Monitoring of (Leukemia-Specific) Immune Cells in Stages, Treatment Groups and in the Course of Disease and Therapy Contributes to Qualify Antileukemic Potential and Survival in Patients with AML
Abstract
1. Introduction
1.1. Acute Myeloid Leukemia (AML)
1.2. Cells of the Innate and Adaptive Immune System
1.2.1. Innate Immune System
1.2.2. Adaptive Immune System
1.3. Leukemia-Specific Cells
1.4. Aims of This Study
2. Results
2.1. Composition of Blood Cells in AML Patients in Different Stages or Treatment Groups
2.1.1. Composition of Blasts and DC Subtypes


| Name of Treatment Groups | Abbreviation | Treatment at Timepoint of Analysis |
|---|---|---|
| First diagnosis | Dgn |
|
| Persisting disease (PD) under chemotherapy (before allogeneic stem cell transplantation) | PChemo |
|
| Persisting disease (PD) under hypomethylating agents and venetoclax (before allogeneic stem cell transplantation) | PHMA+V |
|
| Persisting disease (PD) under KitM | PKitM |
|
| Complete remission (before allogeneic stem cell transplantation) | CR |
|
| Relapse after allogeneic stem cell transplantation | RelpostSCT |
|
| Relapse under hypomethylating agents and venetoclax after allogeneic stem cell transplantation | RelHMA+V postSCT |
|
| Complete remission after allogeneic stem cell transplantation | CRpostSCT |
|
2.1.2. Composition of (Leukemia-Specific) Adaptive Cells of the Immune System
2.2. Composition of Blood Cells in Individual Patients’ Courses of the Disease and Treatment
2.3. Composition of Immune Cells in Patients at First Dgn with vs. Without Response to Induction Therapy (RTI)
2.3.1. Composition of Blasts and DC Subtypes
2.3.2. Composition of (Leukemia-Specific) Adaptive Cells of the Immune System
2.4. Prognostic Relevance of the Composition of Blood Cells in the Course of Treatment for Survival
2.4.1. Composition of Blasts and DC Subtypes
2.4.2. Composition of (Leukemia-Specific) Activating/Antitumor-Directed T Cells of the Immune System
2.5. Comparison of Blood Cells in AML Patients in Different Stages or Treatment Groups Before vs. After SCT
2.5.1. Composition of Blasts and DC Subtypes
2.5.2. Composition of (Leukemia-Specific) Adaptive Cells of the Immune System
3. Discussion
3.1. Prognosis and Therapeutic Options in Patients with AML
3.2. Rationale Behind the Grouping of Study Cohorts and Individual Analytical Variations
3.3. Effects of Different Treatment Options on the Induction of a (Leukemia-Specific) Immune Response—With a Special Focus on the Prognostical Relevance for Patients
3.3.1. Myeloid Cells
3.3.2. Adaptive Immune System
3.3.3. Innate Immune System
3.4. Significance of Individual (Leukemia-Specific) Immune Cells in the Course of the Disease and Treatment
3.4.1. Myeloid Cells
3.4.2. Immune Cells
3.5. (Leukemia-Specific) Immune and Myeloid Cells in Correlation of Response to Induction (RTI) Therapy and in Patients Studied at First Dgn with Respect to Patients’ Median Survival
3.5.1. Myeloid Cells
3.5.2. Immune Cells
3.6. Effects of Different Treatment Options on the (Leukemia-Specific) Immune Response in Patients Before vs. After SCT
3.6.1. Myeloid Cells
3.6.2. Immune Cells
4. Materials and Methods
4.1. Sample Acquisition
4.2. Patients’ Characteristics
4.3. Sample Preparation and Quantification of Myeloid/Immune Cells Using Flowcytometric Analysis
4.4. Evaluation of Data and Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Wachter, F.; Pikman, Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol. 2024, 147, 229–246. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology and End Results Program (SEER). Acute Myeloid Leukemia—Cancer Stat Facts. 2020. Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 21 May 2024).
