.; Bismuth, J.; Berrih-Aknin, S. Human Thymus Medullary Epithelial Cells Promote Regulatory T-Cell Generation by Stimulating Interleukin-2 Production via ICOS Ligand. Cell. Death Dis. 2014, 5, e1420. [Google Scholar] [CrossRef]
- Malchow, S.; Leventhal, D.S.; Nishi, S.; Fischer, B.I.; Shen, L.; Paner, G.P.; Amit, A.S.; Kang, C.; Geddes, J.E.; Allison, J.P.; et al. Aire-Dependent Thymic Development of Tumor-Associated Regulatory T Cells. Science 2013, 339, 1219–1224. [Google Scholar] [CrossRef]
- Perry, J.S.A.; Lio, C.-W.J.; Kau, A.L.; Nutsch, K.; Yang, Z.; Gordon, J.I.; Murphy, K.M.; Hsieh, C.-S. Distinct Contributions of Aire and Antigen-Presenting-Cell Subsets to the Generation of Self-Tolerance in the Thymus. Immunity 2014, 41, 414–426. [Google Scholar] [CrossRef]
- Takaba, H.; Morishita, Y.; Tomofuji, Y.; Danks, L.; Nitta, T.; Komatsu, N.; Kodama, T.; Takayanagi, H. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell 2015, 163, 975–987. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.L.; Mahmud, S.A.; Sjaastad, L.E.; Williams, J.B.; Spanier, J.A.; Simeonov, D.R.; Ruscher, R.; Huang, W.; Proekt, I.; Miller, C.N.; et al. Thymic Regulatory T Cells Arise via Two Distinct Developmental Programs. Nat. Immunol. 2019, 20, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Kleinewietfeld, M.; Hafler, D.A. The Plasticity of Human Treg and Th17 Cells and Its Role in Autoimmunity. Semin. Immunol. 2013, 25, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Castillo, E.; García-Rasilla, V.Y.; García-Patiño, M.G.; Licona-Limón, P. Stability and Plasticity of Regulatory T Cells in Health and Disease. J. Leukoc. Biol. 2024, 116, 33–53. [Google Scholar] [CrossRef]
- Cheng, H.; Nan, F.; Ji, N.; Ma, X.; Zhang, J.; Liang, H.; Zhang, W.; Nakatsukasa, H.; Zhang, H.; Jin, W.; et al. Regulatory T Cell Therapy Promotes TGF-β and IL-6-Dependent pro-Inflammatory Th17 Cell Generation by Reducing IL-2. Nat. Commun. 2025, 16, 7644. [Google Scholar] [CrossRef]
- Kressler, C.; Gasparoni, G.; Nordström, K.; Hamo, D.; Salhab, A.; Dimitropoulos, C.; Tierling, S.; Reinke, P.; Volk, H.-D.; Walter, J.; et al. Targeted De-Methylation of the FOXP3-TSDR Is Sufficient to Induce Physiological FOXP3 Expression but Not a Functional Treg Phenotype. Front. Immunol. 2021, 11, 609891. [Google Scholar] [CrossRef]
- Zong, X.; Hao, X.; Xu, B.; Crawford, J.C.; Wright, S.; Li, J.; Zhang, Y.; Bai, L.; He, M.; Jiang, M.; et al. Foxp3 Enhancers Synergize to Maximize Regulatory T Cell Suppressive Capacity. J. Exp. Med. 2021, 218, e20202415. [Google Scholar] [CrossRef]
- Chen, Y.; Kuchroo, V.K.; Inobe, J.; Hafler, D.A.; Weiner, H.L. Regulatory T Cell Clones Induced by Oral Tolerance: Suppression of Autoimmune Encephalomyelitis. Science 1994, 265, 1237–1240. [Google Scholar] [CrossRef]
- Lee, S.; Park, K.; Kim, J.; Min, H.; Seong, R.H. Foxp3 Expression in Induced Regulatory T Cells Is Stabilized by C/EBP in Inflammatory Environments. EMBO Rep 2018, 19, e45995. [Google Scholar] [CrossRef]
- Ramón-Vázquez, A.; Flood, P.; Cashman, T.L.; Patil, P.; Ghosh, S. T Lymphocyte Plasticity in Chronic Inflammatory Diseases: The Emerging Role of the Ikaros Family as a Key Th17-Treg Switch. Autoimmun. Rev. 2025, 24, 103735. [Google Scholar] [CrossRef] [PubMed]
- Groux, H.; O’Garra, A.; Bigler, M.; Rouleau, M.; Antonenko, S.; de Vries, J.E.; Roncarolo, M.G. A CD4+T-Cell Subset Inhibits Antigen-Specific T-Cell Responses and Prevents Colitis. Nature 1997, 389, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Cottrez, F.; Hurst, S.D.; Coffman, R.L.; Groux, H. T Regulatory Cells 1 Inhibit a Th2-Specific Response In Vivo. J. Immunol. 2000, 165, 4848–4853. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Weaver, C.T.; Lazenby, A.; Elson, C.O. Bacterial-Reactive T Regulatory Cells Inhibit Pathogenic Immune Responses to the Enteric Flora. J. Immunol. 2002, 169, 6112–6119. [Google Scholar] [CrossRef]
- Wildbaum, G.; Netzer, N.; Karin, N. Tr1 Cell–Dependent Active Tolerance Blunts the Pathogenic Effects of Determinant Spreading. J. Clin. Investig. 2002, 110, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lee, W.-H.; Yun, P.; Snow, P.; Liu, C.-P. Induction of Autoantigen-Specific Th2 and Tr1 Regulatory T Cells and Modulation of Autoimmune Diabetes. J. Immunol. 2003, 171, 733–744. [Google Scholar] [CrossRef]
- Satoguina, J.; Mempel, M.; Larbi, J.; Badusche, M.; Löliger, C.; Adjei, O.; Gachelin, G.; Fleischer, B.; Hoerauf, A. Antigen-Specific T Regulatory-1 Cells Are Associated with Immunosuppression in a Chronic Helminth Infection (Onchocerciasis). Microbes Infect. 2002, 4, 1291–1300. [Google Scholar] [CrossRef]
- Chen, W.; Jin, W.; Hardegen, N.; Lei, K.; Li, L.; Marinos, N.; McGrady, G.; Wahl, S.M. Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J. Exp. Med. 2003, 198, 1875–1886. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Vignali, D.A.A.; Rudensky, A.Y.; Niec, R.E.; Waldmann, H. The Plasticity and Stability of Regulatory T Cells. Nat. Rev. Immunol. 2013, 13, 461–467. [Google Scholar] [CrossRef]
- Collison, L.W.; Chaturvedi, V.; Henderson, A.L.; Giacomin, P.R.; Guy, C.; Bankoti, J.; Finkelstein, D.; Forbes, K.; Workman, C.J.; Brown, S.A.; et al. IL-35-Mediated Induction of a Potent Regulatory T Cell Population. Nat. Immunol. 2010, 11, 1093–1101. [Google Scholar] [CrossRef]
- Fisher, M.S.; Sennikov, S.V. T-Regulatory Cells for the Treatment of Autoimmune Diseases. Front. Immunol. 2025, 16. [Google Scholar] [CrossRef]
- Shevach, E.M.; Thornton, A.M. TTregs, PTregs, and ITregs: Similarities and Differences. Immunol. Rev. 2014, 259, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Larson, J.H.; Blazar, B.R.; Abdi, R.; Bromberg, J.S. Foxp3+CD8+ Regulatory T Cells: Bona Fide Tregs with Cytotoxic Function. Trends Immunol. 2025, 46, 324–337. [Google Scholar] [CrossRef]
- Shimokawa, C.; Kato, T.; Takeuchi, T.; Ohshima, N.; Furuki, T.; Ohtsu, Y.; Suzue, K.; Imai, T.; Obi, S.; Olia, A.; et al. CD8+ Regulatory T Cells Are Critical in Prevention of Autoimmune-Mediated Diabetes. Nat. Commun. 2020, 11, 1922–1929. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Liao, W.; Liu, Y.; Yang, M.; Ma, C.; Wu, H.; Zhao, M.; Zhang, X.; Qiu, Y.; Lu, Q.; et al. TGF-β and Eomes Control the Homeostasis of CD8+ Regulatory T Cells. J. Exp. Med. 2021, 218, e20200030. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.; Jia, Y.; Wang, R.; Zhu, J.; Zhang, X.; Xu, W.; Liu, S.; He, Q.; Li, X. Plasmacytoid Dendritic Cells Mediate the Tolerogenic Effect of CD8+regulatory T Cells in a Rat Tolerant Liver Transplantation Model. Transpl. Immunol. 2022, 70, 101508. [Google Scholar] [CrossRef] [PubMed]