- Forsberg, M.; Konopleva, M. AML treatment: Conventional chemotherapy and emerging novel agents. Trends Pharmacol. Sci. 2024, 45, 430–448. [Google Scholar] [CrossRef]
- Pelcovits, A.; Niroula, R. Acute Myeloid Leukemia: A Review. Rhode Isl. Med. J. 2020, 103, 38–40. [Google Scholar]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- De Bellis, E.; Imbergamo, S.; Candoni, A.; Liço, A.; Tanasi, I.; Mauro, E.; Mosna, F.; Leoncin, M.; Stulle, M.; Griguolo, D.; et al. Venetoclax in combination with hypomethylating agents in previously untreated patients with acute myeloid leukemia ineligible for intensive treatment: A real-life multicenter experience. Leuk. Res. 2022, 114, 106803, Erratum in Leuk Res. 2022, 115, 106811. [Google Scholar] [CrossRef] [PubMed]
- Stubbins, R.J.; Francis, A.; Kuchenbauer, F.; Sanford, D. Management of Acute Myeloid Leukemia: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 6245–6259. [Google Scholar] [CrossRef]
- Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.-N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): A randomised, open-label, phase 3 study. Lancet 2012, 379, 1508–1516, Erratum in Lancet 2018, 391, 838. [Google Scholar] [CrossRef] [PubMed]
- Vitale, C.; Romagnani, C.; Puccetti, A.; Olive, D.; Costello, R.; Chiossone, L.; Pitto, A.; Bacigalupo, A.; Moretta, L.; Mingari, M.C. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: Engagement of CD33 induces apoptosis of leukemic cells. Proc. Natl. Acad. Sci. USA 2001, 98, 5764–5769. [Google Scholar] [CrossRef] [PubMed]
- Ansprenger, C.; Amberger, D.C.; Schmetzer, H.M. Potential of immunotherapies in the mediation of antileukemic responses for patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)—With a focus on Dendritic cells of leukemic origin (DCleu). Clin. Immunol. 2020, 217, 108467. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, J.; Stone, R.M.; Uhl, L.; Neuberg, D.; Joyce, R.; Levine, J.D.; Arnason, J.; McMasters, M.; Luptakova, K.; Jain, S.; et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci. Transl. Med. 2016, 8, 368ra171. [Google Scholar] [CrossRef] [PubMed]
- Atzler, M.; Baudrexler, T.; Amberger, D.C.; Rogers, N.; Rabe, A.; Schmohl, J.; Wang, R.; Rank, A.; Schutti, O.; Hirschbühl, K.; et al. In Vivo Induction of Leukemia-Specific Adaptive and Innate Immune Cells by Treatment of AML-Diseased Rats and Therapy-Refractory AML Patients with Blast Modulating Response Modifiers. Int. J. Mol. Sci. 2024, 25, 13469. [Google Scholar] [CrossRef]
- Filippini Velázquez, G.; Anand, P.; Abdulmajid, J.; Feng, X.; Weller, J.F.; Hirschbühl, K.; Schmetzer, H.; Schmid, C. Clinical stabilization of a highly refractory acute myeloid leukaemia under individualized treatment with immune response modifying drugs by in vivo generation of dendritic cells of leukaemic origin (DCleu) and modulation of effector cells and immune escape mechanisms. Biomark. Res. 2025, 13, 104. [Google Scholar] [CrossRef]
- Senapati, J.; Kadia, T.M.; Ravandi, F. Maintenance therapy in acute myeloid leukemia: Advances and controversies. Haematologica 2023, 108, 2289–2304. [Google Scholar] [CrossRef]
- Kent, A.; Crump, L.S.; Davila, E. Beyond αβ T cells: NK, iNKT, and γδT cell biology in leukemic patients and potential for off-the-shelf adoptive cell therapies for AML. Front. Immunol. 2023, 14, 1202950. [Google Scholar] [CrossRef]
- Wang, Y.; Bo, J.; Dai, H.; Lu, X.; Lv, H.; Yang, B.; Wang, T.; Han, W. CIK cells from recurrent or refractory AML patients can be efficiently expanded in vitro and used for reduction of leukemic blasts in vivo. Exp. Hematol. 2013, 41, 241–252.e3. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-Y.; Fu, T.; Jiang, Y.-Z.; Shao, Z.-M. Natural killer cells in cancer biology and therapy. Mol. Cancer 2020, 19, 120. [Google Scholar] [CrossRef]