- Xystrakis, E. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 2004, 104, 3294–3301. [Google Scholar] [CrossRef]
- Fan, J.-N.; Ho, H.; Chiang, B.-L. Characterization of Novel CD8+ Regulatory T Cells and Their Modulatory Effects in Murine Model of Inflammatory Bowel Disease. Cell. Mol. Life Sci. 2024, 81, 327. [Google Scholar] [CrossRef]
- Sheng, H.; Marrero, I.; Maricic, I.; Fanchiang, S.S.; Zhang, S.; Sant’Angelo, D.B.; Kumar, V. Distinct PLZF+CD8αα+ Unconventional T Cells Enriched in Liver Use a Cytotoxic Mechanism to Limit Autoimmunity. J. Immunol. 2019, 203, 2150–2162. [Google Scholar] [CrossRef]
- Plaumann, J.; Engelhardt, M.; Awwad, M.H.S.; Echchannaoui, H.; Amman, E.; Raab, M.S.; Hillengass, J.; Halama, N.; Neuber, B.; Müller-Tidow, C.; et al. IL-10 Inducible CD8+ Regulatory T-Cells Are Enriched in Patients with Multiple Myeloma and Impact the Generation of Antigen-Specific T-Cells. Cancer Immunol. Immunother. 2018, 67, 1695–1707. [Google Scholar] [CrossRef]
- Churlaud, G.; Pitoiset, F.; Jebbawi, F.; Lorenzon, R.; Bellier, B.; Rosenzwajg, M.; Klatzmann, D. Human and Mouse CD8+CD25+FOXP3+ Regulatory T Cells at Steady State and during Interleukin-2 Therapy. Front. Immunol. 2015, 6, 171. [Google Scholar] [CrossRef] [PubMed]
- Robb, R.J.; Lineburg, K.E.; Kuns, R.D.; Wilson, Y.A.; Raffelt, N.C.; Olver, S.D.; Varelias, A.; Alexander, K.A.; Teal, B.E.; Sparwasser, T.; et al. Identification and Expansion of Highly Suppressive CD8+FoxP3+ Regulatory T Cells after Experimental Allogeneic Bone Marrow Transplantation. Blood 2012, 119, 5898–5908. [Google Scholar] [CrossRef] [PubMed]
- Beres, A.J.; Haribhai, D.; Chadwick, A.C.; Gonyo, P.J.; Williams, C.B.; Drobyski, W.R. CD8+ Foxp3+ Regulatory T Cells Are Induced during Graft-versus-Host Disease and Mitigate Disease Severity. J. Immunol. 2012, 189, 464–474. [Google Scholar] [CrossRef]
- Pellegrino, M.; Crinò, A.; Rosado, M.M.; Fierabracci, A. Identification and Functional Characterization of CD8+ T Regulatory Cells in Type 1 Diabetes Patients. PLoS ONE 2019, 14, e0210839. [Google Scholar] [CrossRef]
- Lozano, T.; Conde, E.; Martín-Otal, C.; Navarro, F.; Lasarte-Cia, A.; Nasrallah, R.; Alignani, D.; Gorraiz, M.; Sarobe, P.; Romero, J.P.; et al. TCR-Induced FOXP3 Expression by CD8+ T Cells Impairs Their Anti-Tumor Activity. Cancer Lett. 2022, 528, 45–58. [Google Scholar] [CrossRef]
- Lin, L.; Dai, F.; Wei, J.; Chen, Z. Influences of CD8+ Tregs on Peripheral Blood Mononuclear Cells from Allergic Rhinitis Patients. Laryngoscope 2021, 131, 316–323. [Google Scholar] [CrossRef]
- Badr, M.E.; Zhang, Z.; Tai, X.; Singer, A. CD8 T Cell Tolerance Results from Eviction of Immature Autoreactive Cells from the Thymus. Science 2023, 382, 534–541. [Google Scholar] [CrossRef]
- Vignali, D.A. How regulatory T cells work. Nat. Rev. Immunol. 2008, 8, 523–532. [Google Scholar] [CrossRef]
- Romano, M.; Fanelli, G.; Albany, C.J.; Giganti, G.; Lombardi, G. Past, Present, and Future of Regulatory T Cell Therapy in Transplantation and Autoimmunity. Front. Immunol. 2019, 10, 43. [Google Scholar] [CrossRef]
- Malviya, M.; Saoudi, A.; Bauer, J.; Fillatreau, S.; Liblau, R. Treatment of Experimental Autoimmune Encephalomyelitis with Engineered Bi-Specific Foxp3+ Regulatory CD4+ T Cells. J. Autoimmun. 2020, 108, 102401. [Google Scholar] [CrossRef]
- Raffin, C.; Vo, L.T.; Bluestone, J.A. Treg Cell-Based Therapies: Challenges and Perspectives. Nat. Rev. Immunol. 2020, 20, 158–172. [Google Scholar] [CrossRef]
- Li, J.; Tan, J.; Martino, M.M.; Lui, K.O. Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front. Immunol. 2018, 9, 585. [Google Scholar] [CrossRef]
- Taams, L.S.; van Amelsfort, J.M.R.; Tiemessen, M.M.; Jacobs, K.M.G.; de Jong, E.C.; Akbar, A.N.; Bijlsma, J.W.J.; Lafeber, F.P.J.G. Modulation of Monocyte/Macrophage Function by Human CD4+CD25+ Regulatory T Cells. Hum. Immunol. 2005, 66, 222–230. [Google Scholar] [CrossRef]
- Lewkowicz, N.; Klink, M.; Mycko, M.P.; Lewkowicz, P. Neutrophil—CD4+ CD25+ T Regulatory Cell Interactions: A Possible New Mechanism of Infectious Tolerance. Immunobiology 2013, 218, 455–464. [Google Scholar] [CrossRef]
- Bacchetta, R.; Barzaghi, F.; Roncarolo, M. From IPEX Syndrome to FOXP3 Mutation: A Lesson on Immune Dysregulation. Ann. N. Y. Acad. Sci. 2018, 1417, 5–22. [Google Scholar] [CrossRef]
- Goodwin, M.; Lee, E.; Lakshmanan, U.; Shipp, S.; Froessl, L.; Barzaghi, F.; Passerini, L.; Narula, M.; Sheikali, A.; Lee, C.M.; et al. CRISPR-Based Gene Editing Enables FOXP3 Gene Repair in IPEX Patient Cells. Sci. Adv. 2020, 6, eaaz0571. [Google Scholar] [CrossRef] [PubMed]
- Haseda, F.; Imagawa, A.; Murase-Mishiba, Y.; Terasaki, J.; Hanafusa, T. CD4+CD45RA−FoxP3high Activated Regulatory T Cells Are Functionally Impaired and Related to Residual Insulin-secreting Capacity in Patients with Type 1 Diabetes. Clin. Exp. Immunol. 2013, 173, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Noori-Zadeh, A.; Mesbah-Namin, S.A.; Bistoon-beigloo, S.; Bakhtiyari, S.; Abbaszadeh, H.-A.; Darabi, S.; Rajabibazl, M.; Abdanipour, A. Regulatory T Cell Number in Multiple Sclerosis Patients: A Meta-Analysis. Mult. Scler. Relat. Disord. 2016, 5, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Liberal, R.; Grant, C.R.; Holder, B.S.; Cardone, J.; Martinez-Llordella, M.; Ma, Y.; Heneghan, M.A.; Mieli-Vergani, G.; Vergani, D.; Longhi, M.S. In Autoimmune Hepatitis Type 1 or the Autoimmune Hepatitis–Sclerosing Cholangitis Variant Defective Regulatory T-cell Responsiveness to IL-2 Results in Low IL-10 Production and Impaired Suppression. Hepatology 2015, 62, 863–875. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Rani, S.; Kumaran, M.S.; Bhatia, A.; Parsad, D. Expression of Th17- and Treg-specific Transcription Factors in Vitiligo Patients. Int. J. Dermatol. 2020, 59, 474–481. [Google Scholar] [CrossRef]
- Yamada, A.; Arakaki, R.; Saito, M.; Tsunematsu, T.; Kudo, Y.; Ishimaru, N. Role of Regulatory T Cell in the Pathogenesis of Inflammatory Bowel Disease. World J. Gastroenterol. WJG 2016, 22, 2195–2205. [Google Scholar] [CrossRef]