- Guo, W.; Xing, C.; Dong, A.; Lin, X.; Lin, Y.; Zhu, B.; He, M.; Yao, R. Numbers and cytotoxicities of CD3+CD56+ T lymphocytes in peripheral blood of patients with acute myeloid leukemia and acute lymphocytic leukemia. Cancer Biol. Ther. 2013, 14, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Le Dieu, R.; Taussig, D.C.; Ramsay, A.G.; Mitter, R.; Miraki-Moud, F.; Fatah, R.; Lee, A.M.; Lister, T.A.; Gribben, J.G. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 2009, 114, 3909–3916. [Google Scholar] [CrossRef]
- Godfrey, D.I.; Kronenberg, M. Going both ways: Immune regulation via CD1d-dependent NKT cells. J. Clin. Investig. 2004, 114, 1379–1388. [Google Scholar] [CrossRef]
- McEwen-Smith, R.M.; Salio, M.; Cerundolo, V. The Regulatory Role of Invariant NKT Cells in Tumor Immunity. Cancer Immunol. Res. 2015, 3, 425–435. [Google Scholar] [CrossRef]
- Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.-J.; Pulendran, B.; Palucka, K. Immunobiology of Dendritic Cells. Annu. Rev. Immunol. 2000, 18, 767–811. [Google Scholar] [CrossRef] [PubMed]
- Galati, D.; Corazzelli, G.; De Filippi, R.; Pinto, A. Dendritic cells in hematological malignancies. Crit. Rev. Oncol. Hematol. 2016, 108, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Schutti, O.; Klauer, L.K.; Baudrexler, T.; Burkert, F.; Hoffmann, K.; Schmohl, J.; Hentrich, M.; Bojko, P.; Kraemer, D.; Rank, A.; et al. Effective and successful quantification of leukaemia specific immune cells in AML patients’ blood or culture, focusing on intracellular cytokine—And degranulation assays. Int. J. Mol. Sci. 2024, 25, 6983. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, H.H.; Versteven, M.; Lichtenegger, F.S.; Roex, G.; Campillo-Davo, D.; Lion, E.; Subklewe, M.; Van Tendeloo, V.F.; Berneman, Z.N.; Anguille, S. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J. Clin. Med. 2019, 8, 579. [Google Scholar] [CrossRef]
- Jonas, B.A.; Pollyea, D.A. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia 2019, 33, 2795–2804. [Google Scholar] [CrossRef]
- Cignetti, A.; Vallario, A.; Roato, I.; Circosta, P.; Allione, B.; Casorzo, L.; Ghia, P.; Caligaris-Cappio, F. Leukemia-Derived Immature Dendritic Cells Differentiate into Functionally Competent Mature Dendritic Cells That Efficiently Stimulate T Cell Responses1. J. Immunol. 2004, 173, 2855–2865. [Google Scholar] [CrossRef]
- Tourkova, I.L.; Yurkovetsky, Z.R.; Shurin, M.R.; Shurin, G.V. Mechanisms of dendritic cell-induced T cell proliferation in the primary MLR assay. Immunol. Lett. 2001, 78, 75–82. [Google Scholar] [CrossRef]
- Schmetzer, H.M.; Kremser, A.; Loibl, J.; Kroell, T.; Kolb, H.J. Quantification of ex vivo generated dendritic cells (DC) and leukemia-derived DC contributes to estimate the quality of DC, to detect optimal DC-generating methods or to optimize DC-mediated T-cell-activation-procedures ex vivo or in vivo. Leukemia 2007, 21, 1338–1341. [Google Scholar] [CrossRef] [PubMed]
- Aktas, E.; Kucuksezer, U.C.; Bilgic, S.; Erten, G.; Deniz, G. Relationship between CD107a expression and cytotoxic activity. Cell Immunol. 2009, 254, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Montoya, C.J.; Pollard, D.; Martinson, J.; Kumari, K.; Wasserfall, C.; Mulder, C.B.; Rugeles, M.T.; Atkinson, M.A.; Landay, A.L.; Wilson, S.B. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 2007, 122, 1–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amberger, D.C.; Doraneh-Gard, F.; Gunsilius, C.; Weinmann, M.; Möbius, S.; Kugler, C.; Rogers, N.; Böck, C.; Ködel, U.; Werner, J.O.; et al. PGE1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood. Int. J. Mol. Sci. 2019, 20, 4590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klauer, L.K.; Schutti, O.; Ugur, S.; Doraneh-Gard, F.; Amberger, D.C.; Rogers, N.; Krämer, D.; Rank, A.; Schmid, C.; Eiz-Vesper, B.; et al. Interferon Gamma Secretion of Adaptive and Innate Immune Cells as a Parameter to Describe Leukaemia-Derived Dendritic-Cell-Mediated Immune Responses in Acute Myeloid Leukaemia in vitro. Transfus. Med. Hemother. 2021, 49, 44–61. [Google Scholar] [CrossRef]