- Bluestone, J.A.; McKenzie, B.S.; Beilke, J.; Ramsdell, F. Opportunities for Treg Cell Therapy for the Treatment of Human Disease. Front. Immunol. 2023, 14, 1166135. [Google Scholar] [CrossRef] [PubMed]
- Selck, C.; Dominguez-Villar, M. Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Front. Immunol. 2021, 12, 661875. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S.; Kawakami, R.; Mikami, N. Treg-Based Immunotherapy for Antigen-Specific Immune Suppression and Stable Tolerance Induction: A Perspective. Immunother. Adv. 2023, 3, Itad007. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Q.; Dorfman, R.G.; Huang, X.; Fan, T.; Zhang, H.; Zhang, J.; Yu, C. Butyrate Inhibits Interleukin-17 and Generates Tregs to Ameliorate Colorectal Colitis in Rats. BMC Gastroenterol. 2016, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-Cell Generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Shaikh, N.A.; Zhang, X.B.; Abdalla, M.I.; Baylink, D.J.; Tang, X. Enhancing Human Treg Cell Induction through Engineered Dendritic Cells and Zinc Supplementation. Crit. Rev. Immunol. 2024, 44, 37–52. [Google Scholar] [CrossRef]
- Obregon, C.; Kumar, R.; Pascual, M.A.; Vassalli, G.; Golshayan, D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front. Immunol. 2017, 8, 1514. [Google Scholar] [CrossRef]
- Mansilla, M.J.; Hilkens, C.M.U.; Martínez-Cáceres, E.M. Challenges in Tolerogenic Dendritic Cell Therapy for Autoimmune Diseases: The Route of Administration. Immunother. Adv. 2023, 3, ltad012. [Google Scholar] [CrossRef]
- Morante-Palacios, O.; Fondelli, F.; Ballestar, E.; Martínez-Cáceres, E.M. Tolerogenic Dendritic Cells in Autoimmunity and Inflammatory Diseases. Trends Immunol. 2021, 42, 59–75. [Google Scholar] [CrossRef]
- Ferreira, L.M.R.; Muller, Y.D.; Bluestone, J.A.; Tang, Q. Next-Generation Regulatory T Cell Therapy. Nat. Rev. Drug Discov. 2019, 18, 749–769. [Google Scholar] [CrossRef] [PubMed]
- Marek-Trzonkowska, N.; Myśliwiec, M.; Dobyszuk, A.; Grabowska, M.; Derkowska, I.; Juścińska, J.; Owczuk, R.; Szadkowska, A.; Witkowski, P.; Młynarski, W.; et al. Therapy of Type 1 Diabetes with CD4+CD25highCD127-Regulatory T Cells Prolongs Survival of Pancreatic Islets—Results of One Year Follow-Up. Clin. Immunol. 2014, 153, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Bluestone, J.A.; Buckner, J.H.; Fitch, M.; Gitelman, S.E.; Gupta, S.; Hellerstein, M.K.; Herold, K.C.; Lares, A.; Lee, M.R.; Li, K.; et al. Type 1 Diabetes Immunotherapy Using Polyclonal Regulatory T Cells. Sci. Transl. Med. 2015, 7, 315ra189. [Google Scholar] [CrossRef]
- Dong, S.; Hiam-Galvez, K.J.; Mowery, C.T.; Herold, K.C.; Gitelman, S.E.; Esensten, J.H.; Liu, W.; Lares, A.P.; Leinbach, A.S.; Lee, M.; et al. The Effect of Low-Dose IL-2 and Treg Adoptive Cell Therapy in Patients with Type 1 Diabetes. JCI Insight 2021, 6, e147474. [Google Scholar] [CrossRef]
- Dall’Era, M.; Pauli, M.L.; Remedios, K.; Taravati, K.; Sandova, P.M.; Putnam, A.L.; Lares, A.; Haemel, A.; Tang, Q.; Hellerstein, M.; et al. Adoptive Treg Cell Therapy in a Patient With Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 431–440. [Google Scholar] [CrossRef]
- Voskens, C.; Stoica, D.; Rosenberg, M.; Vitali, F.; Zundler, S.; Ganslmayer, M.; Knott, H.; Wiesinger, M.; Wunder, J.; Kummer, M.; et al. Autologous Regulatory T-Cell Transfer in Refractory Ulcerative Colitis with Concomitant Primary Sclerosing Cholangitis. Gut 2023, 72, 49–53. [Google Scholar] [CrossRef]
- Chwojnicki, K.; Iwaszkiewicz-Grześ, D.; Jankowska, A.; Zieliński, M.; Łowiec, P.; Gliwiński, M.; Grzywińska, M.; Kowalczyk, K.; Konarzewska, A.; Glasner, P.; et al. Administration of CD4+CD25highCD127−FoxP3+ Regulatory T Cells for Relapsing-Remitting Multiple Sclerosis: A Phase 1 Study. BioDrugs 2021, 35, 47–60. [Google Scholar] [CrossRef]
- Motwani, K.; Peters, L.D.; Vliegen, W.H.; El-sayed, A.G.; Seay, H.R.; Lopez, M.C.; Baker, H.V.; Posgai, A.L.; Brusko, M.A.; Perry, D.J.; et al. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front. Immunol. 2020, 11, 611. [Google Scholar] [CrossRef]
- Dijke, I.E.; Hoeppli, R.E.; Ellis, T.; Pearcey, J.; Huang, Q.; McMurchy, A.N.; Boer, K.; Peeters, A.M.A.; Aubert, G.; Larsen, I.; et al. Discarded Human Thymus Is a Novel Source of Stable and Long-Lived Therapeutic Regulatory T Cells. Am. J. Transplant. 2016, 16, 58–71. [Google Scholar] [CrossRef]
- Di Ianni, M.; Del Papa, B.; Cecchini, D.; Bonifacio, E.; Moretti, L.; Zei, T.; Iacucci Ostini, R.; Falzetti, F.; Fontana, L.; Tagliapietra, G.; et al. Immunomagnetic Isolation of CD4+CD25+FoxP3+ Natural T Regulatory Lymphocytes for Clinical Applications. Clin. Exp. Immunol. 2009, 156, 246–253. [Google Scholar] [CrossRef]
- Trzonkowski, P.; Bieniaszewska, M.; Juścińska, J.; Dobyszuk, A.; Krzystyniak, A.; Marek, N.; Myśliwska, J.; Hellmann, A. First-in-Man Clinical Results of the Treatment of Patients with Graft versus Host Disease with Human Ex Vivo Expanded CD4+CD25+CD127− T Regulatory Cells. Clin. Immunol. 2009, 133, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Tuomela, K.; Levings, M.K. Genetic Engineering of Regulatory T Cells for Treatment of Autoimmune Disorders Including Type 1 Diabetes. Diabetologia 2024, 67, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.; Eder, R.; Boeld, T.J.; Doser, K.; Piseshka, B.; Andreesen, R.; Edinger, M. Only the CD45RA+ Subpopulation of CD4+CD25high T Cells Gives Rise to Homogeneous Regulatory T-Cell Lines upon in Vitro Expansion. Blood 2006, 108, 4260–4267. [Google Scholar] [CrossRef] [PubMed]
- Voskens, C.J.; Fischer, A.; Roessner, S.; Lorenz, C.; Hirschmann, S.; Atreya, R.; Neufert, C.; Atreya, I.; Neurath, M.F.; Schuler, G. Characterization and Expansion of Autologous GMP-Ready Regulatory T Cells for TREG-Based Cell Therapy in Patients with Ulcerative Colitis. Inflamm. Bowel Dis. 2017, 23, 1348–1359. [Google Scholar] [CrossRef]
- Levings, M.K.; Sangregorio, R.; Roncarolo, M.-G. Human Cd25+Cd4+ T Regulatory Cells Suppress Naive and Memory T Cell Proliferation and Can Be Expanded in Vitro without Loss of Function. J. Exp. Med. 2001, 193, 1295–1302. [Google Scholar] [CrossRef]
- Putnam, A.L.; Brusko, T.M.; Lee, M.R.; Liu, W.; Szot, G.L.; Ghosh, T.; Atkinson, M.A.; Bluestone, J.A. Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes. Diabetes 2009, 58, 652–662. [Google Scholar] [CrossRef]