- Rackl, E.; Li, L.; Klauer, L.K.; Ugur, S.; Pepeldjiyska, E.; Seidel, C.L.; Gunsilius, C.; Weinmann, M.; Doraneh-Gard, F.; Reiter, N.; et al. Dendritic Cell-Triggered Immune Activation Goes along with Provision of (Leukemia-Specific) Integrin Beta 7-Expressing Immune Cells and Improved Antileukemic Processes. Int. J. Mol. Sci. 2022, 24, 463. [Google Scholar] [CrossRef] [PubMed]
- Pepeldjiyska, E.; Li, L.; Gao, J.; Seidel, C.L.; Blasi, C.; Özkaya, E.; Schmohl, J.; Kraemer, D.; Schmid, C.; Rank, A.; et al. Leukemia derived dendritic cell (DCleu) mediated immune response goes along with reduced (leukemia-specific) regulatory T-cells. Immunobiology 2022, 227, 152237. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, A.; Nuti, M. CD137+ T-Cells: Protagonists of the Immunotherapy Revolution. Cancers 2021, 13, 456. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Gharibi, T.; Marofi, F.; Babaloo, Z.; Baradaran, B. CTLA-4: From mechanism to autoimmune therapy. Int. Immunopharmacol. 2020, 80, 106221. [Google Scholar] [CrossRef]
- Watts, T.H. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005, 23, 23–68. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Cheng, X.; Truong, B.; Sun, L.; Yang, X.; Wang, H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol. Ther. 2021, 219, 107709. [Google Scholar] [CrossRef]
- Rackl, E.; Hartz, A.; Aslan Rejeski, H.; Li, L.; Klauer, L.K.; Ugur, S.; Pepeldjiyska, E.; Amend, C.; Weinmann, M.; Doraneh-Gard, F.; et al. Dendritic/antigen presenting cell mediated provision of T-cell receptor gamma delta (TCRγδ) expressing cells contributes to improving antileukemic reactions ex vivo. Mol. Immunol. 2024, 175, 40–54. [Google Scholar] [CrossRef]
- Boeck, C.L.; Amberger, D.C.; Doraneh-Gard, F.; Sutanto, W.; Guenther, T.; Schmohl, J.; Schuster, F.; Salih, H.; Babor, F.; Borkhardt, A.; et al. Significance of Frequencies, Compositions, and/or Antileukemic Activity of (DC-stimulated) Invariant NKT, NK and CIK Cells on the Outcome of Patients With AML, ALL and CLL. J. Immunother. 2017, 40, 224. [Google Scholar] [CrossRef]
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 2010, 28, 445–489. [Google Scholar] [CrossRef]
- Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006, 6, 295–307. [Google Scholar] [CrossRef]
- Molero-Glez, P.; Azpilikueta, A.; Mosteo, L.; Glez-Vaz, J.; Palencia, B.; Melero, I. CD137 (4-1BB) and T-Lymphocyte Exhaustion. Clin. Cancer Res. 2024, 30, 3971–3973. [Google Scholar] [CrossRef]
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood 2018, 131, 58–67. [Google Scholar] [CrossRef]
- Foster, B.; Prussin, C.; Liu, F.; Whitmire, J.K.; Whitton, J.L. Detection of Intracellular Cytokines by Flow Cytometry. Curr. Protoc. Immunol. 2007, 78, 6.24.1–6.24.21. [Google Scholar] [CrossRef]
- de Lima, M.; Roboz, G.J.; Platzbecker, U.; Craddock, C.; Ossenkoppele, G. AML and the art of remission maintenance. Blood Rev. 2021, 49, 100829. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Houtenbos, I.; Westers, T.M.; Dijkhuis, A.; de Gruijl, T.D.; Ossenkoppele, G.J.; van de Loosdrecht, A.A. Leukemia-Specific T-Cell Reactivity Induced by Leukemic Dendritic Cells Is Augmented by 4-1BB Targeting. Clin. Cancer Res. 2007, 13, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Sander, F.E.; Rydström, A.; Bernson, E.; Kiffin, R.; Riise, R.; Aurelius, J.; Anderson, H.; Brune, M.; Foà, R.; Hellstrand, K.; et al. Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia. Oncotarget 2016, 7, 7586–7596. [Google Scholar] [CrossRef]