- Ulbar, F.; Villanova, I.; Giancola, R.; Baldoni, S.; Guardalupi, F.; Fabi, B.; Olioso, P.; Capone, A.; Sola, R.; Ciardelli, S.; et al. Clinical-Grade Expanded Regulatory T Cells Are Enriched with Highly Suppressive Cells Producing IL-10, Granzyme B, and IL-35. Biol. Blood Marrow Transplant. 2020, 26, 2204–2210. [Google Scholar] [CrossRef]
- Jarvis, L.B.; Rainbow, D.B.; Coppard, V.; Howlett, S.K.; Georgieva, Z.; Davies, J.L.; Mullay, H.K.; Hester, J.; Ashmore, T.; Van Den Bosch, A.; et al. Therapeutically Expanded Human Regulatory T-Cells Are Super-Suppressive Due to HIF1A Induced Expression of CD73. Commun. Biol 2021, 4, 1186. [Google Scholar] [CrossRef]
- Terry, L.V.; Oo, Y.H. The Next Frontier of Regulatory T Cells: Promising Immunotherapy for Autoimmune Diseases and Organ Transplantations. Front. Immunol. 2020, 11, 565518. [Google Scholar] [CrossRef]
- Desreumaux, P.; Foussat, A.; Allez, M.; Beaugerie, L.; Hébuterne, X.; Bouhnik, Y.; Nachury, M.; Brun, V.; Bastian, H.; Belmonte, N.; et al. Safety and Efficacy of Antigen-Specific Regulatory T-Cell Therapy for Patients With Refractory Crohn’s Disease. Gastroenterology 2012, 143, 1207–1217.e2. [Google Scholar] [CrossRef]
- Marek-Trzonkowska, N.; Myśliwiec, M.; Dobyszuk, A.; Grabowska, M.; Techmańska, I.; Juścińska, J.; Wujtewicz, M.A.; Witkowski, P.; Młynarski, W.; Balcerska, A.; et al. Administration of CD4+CD25highCD127− Regulatory T Cells Preserves β-Cell Function in Type 1 Diabetes in Children. Diabetes Care 2012, 35, 1817–1820. [Google Scholar] [CrossRef] [PubMed]
- Bender, C.; Wiedeman, A.E.; Hu, A.; Ylescupidez, A.; Sietsema, W.K.; Herold, K.C.; Griffin, K.J.; Gitelman, S.E.; Long, S.A. A Phase 2 Randomized Trial with Autologous Polyclonal Expanded Regulatory T Cells in Children with New-Onset Type 1 Diabetes. Sci. Transl. Med. 2024, 16, eadn2404. [Google Scholar] [CrossRef] [PubMed]
- Blat, D.; Zigmond, E.; Alteber, Z.; Waks, T.; Eshhar, Z. Suppression of Murine Colitis and Its Associated Cancer by Carcinoembryonic Antigen-Specific Regulatory T Cells. Mol. Ther. 2014, 22, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Fransson, M.; Piras, E.; Burman, J.; Nilsson, B.; Essand, M.; Lu, B.; Harris, R.A.; Magnusson, P.U.; Brittebo, E.; Loskog, A.S. CAR/FoxP3-Engineered T Regulatory Cells Target the CNS and Suppress EAE upon Intranasal Delivery. J. Neuroinflammation 2012, 9, 112. [Google Scholar] [CrossRef]
- Veerapathran, A.; Pidala, J.; Beato, F.; Yu, X.-Z.; Anasetti, C. Ex Vivo Expansion of Human Tregs Specific for Alloantigens Presented Directly or Indirectly. Blood 2011, 118, 5671–5680. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Hara, H.; Tai, H.-C.; Long, C.; Tokita, D.; Yeh, P.; Ayares, D.; Morelli, A.E.; Cooper, D.K.C. Suppressive Efficacy and Proliferative Capacity of Human Regulatory T Cells in Allogeneic and Xenogeneic Responses. Transplantation 2008, 86, 1452–1462. [Google Scholar] [CrossRef]
- Serr, I.; Drost, F.; Schubert, B.; Daniel, C. Antigen-Specific Treg Therapy in Type 1 Diabetes—Challenges and Opportunities. Front. Immunol. 2021, 12, 712870. [Google Scholar] [CrossRef]
- Taams, L.S.; Smith, J.; Rustin, M.H.; Salmon, M.; Poulter, L.W.; Akbar, A.N. Human Anergic/Suppressive CD4+CD25+ T Cells: A Highly Differentiated and Apoptosis-prone Population. Eur. J. Immunol. 2001, 31, 1122–1131. [Google Scholar] [CrossRef]
- Koenecke, C.; Czeloth, N.; Bubke, A.; Schmitz, S.; Kissenpfennig, A.; Malissen, B.; Huehn, J.; Ganser, A.; Förster, R.; Prinz, I. Alloantigen-Specific de Novo-Induced Foxp3+ Treg Revert in Vivo and Do Not Protect from Experimental GVHD. Eur. J. Immunol. 2009, 39, 3091–3096. [Google Scholar] [CrossRef]
- Mikami, N.; Kawakami, R.; Chen, K.Y.; Sugimoto, A.; Ohkura, N.; Sakaguchi, S. Epigenetic Conversion of Conventional T Cells into Regulatory T Cells by CD28 Signal Deprivation. Proc. Natl. Acad. Sci. USA 2020, 117, 12258–12268. [Google Scholar] [CrossRef]
- Akamatsu, M.; Mikami, N.; Ohkura, N.; Kawakami, R.; Kitagawa, Y.; Sugimoto, A.; Hirota, K.; Nakamura, N.; Ujihara, S.; Kurosaki, T.; et al. Conversion of Antigen-Specific Effector/Memory T Cells into Foxp3-Expressing Treg Cells by Inhibition of CDK8/19. Sci. Immunol. 2019, 4, eaaw2707. [Google Scholar] [CrossRef]
- Sasidharan Nair, V.; Song, M.H.; Oh, K.I. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner. J. Immunol. 2016, 196, 2119–2131. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Trifari, S.; Äijö, T.; Tsagaratou, A.; Pastor, W.A.; Zepeda-Martínez, J.A.; Lio, C.-W.J.; Li, X.; Huang, Y.; Vijayanand, P.; et al. Control of Foxp3 Stability through Modulation of TET Activity. J. Exp. Med. 2016, 213, 377–397. [Google Scholar] [CrossRef] [PubMed]
- Requejo Cier, C.J.; Valentini, N.; Lamarche, C. Unlocking the Potential of Tregs: Innovations in CAR Technology. Front. Mol. Biosci. 2023, 10, 1267762. [Google Scholar] [CrossRef] [PubMed]
- Kalin, J.H.; Butler, K.V.; Akimova, T.; Hancock, W.W.; Kozikowski, A.P. Second-Generation Histone Deacetylase 6 Inhibitors Enhance the Immunosuppressive Effects of Foxp3+ T-Regulatory Cells. J. Med. Chem. 2012, 55, 639–651. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.S.; Jang, S.W.; Lee, G.R. Histone Deacetylase 6 Plays an Important Role in TGF-β-Induced Murine Treg Cell Differentiation by Regulating Cell Proliferation. Sci. Rep. 2022, 12, 22550. [Google Scholar] [CrossRef]
- Passerini, L.; Mel, E.R.; Sartirana, C.; Fousteri, G.; Bondanza, A.; Naldini, L.; Roncarolo, M.G.; Bacchetta, R. CD4 + T Cells from IPEX Patients Convert into Functional and Stable Regulatory T Cells by FOXP3 Gene Transfer. Sci. Transl. Med. 2013, 5, 215ra174. [Google Scholar] [CrossRef]
- Honaker, Y.; Hubbard, N.; Xiang, Y.; Fisher, L.; Hagin, D.; Sommer, K.; Song, Y.; Yang, S.J.; Lopez, C.; Tappen, T.; et al. Gene Editing to Induce FOXP3 Expression in Human CD4 + T Cells Leads to a Stable Regulatory Phenotype and Function. Sci. Transl. Med. 2020, 12, eaay6422. [Google Scholar] [CrossRef]
- Bulygin, A.S.; Khantakova, J.N.; Fisher, M.S.; Tereshchenko, V.P.; Kurilin, V.V.; Shkaruba, N.S.; Sennikov, S.V. Generation and Characterization of Stable Antigen-Specific T-Regulatory Cells Using Blockers of Cyclin-Dependent Protein Kinases. Immunologiya 2023, 44, 147–156. [Google Scholar] [CrossRef]
- Borna, S.; Lee, E.; Sato, Y.; Bacchetta, R. Towards Gene Therapy for IPEX Syndrome. Eur. J. Immunol. 2022, 52, 705–716. [Google Scholar] [CrossRef]
- Yang, S.J.; Singh, A.K.; Drow, T.; Tappen, T.; Honaker, Y.; Barahmand-pour-Whitman, F.; Linsley, P.S.; Cerosaletti, K.; Mauk, K.; Xiang, Y.; et al. Pancreatic Islet-Specific Engineered Tregs Exhibit Robust Antigen-Specific and Bystander Immune Suppression in Type 1 Diabetes Models. Sci. Transl. Med. 2022, 14, eabn1716. [Google Scholar] [CrossRef] [PubMed]
- Tenspolde, M.; Zimmermann, K.; Weber, L.C.; Hapke, M.; Lieber, M.; Dywicki, J.; Frenzel, A.; Hust, M.; Galla, M.; Buitrago-Molina, L.E.; et al. Regulatory T Cells Engineered with a Novel Insulin-Specific Chimeric Antigen Receptor as a Candidate Immunotherapy for Type 1 Diabetes. J. Autoimmun. 2019, 103, 102289. [Google Scholar] [CrossRef] [PubMed]
- Bittner, S.; Hehlgans, T.; Feuerer, M. Engineered Treg Cells as Putative Therapeutics against Inflammatory Diseases and Beyond. Trends Immunol. 2023, 44, 468–483. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.J.; Li, Y.F.; El-Gamil, M.; Robbins, P.F.; Rosenberg, S.A.; Morgan, R.A. Enhanced Antitumor Activity of T Cells Engineered to Express T-Cell Receptors with a Second Disulfide Bond. Cancer Res. 2007, 67, 3898–3903. [Google Scholar] [CrossRef]
- Kuball, J.; Dossett, M.L.; Wolfl, M.; Ho, W.Y.; Voss, R.-H.; Fowler, C.; Greenberg, P.D. Facilitating Matched Pairing and Expression of TCR Chains Introduced into Human T Cells. Blood 2007, 109, 2331–2338. [Google Scholar] [CrossRef]
- Sommermeyer, D.; Uckert, W. Minimal Amino Acid Exchange in Human TCR Constant Regions Fosters Improved Function of TCR Gene-Modified T Cells. J. Immunol. 2010, 184, 6223–6231. [Google Scholar] [CrossRef]
- Bialer, G.; Horovitz-Fried, M.; Ya’acobi, S.; Morgan, R.A.; Cohen, C.J. Selected Murine Residues Endow Human TCR with Enhanced Tumor Recognition. J. Immunol. 2010, 184, 6232–6241. [Google Scholar] [CrossRef]
- Deshpande, D.; Orange, J. Reprogramming Human T Cell Function and Specificity With Non–Viral Genome Targeting. Pediatrics 2019, 144, S63–S64. [Google Scholar] [CrossRef]
- Dawson, N.A.J.; Rosado-Sánchez, I.; Novakovsky, G.E.; Fung, V.C.W.; Huang, Q.; McIver, E.; Sun, G.; Gillies, J.; Speck, M.; Orban, P.C.; et al. Functional Effects of Chimeric Antigen Receptor Co-Receptor Signaling Domains in Human Regulatory T Cells. Sci. Transl. Med. 2020, 12, eaaz3866. [Google Scholar] [CrossRef]
- Sanders, J.M.; Jeyamogan, S.; Mathew, J.M.; Leventhal, J.R. Foxp3+ Regulatory T Cell Therapy for Tolerance in Autoimmunity and Solid Organ Transplantation. Front. Immunol. 2022, 13, 1055466. [Google Scholar] [CrossRef]
- Lee, J.C.; Hayman, E.; Pegram, H.J.; Santos, E.; Heller, G.; Sadelain, M.; Brentjens, R. In Vivo Inhibition of Human CD19-Targeted Effector T Cells by Natural T Regulatory Cells in a Xenotransplant Murine Model of B Cell Malignancy. Cancer Res. 2011, 71, 2871–2881. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Taubmann, J.; Bucci, L.; Wilhelm, A.; Bergmann, C.; Völkl, S.; Aigner, M.; Rothe, T.; Minopoulou, I.; Tur, C.; et al. CD19 CAR T-Cell Therapy in Autoimmune Disease—A Case Series with Follow-Up. N. Engl. J. Med. 2024, 390, 687–700. [Google Scholar] [CrossRef]
- Hagen, M.; Müller, F.; Wirsching, A.; Kharboutli, S.; Spoerl, S.; Düsing, C.; Krickau, T.; Metzler, M.; Völkl, S.; Aigner, M.; et al. Local Immune Effector Cell-Associated Toxicity Syndrome in CAR T-Cell Treated Patients with Autoimmune Disease: An Observational Study. Lancet Rheumatol 2025, 7, e424–e433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xiao, Z.X.; Zheng, X.; Wang, G.; Yang, L.; Shi, L.; Xiang, N.; Wang, X.; Zha, G.-F.; Schett, G.; et al. In Vivo CD19 CAR T-Cell Therapy for Refractory Systemic Lupus Erythematosus. N. Engl. J. Med. 2025, 393, 1542–1544. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, K.G.; Hoeppli, R.E.; Huang, Q.; Gillies, J.; Luciani, D.S.; Orban, P.C.; Broady, R.; Levings, M.K. Alloantigen-Specific Regulatory T Cells Generated with a Chimeric Antigen Receptor. J. Clin. Investig. 2016, 126, 1413–1424. [Google Scholar] [CrossRef]
- Bastian, H.; Lounnas-Mourey, N.; Heimendinger, P.; Hsu, B.L.; Schreeb, K.H.; Chapman, C.; Culme-Seymour, E.; Atkinson, G.F.; Cantarovich, D. Feasibility of Manufacture of Chimeric Antigen Receptor-Regulatory T Cells from Patients with End-Stage Renal Disease. Transl. Med. Commun. 2023, 8, 15. [Google Scholar] [CrossRef]
- Cui, Y.; David, M.; Bouchareychas, L.; Rouquier, S.; Sajuthi, S.; Ayrault, M.; Navarin, C.; Lara, G.; Lafon, A.; Saviane, G.; et al. IL23R-Specific CAR Tregs for the Treatment of Crohn’s Disease. J. Crohns Colitis 2024, 19, jjae135. [Google Scholar] [CrossRef]
- Elinav, E.; Adam, N.; Waks, T.; Eshhar, Z. Amelioration of Colitis by Genetically Engineered Murine Regulatory T Cells Redirected by Antigen-Specific Chimeric Receptor. Gastroenterology 2009, 129, 1721–1731. [Google Scholar] [CrossRef]
- Kim, Y.C.; Zhang, A.-H.; Yoon, J.; Culp, W.E.; Lees, J.R.; Wucherpfennig, K.W.; Scott, D.W. Engineered MBP-Specific Human Tregs Ameliorate MOG-Induced EAE through IL-2-Triggered Inhibition of Effector T Cells. J. Autoimmun. 2018, 92, 77–86. [Google Scholar] [CrossRef]
- De Paula Pohl, A.; Schmidt, A.; Zhang, A.-H.; Maldonado, T.; Königs, C.; Scott, D.W. Engineered Regulatory T Cells Expressing Myelin-Specific Chimeric Antigen Receptors Suppress EAE Progression. Cell Immunol. 2020, 358, 104222. [Google Scholar] [CrossRef]
- Mukhatayev, Z.; Dellacecca, E.R.; Cosgrove, C.; Shivde, R.; Jaishankar, D.; Pontarolo-Maag, K.; Eby, J.M.; Henning, S.W.; Ostapchuk, Y.O.; Cedercreutz, K.; et al. Antigen Specificity Enhances Disease Control by Tregs in Vitiligo. Front. Immunol. 2020, 11, 581433. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.P.; Notley, C.A.; Xue, S.-A.; Bendle, G.M.; Holler, A.; Schumacher, T.N.; Ehrenstein, M.R.; Stauss, H.J. Adoptive Therapy with Redirected Primary Regulatory T Cells Results in Antigen-Specific Suppression of Arthritis. Proc. Natl. Acad. Sci. USA 2009, 106, 19078–19083. [Google Scholar] [CrossRef]
- Raffin, C.; Zhou, Y.; Piccoli, L.; Lanzavecchia, A.; Sadelain, M.; Tareen, S.U.; Fontenot, J.D.; Bluestone, J.A. Development of Citrullinated-Vimentin-Specific CAR for Targeting Tregs to Treat Autoimmune Rheumatoid Arthritis. J. Immunol. 2018, 200, 176.17. [Google Scholar] [CrossRef]