- Rao, A.; Agrawal, A.; Borthakur, G.; Battula, V.L.; Maiti, A. Gamma delta T cells in acute myeloid leukemia: Biology and emerging therapeutic strategies. J. Immunother. Cancer 2024, 12, e007981. [Google Scholar] [CrossRef] [PubMed]
- Zanna, M.Y.; Yasmin, A.R.; Omar, A.R.; Arshad, S.S.; Mariatulqabtiah, A.R.; Nur-Fazila, S.H.; Mahiza, M.I.N. Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species. Int. J. Mol. Sci. 2021, 22, 8044. [Google Scholar] [CrossRef] [PubMed]
- Beyer, M.; Schultze, J.L. Regulatory T cells in cancer. Blood 2006, 108, 804–811. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, C.; Xu, Y.; Wang, M.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; Wang, Y.; et al. Hyperfunction of CD4 CD25 regulatory T cells in de novo acute myeloid leukemia. BMC Cancer 2020, 20, 472. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, J.; Liu, J.; Yao, J.; He, Y.; Li, X.; Yu, J.; Yang, J.; Liu, Z.; Huang, S. Increased population of CD4+CD25high regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur. J. Haematol. 2005, 75, 468–476. [Google Scholar] [CrossRef]
- Abaza, Y.; Zeidan, A.M. Immune Checkpoint Inhibition in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Cells 2022, 11, 2249. [Google Scholar] [CrossRef]
- El Dosoky, W.; Aref, S.; El Menshawy, N.; Ramez, A.; Abou Zaid, T.; Aref, M.; Atia, D. Prognostic effect of CTLA4/LAG3 Expression by T-Cells Subsets on Acute Myeloid Leukemia Patients. Asian Pac. J. Cancer Prev. APJCP 2024, 25, 1777–1785. [Google Scholar] [CrossRef]
- Park, S.H.; Bae, M.H.; Park, C.J.; Cho, Y.U.; Jang, S.; Lee, J.H.; Lee, K.-H. Effect of changes in lymphocyte subsets at diagnosis in acute myeloid leukemia on prognosis: Association with complete remission rates and relapse free survivals. J. Hematop. 2023, 16, 73–84. [Google Scholar] [CrossRef]
- Park, Y.; Lim, J.; Kim, S.; Song, I.; Kwon, K.; Koo, S.; Kim, J. The prognostic impact of lymphocyte subsets in newly diagnosed acute myeloid leukemia. Blood Res. 2018, 53, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lu, X.C.; Yu, R.L.; Chi, X.H.; Liu, Y.; Wang, Y.; Dai, H.; Zhu, H.; Cai, L.; Han, W. Repeated transfusions of autologous cytokine-induced killer cells for treatment of haematological malignancies in elderly patients: A pilot clinical trial. Hematol. Oncol. 2012, 30, 115–122. [Google Scholar] [CrossRef]
- Zwirner, N.W.; Ziblat, A. Regulation of NK Cell Activation and Effector Functions by the IL-12 Family of Cytokines: The Case of IL-27. Front. Immunol. 2017, 8, 25. [Google Scholar] [CrossRef]
- Curran, E.; Corrales, L.; Kline, J. Targeting the Innate Immune System as Immunotherapy for Acute Myeloid Leukemia. Front. Oncol. 2015, 5, 83. [Google Scholar] [CrossRef]
- Müller, L.; Aigner, P.; Stoiber, D. Type I Interferons and Natural Killer Cell Regulation in Cancer. Front. Immunol. 2017, 8, 304. [Google Scholar] [CrossRef]
- Steger, B.; Milosevic, S.; Doessinger, G.; Reuther, S.; Liepert, A.; Braeu, M.; Schick, J.; Vogt, V.; Schuster, F.; Kroell, T.; et al. CD4+ and CD8+T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT. Immunobiology 2014, 219, 247–260. [Google Scholar] [CrossRef]