- Imam, S.; Jaume, J. MON-LB033 Unleashing the Anti-Inflammatory Potential of Treg Cells Against Type I Diabetes Using Advanced Chimeric Antigen Receptor Technology. J. Endocr. Soc. 2019, 3, MON-LB033. [Google Scholar] [CrossRef]
- Radichev, I.A.; Yoon, J.; Scott, D.W.; Griffin, K.; Savinov, A.Y. Towards Antigen-Specific Tregs for Type 1 Diabetes: Construction and Functional Assessment of Pancreatic Endocrine Marker, HPi2-Based Chimeric Antigen Receptor. Cell. Immunol. 2020, 358, 104224. [Google Scholar] [CrossRef]
- Yeh, W.-I.; Seay, H.R.; Newby, B.; Posgai, A.L.; Moniz, F.B.; Michels, A.; Mathews, C.E.; Bluestone, J.A.; Brusko, T.M. Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Front. Immunol. 2017, 8, 1313. [Google Scholar] [CrossRef]
- Hull, C.M.; Nickolay, L.E.; Estorninho, M.; Richardson, M.W.; Riley, J.L.; Peakman, M.; Maher, J.; Tree, T.I.M. Generation of Human Islet-Specific Regulatory T Cells by TCR Gene Transfer. J. Autoimmun. 2017, 79, 63–73. [Google Scholar] [CrossRef]
- Kim, Y.C.; Zhang, A.-H.; Su, Y.; Rieder, S.A.; Rossi, R.J.; Ettinger, R.A.; Pratt, K.P.; Shevach, E.M.; Scott, D.W. Engineered Antigen-Specific Human Regulatory T Cells: Immunosuppression of FVIII-Specific T- and B-Cell Responses. Blood 2015, 125, 1107–1115. [Google Scholar] [CrossRef]
- Eggenhuizen, P.J.; Cheong, R.M.Y.; Lo, C.; Chang, J.; Ng, B.H.; Ting, Y.T.; Monk, J.A.; Loh, K.L.; Broury, A.; Tay, E.S.V.; et al. Smith-Specific Regulatory T Cells Halt the Progression of Lupus Nephritis. Nat. Commun. 2024, 15, 899. [Google Scholar] [CrossRef]
- Rath, J.A.; Arber, C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020, 9, 1485. [Google Scholar] [CrossRef]
- Fisher, M.S. Cellular Technologies in Immunotherapy of Autoimmune Diseases. Meditsinskaya Immunol. 2023, 44, 813–824. [Google Scholar] [CrossRef]
- Sprouse, M.L.; Shevchenko, I.; Scavuzzo, M.A.; Joseph, F.; Lee, T.; Blum, S.; Borowiak, M.; Bettini, M.L.; Bettini, M. Cutting Edge: Low-Affinity TCRs Support Regulatory T Cell Function in Autoimmunity. J. Immunol. 2018, 200, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Doglio, M.; Ugolini, A.; Bercher-Brayer, C.; Camisa, B.; Toma, C.; Norata, R.; Del Rosso, S.; Greco, R.; Ciceri, F.; Sanvito, F.; et al. Regulatory T Cells Expressing CD19-Targeted Chimeric Antigen Receptor Restore Homeostasis in Systemic Lupus Erythematosus. Nat. Commun. 2024, 15, 2542. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.R.; Maghsoudlou, P.; Copland, D.A.; Nicholson, L.B.; Dick, A.D. CAR-Treg Cell Therapies and Their Future Potential in Treating Ocular Autoimmune Conditions. Front. Ophthalmol. 2023, 3, 1184937. [Google Scholar] [CrossRef]
- Wermke, M.; Kraus, S.; Ehninger, A.; Bargou, R.C.; Goebeler, M.-E.; Middeke, J.M.; Kreissig, C.; von Bonin, M.; Koedam, J.; Pehl, M.; et al. Proof of Concept for a Rapidly Switchable Universal CAR-T Platform with UniCAR-T-CD123 in Relapsed/Refractory AML. Blood 2021, 137, 3145–3148. [Google Scholar] [CrossRef]
- Mitwasi, N.; Feldmann, A.; Bergmann, R.; Berndt, N.; Arndt, C.; Koristka, S.; Kegler, A.; Jureczek, J.; Hoffmann, A.; Ehninger, A.; et al. Development of Novel Target Modules for Retargeting of UniCAR T Cells to GD2 Positive Tumor Cells. Oncotarget 2017, 8, 108584–108603. [Google Scholar] [CrossRef]
- Kegler, A.; Koristka, S.; Bergmann, R.; Berndt, N.; Arndt, C.; Feldmann, A.; Hoffmann, A.; Bornhäuser, M.; Schmitz, M.; Bachmann, M.P. T Cells Engrafted with a UniCAR 28/z Outperform UniCAR BB/z-Transduced T Cells in the Face of Regulatory T Cell-Mediated Immunosuppression. Oncoimmunology 2019, 8, e1621676. [Google Scholar] [CrossRef]
- Grada, Z.; Hegde, M.; Byrd, T.; Shaffer, D.R.; Ghazi, A.; Brawley, V.S.; Corder, A.; Schönfeld, K.; Koch, J.; Dotti, G.; et al. TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Mol Ther. Nucleic Acids 2013, 2, e105. [Google Scholar] [CrossRef]
- Monneaux, F.; Muller, S. Epitope Spreading in Systemic Lupus Erythematosus: Identification of Triggering Peptide Sequences. Arthritis Rheum. 2002, 46, 1430–1438. [Google Scholar] [CrossRef]
- Rui, X.; Calderon, F.A.; Wobma, H.; Gerdemann, U.; Albanese, A.; Cagnin, L.; Mcguckin, C.; Michaelis, K.A.; Naqvi, K.; Blazar, B.R.; et al. Human OX40L-CAR-T Regs Target Activated Antigen-Presenting Cells and Control T Cell Alloreactivity. Sci. Transl. Med. 2024, 16, eadj9331. [Google Scholar] [CrossRef]
- Karim, M.; Feng, G.; Wood, K.J.; Bushell, A.R. CD25+CD4+ Regulatory T Cells Generated by Exposure to a Model Protein Antigen Prevent Allograft Rejection: Antigen-Specific Reactivation in Vivo Is Critical for Bystander Regulation. Blood 2005, 105, 4871–4877. [Google Scholar] [CrossRef]
- Croft, M. Control of Immunity by the TNFR-Related Molecule OX40 (CD134). Annu. Rev. Immunol. 2010, 28, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, C.; Schmitt, N.; Contin-Bordes, C.; Richez, C.; Lazaro, E.; Duffau, P.; Truchetet, M.-E.; Pascual, V.; Ueno, H.; Blanco, P. OP0009 OX40 Ligand Contributes to Human Lupus Pathogenesis by Promoting T Follicular Helper Response. Ann. Rheum. Dis. 2015, 74, 67. [Google Scholar] [CrossRef]
- Forcade, E.; Kim, H.T.; Cutler, C.; Wang, K.; Alho, A.C.; Nikiforow, S.; Ho, V.T.; Koreth, J.; Armand, P.; Alyea, E.P.; et al. Circulating T Follicular Helper Cells with Increased Function during Chronic Graft-versus-Host Disease. Blood 2016, 127, 2489–2497. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.S.; Kim, H.T.; Nikiforow, S.; Heubeck, A.T.; Ho, V.T.; Koreth, J.; Alyea, E.P.; Armand, P.; Blazar, B.R.; Soiffer, R.J.; et al. Antibodies Targeting Surface Membrane Antigens in Patients with Chronic Graft-versus-Host Disease. Blood 2017, 130, 2889–2899. [Google Scholar] [CrossRef]
- Laustsen, J.K.; Rasmussen, T.K.; Stengaard-Pedersen, K.; Hørslev-Petersen, K.; Hetland, M.L.; Østergaard, M.; Junker, P.; Hvid, M.; Deleuran, B. Soluble OX40L Is Associated with Presence of Autoantibodies in Early Rheumatoid Arthritis. Arthritis Res. Ther. 2014, 16, 474. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, C.; Liu, M.; Shen, Y.; Hu, X.; Wang, Q.; Wu, J.; Wu, M.; Fang, Q.; Zhang, X. OX40 Signaling Is Involved in the Autoactivation of CD4+CD28− T Cells and Contributes to the Pathogenesis of Autoimmune Arthritis. Arthritis Res. Ther. 2017, 19, 67. [Google Scholar] [CrossRef]
- Duffus, K.; López-Isac, E.; Teruel, M.; Simeón, C.P.; Carreria, P.; Ortego-Centeno, N.; Vicente, E.; Worthington, J.; Herrick, A.L.; Martin, J. Association of TNFSF4 (OX40L) Polymorphisms with Systemic Sclerosis–Related Calcinosis. Rheumatology 2019, 58, 1299–1301. [Google Scholar] [CrossRef]
- Elhai, M.; Avouac, J.; Hoffmann-Vold, A.M.; Ruzehaji, N.; Amiar, O.; Ruiz, B.; Brahiti, H.; Ponsoye, M.; Fréchet, M.; Burgevin, A.; et al. OX40L Blockade Protects against Inflammation-Driven Fibrosis. Proc. Natl. Acad. Sci. USA 2016, 113, E3901–E3910. [Google Scholar] [CrossRef]
- Sitrin, J.; Suto, E.; Wuster, A.; Eastham-Anderson, J.; Kim, J.M.; Austin, C.D.; Lee, W.P.; Behrens, T.W. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J. Immunol. 2017, 199, 1238–1249. [Google Scholar] [CrossRef]
- Cortini, A.; Ellinghaus, U.; Malik, T.H.; Cunninghame Graham, D.S.; Botto, M.; Vyse, T.J. B Cell OX40L Supports T Follicular Helper Cell Development and Contributes to SLE Pathogenesis. Ann. Rheum. Dis. 2017, 76, 2095–2103. [Google Scholar] [CrossRef]
- Bittner, S.; Ruhland, B.; Hofmann, V.; Schmidleithner, L.; Schambeck, K.; Pant, A.; Stüve, P.; Delacher, M.; Echtenacher, B.; Edinger, M.; et al. Biosensors for Inflammation as a Strategy to Engineer Regulatory T Cells for Cell Therapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2208436119. [Google Scholar] [CrossRef]
- Wong, S.P.; Argyros, O.; Harbottle, R.P. Sustained Expression from DNA Vectors. Adv Genet 2015, 89, 113–152. [Google Scholar] [CrossRef]
- Wong, S.P.; Argyros, O.; Coutelle, C.; Harbottle, R.P. Non-Viral S/MAR Vectors Replicate Episomally in Vivo When Provided with a Selective Advantage. Gene Ther. 2011, 18, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Bozza, M.; De Roia, A.; Correia, M.P.; Berger, A.; Tuch, A.; Schmidt, A.; Zörnig, I.; Jäger, D.; Schmidt, P.; Harbottle, R.P. A Nonviral, Nonintegrating DNA Nanovector Platform for the Safe, Rapid, and Persistent Manufacture of Recombinant T Cells. Sci. Adv. 2021, 7, eabf1333. [Google Scholar] [CrossRef] [PubMed]
- Choileáin, S.N.; Kleinewietfeld, M.; Raddassi, K.; Hafler, D.A.; Ruff, W.E.; Longbrake, E.E. CXCR3+ T Cells in Multiple Sclerosis Correlate with Reduced Diversity of the Gut Microbiome CXCR3+ T Cells in Multiple Sclerosis Correlate with Reduced Diversity of the Gut Microbiome. J. Transl. Autoimmun. 2020, 3, 100032. [Google Scholar] [CrossRef] [PubMed]
- Miyara, M.; Yoshioka, Y.; Kitoh, A.; Shima, T.; Wing, K.; Niwa, A.; Parizot, C.; Taflin, C.; Heike, T.; Valeyre, D.; et al. Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3 Transcription Factor. Immunity 2009, 30, 899–911. [Google Scholar] [CrossRef]
- Furlan, S.N.; Singh, K.; Lopez, C.; Tkachev, V.; Hunt, D.J.; Hibbard, J.; Betz, K.M.; Blazar, B.R.; Trapnell, C.; Kean, L.S. IL-2 Enhances Ex Vivo–Expanded Regulatory T-Cell Persistence after Adoptive Transfer. Blood Adv. 2020, 4, 1594–1605. [Google Scholar] [CrossRef]
- Chapman, N.M.; Chi, H. MTOR Signaling, Tregs and Immune Modulation. Immunotherapy 2014, 6, 1295–1311. [Google Scholar] [CrossRef]
- Li, X.; Liang, Y.; LeBlanc, M.; Benner, C.; Zheng, Y. Function of a Foxp3 Cis-Element in Protecting Regulatory T Cell Identity. Cell 2014, 158, 734–748. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Miao, M.; Zhang, R.; Cheng, G.; Wang, Y.; Feng, R.; Huang, B.; Luan, H.; Jia, Y.; et al. Efficacy and Safety of Low-Dose Interleukin 2 for Primary Sjögren Syndrome: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2241451. [Google Scholar] [CrossRef]
- Graßhoff, H.; Comdühr, S.; Monne, L.R.; Müller, A.; Lamprecht, P.; Riemekasten, G.; Humrich, J.Y. Low-Dose IL-2 Therapy in Autoimmune and Rheumatic Diseases. Front. Immunol. 2021, 12, 648408. [Google Scholar] [CrossRef]
- Le Menn, G.; Jabłońska, A.; Chen, Z. The Effects of Post-Translational Modifications on Th17/Treg Cell Differentiation. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2022, 1869, 119223. [Google Scholar] [CrossRef] [PubMed]
- Abhishek, K.; Nidhi, M.; Chandran, S.; Shevkoplyas, S.S.; Mohan, C. Manufacturing Regulatory T Cells for Adoptive Cell Therapy in Immune Diseases: A Critical Appraisal. Clin. Immunol. 2023, 251, 109328. [Google Scholar] [CrossRef] [PubMed]
- Boroughs, A.C.; Larson, R.C.; Choi, B.D.; Bouffard, A.A.; Riley, L.S.; Schiferle, E.; Kulkarni, A.S.; Cetrulo, C.L.; Ting, D.; Blazar, B.R.; et al. Chimeric Antigen Receptor Costimulation Domains Modulate Human Regulatory T Cell Function. JCI Insight 2019, 4, e126194. [Google Scholar] [CrossRef] [PubMed]
- Stock, S.; Klüver, A.; Fertig, L.; Menkhoff, V.D.; Subklewe, M.; Endres, S.; Kobold, S. Mechanisms and Strategies for Safe Chimeric Antigen Receptor T-cell Activity Control. Int J Cancer 2023, 153, 1706–1725. [Google Scholar] [CrossRef]
- Guercio, M.; Manni, S.; Boffa, I.; Caruso, S.; Di Cecca, S.; Sinibaldi, M.; Abbaszadeh, Z.; Camera, A.; Ciccone, R.; Polito, V.A.; et al. Inclusion of the Inducible Caspase 9 Suicide Gene in CAR Construct Increases Safety of CAR.CD19 T Cell Therapy in B-Cell Malignancies. Front. Immunol. 2021, 12, 755639. [Google Scholar] [CrossRef]
- Fritsche, E.; Volk, H.D.; Reinke, P.; Abou-El-Enein, M. Toward an Optimized Process for Clinical Manufacturing of CAR-Treg Cell Therapy. Trends Biotechnol 2020, 38, 1099–1112. [Google Scholar] [CrossRef]
- Stoops, J.; Morton, T.; Powell, J.; Pace, A.L.; Bluestone, J.A. Treg Cell Therapy Manufacturability: Current State of the Art, Challenges and New Opportunities. Front. Immunol. 2025, 16, 1604483. [Google Scholar] [CrossRef]
- Balcerek, J.; Shy, B.R.; Putnam, A.L.; Masiello, L.M.; Lares, A.; Dekovic, F.; Acevedo, L.; Lee, M.R.; Nguyen, V.; Liu, W.; et al. Polyclonal Regulatory T Cell Manufacturing Under CGMP: A Decade of Experience. Front. Immunol. 2021, 12, 744763. [Google Scholar] [CrossRef]
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘Off-the-Shelf’ Allogeneic CAR T Cells: Development and Challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef]




| Property | tTreg | pTreg | iTreg | Th3 | Tr1 | CD8+ Treg |
|---|---|---|---|---|---|---|
| Development | Thymus | Periphery | In vitro | Mucose | Periphery | Periphery |
| Progenitor cell | CD4 single positive | Naïve CD4+ T cells | Naïve or conventional T cell | Naïve CD4+ T cells | Naïve CD4+ T cells | Naïve CD8+ T cells |
| Antigen specificity | Autoantigens | Bacterial and food antigens | Non- and self-antigens | Bacterial flora, pathogens, food, and self-antigens | Bacterial flora, pathogens, food, and self-antigens | Non-self-antigens |
| Ex vivo expansion | Anti-CD3 and IL-2 | - | - | - | - | - |
| In vitro differentiation | - | - | Anti-CD3, anti-CD28, IL-2 and TGF-β | - | - | - |
| TSDR methylation status | Demethylated | Unstably demethylated | Methylated | Demethylated | Demethylated | - |
| Disease | Study ID | Phase | Enrolment (Age) | Product | Treg Dose * | Status (Ref.) |
|---|---|---|---|---|---|---|
| T1D | ISRCTN6128462 | I | 12 (5–28 y.o.) | Expanded autologous (PB) polyclonal Treg | 10 and 30 × 106 cells/kg | Completed [113] |
| T1D | NCT01210664 | I | 16 (18–45 y.o.) | Expanded autologous (PB) polyclonal Treg | 0.05, 0.4, 3.2, and 26 × 108 cells/kg | Completed [114] |
| T1D | NCT02691247 | II | 13 (8–17 y.o.) | Expanded autologous (PB) polyclonal Treg | 2.5 and 20 × 106 cells/kg | Completed |
| T1D | NCT02772679 | I | 16 (18–45 y.o.) | Expanded autologous (PB) polyclonal Treg + IL-2 | 3 and 20 × 106 cells/kg | Completed [115] |
| T1D | NCT02932826 | I/II | 40 (6–60 y.o.) | Expanded UCB polyclonal Treg | 2 × 106 cells/kg | Recruiting |
| T1D | NCT03011021 | I/II | 40 (>18 y.o.) | Expanded UCB polyclonal Treg + liraglutide | 2 × 106 cells/kg | Unknown |
| T1D or LN | NCT05566977 | I | 20 (>18 y.o.) | Expanded autologous (PB) polyclonal Treg | N/A | Unknown |
| SLE | NCT02428309 | I | 1 (46 y.o.) | Expanded autologous (PB) polyclonal Treg | 1 × 108 cells | Completed [116] |
| Pemphigus | NCT03239470 | I | 5 (18–75 y.o.) | Expanded autologous (PB) polyclonal Treg | 1 and 2.5 × 108 cells | Completed |
| SS | NCT0524014 | I/II | 30 (18–80 y.o.) | Expanded autologous (PB) polyclonal Treg | N/A | Completed |
| AIH | NCT02704338 | I/II | 30 (10–70 y.o.) | Expanded autologous (PB) polyclonal Treg | 10–20 × 106 cells/kg | Unknown |
| Crohn’s disease | NCT03185000 | I/II | 24 (18–80 y.o.) | Expanded autologous (PB) polyclonal Treg | N/A | Unknown |
| UC | NCT04691232 | I | 10 (18–75 y.o.) | Expanded autologous (PB) polyclonal Treg | 0.5, 1, 2, and 10 × 106 cells/kg | Completed [117] |
| MS | EudraCT:2014-004320-22 | I/II | 14 (18–55 y.o.) | Expanded autologous (PB) polyclonal Treg | 40 × 106 cells/kg (IV) or 1 × 106 cells/kg (IT) | Completed [112,118] |
| Disease | Animal Model | T Cell Subset Used | Synthetic Receptor | Target Antigen | Delivery Route | Outcomes | Ref. |
|---|---|---|---|---|---|---|---|
| Colitis (IBD) | TNBS-induced colitis in BALB/c or C57BL/6 mice | Mouse CD4+ CD25+ Treg | 2nd-generation CAR (Co-stim: CD28) | TNP | Retroviral | Amelioration of TNBS-induced colitis | [169] |
| Colitis (IBD) | Teff-mediated colitis or AOM-DSS-induced colitis in CEA BAC mice | Mouse CD4+ CD25+ Treg | 2nd-generation CAR (Co-stim: CD28) | CEA | Retroviral | Enhanced migration to colon and amelioration of Teff-mediated colitis | [134] |
| MS | MOG-induced EAE in HLA-DR15 transgenic mice | Human CD4+ CD25hi CD127lo Treg | HLA-DR15-restricted engineered TCR | MBP | Retroviral | Suppression of Teff proliferation and amelioration of EAE | [170] |
| MS | MOG-induced EAE or PLP-induced EAE in 2D2 C57BL/6 mice | Mouse CD4+ CD25+ FoxP3+ Treg | I-Ab-MGC II-restricted engineered TCR | MOG or MOG/NF-M | Retroviral | Bispecific eTCR-Treg had a superior capacity to monospecific, and exerted bystander suppression | [91] |
| MS | MOG-induced EAE in C57BL6/mice | Mouse CD4+ T cells + lentiviral transduction of FOXP3 | 2nd-generation CAR (Co-stim: CD28) | MOG | Lentiviral | Increased migration to the brain and amelioration of EAE | [135] |
| MS | MOG-induced EAE in C57BL/6 mice | Human CD4+ CD25hi CD127lo Treg | 2nd-generation CAR (Co-stim: CD28) | MOG or MBP | Retroviral | Significant reduction of EAE disease score and suppression of progression | [171] |
| Vitiligo | Transgenic h3TA2 mouse model of spontaneous vitiligo | Mouse CD4+ FoxP3+ Treg | 2nd-generation CAR (Co-stim:CD28) | GD3 | Retroviral | Increased IL-10 secretion, superior cytotoxicity, control, and delay in depigmentation | [172] |
| RA | mBSA-induced arthritis in C57BL/6 mice | Mouse CD4+ CD25+ Treg and CD4+ T cells + retroviral transduction of FOXP3 | I-Ab-MHC II-restricted engineered TCR | OVA | Retroviral | Suppression of mBSA-induced arthritis | [173] |
| RA | CIA mouse model | Human Treg | CAR (generation not provided) | CV | Not provided | CV-CAR-Treg expanded when cultured with synovial fluid from patients with RA | [174] |
| T1D | NOD and NOD BDC2.5 mice | Human CD4+ T cells by combining FOXP3 gene homology-directed repair editing | HLA-DR0401-restricted engineered TCR | Islet specific antigens (IGRP, GAD65 or PPI) | Lentiviral | Homing to the pancreas and blockade of diabetes induction. | [152] |
| T1D | NOD/Ltj mice | Mouse CD4+ T cells + retroviral transduction of FOXP3 | 2nd-generation CAR (Co-stim: CD28) | Insulin | Retroviral | Persistence of the cells in diabetic mice, although not preventing diabetes. | [153] |
| T1D | Humanised T1D mouse model | Mouse Treg | CAR (generation not provided) | GAD65 | Not provided | Increased pancreatic localisation, large Treg population in pancreas and spleen, and lowered glucose levels. | [175] |
| T1D | In vitro | Human CD4+ T cells, CD8+ T cells and CD4+ CD25+ CD127lo Treg | 2nd-generation CAR (Co-stim:CD28) | HPi2 | Retroviral | CAR-Treg failed to maintain expansion due to tonic signalling. HPi2-CAR cannot be exploited. | [176] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gozálvez, E.; Lario, A.; Muñoz-Sánchez, G.; Lozano, F. Regulatory T Cell-Based Adoptive Cell Therapy in Autoimmunity. Int. J. Mol. Sci. 2025, 26, 10340. https://doi.org/10.3390/ijms262110340
Gozálvez E, Lario A, Muñoz-Sánchez G, Lozano F. Regulatory T Cell-Based Adoptive Cell Therapy in Autoimmunity. International Journal of Molecular Sciences. 2025; 26(21):10340. https://doi.org/10.3390/ijms262110340
Chicago/Turabian StyleGozálvez, Eduardo, Adrián Lario, Guillermo Muñoz-Sánchez, and Francisco Lozano. 2025. "Regulatory T Cell-Based Adoptive Cell Therapy in Autoimmunity" International Journal of Molecular Sciences 26, no. 21: 10340. https://doi.org/10.3390/ijms262110340
APA StyleGozálvez, E., Lario, A., Muñoz-Sánchez, G., & Lozano, F. (2025). Regulatory T Cell-Based Adoptive Cell Therapy in Autoimmunity. International Journal of Molecular Sciences, 26(21), 10340. https://doi.org/10.3390/ijms262110340