- Lordo, M.R.; Scoville, S.D.; Goel, A.; Yu, J.; Freud, A.G.; Caligiuri, M.A.; Mundy-Bosse, B.L. Unraveling the Role of Innate Lymphoid Cells in Acute Myeloid Leukemia. Cancers 2021, 13, 320. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Huang, X.; Yan, X.; Lai, X.; Wang, S. The joint role of the immune microenvironment and N7-methylguanosine for prognosis prediction and targeted therapy in acute myeloid leukemia. Front. Genet. 2025, 16, 1540992. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marchi, F.; Shastri, V.M.; Marrero, R.J.; Nguyen, N.H.K.; Öttl, A.; Schade, A.K.; Landwehr, M.; Krali, O.; Nordlund, J.; Ghavami, M.; et al. Epigenomic diagnosis and prognosis of Acute Myeloid Leukemia. Nat. Commun. 2025, 16, 6961. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Chen, Z.; Zheng, J.; Chen, S.; Zhong, L.; Chen, J.; Chen, C.; Sui, S.; Li, Y. Gene Signature-Based Prognostic Model for Acute Myeloid Leukemia: The Role of BATF, EGR1, PD-1, PD-L1, and TIM-3. Int. J. Med. Sci. 2025, 22, 1875–1884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ihlow, J.; Gross, S.; Busack, L.; Flörcken, A.; Jesse, J.; Schwarz, M.; Neuendorff, N.R.; von Brünneck, A.-C.; Anagnostopoulos, I.; Türkmen, S.; et al. Acute myeloid leukemia: Negative prognostic impact of early blast persistence can be in part overcome by a later remission prior to post-induction therapy. Haematologica 2022, 107, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Kern, W.; Haferlach, T.; Schoch, C.; Löffler, H.; Gassmann, W.; Heinecke, A.; Sauerland, M.C.; Berdel, W.; Büchner, T.; Hiddemann, W. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: Data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood 2003, 101, 64–70. [Google Scholar] [CrossRef]
- Freudenreich, M.; Tischer, J.; Kroell, T.; Kremser, A.; Dreyßig, J.; Beibl, C.; Liepert, A.; Kolb, H.J.; Schmid, C.; Schmetzer, H. In Vitro Generated Dendritic Cells of Leukemic Origin Predict Response to Allogeneic Stem Cell Transplantation in Patients With AML and MDS. J. Immunother. 2022, 45, 104. [Google Scholar] [CrossRef] [PubMed]
- Jahic, A.; Iljazovic, E.; Hasic, S.; Arnautovic, A.C.; Sabitovic, D.; Mesanovic, S.; Sahovic, H.; Simendic, V. Prognostic Parameters of Acute Myeloid Leukaemia at Presentation. Med. Arch. Sarajevo Bosnia Herzeg. 2017, 71, 20–24. [Google Scholar] [CrossRef]
- Anguille, S.; Van de Velde, A.L.; Smits, E.L.; Van Tendeloo, V.F.; Juliusson, G.; Cools, N.; Nijs, G.; Stein, B.; Lion, E.; Van Driessche, A.; et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 2017, 130, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Khanmiri, J.M.; Alizadeh, M.; Esmaeili, S.; Gholami, Z.; Safarzadeh, A.; Khani-Eshratabadi, M.; Baghbanzadeh, A.; Alizadeh, N.; Baradaran, B. Dendritic cell vaccination strategy for the treatment of acute myeloid leukemia: A systematic review. Cytotherapy 2024, 26, 427–435. [Google Scholar] [CrossRef]
- Smits, E.L.J.; Lee, C.; Hardwick, N.; Brooks, S.; Van Tendeloo, V.F.I.; Orchard, K.; Guinn, B. Clinical evaluation of cellular immunotherapy in acute myeloid leukaemia. Cancer Immunol. Immunother. CII 2011, 60, 757–769. [Google Scholar] [CrossRef]
- Behl, D.; Porrata, L.F.; Markovic, S.N.; Letendre, L.; Pruthi, R.K.; Hook, C.C.; Tefferi, A.; Elliot, M.A.; Kaufmann, S.H.; Mesa, R.A.; et al. Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia 2006, 20, 29–34. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, N.D.; Gama, F.M.; de Souza Barros, M.; Ribeiro, T.L.; Alves, F.S.; Xabregas, L.A.; Tarragô, A.M.; Malheiro, A.; Costa, A.G. Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J. Immunol. Res. 2021, 2021, 6633824. [Google Scholar] [CrossRef]
- Penter, L.; Wu, C.J. Therapy response in AML: A tale of two T cells. Blood 2024, 144, 1134–1136. [Google Scholar] [CrossRef]
- Liepert, A.; Grabrucker, C.; Kremser, A.; Dreyßig, J.; Ansprenger, C.; Freudenreich, M.; Kroell, T.; Reibke, R.; Tischer, J.; Schweiger, C.; et al. Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential. Cell Immunol. 2010, 265, 23–30. [Google Scholar] [CrossRef]
- Barros Mde, S.; de Araújo, N.D.; Magalhães-Gama, F.; Pereira Ribeiro, T.L.; Alves Hanna, F.S.; Tarragô, A.M.; Malheiro, A.; Costa, A.G. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front. Immunol. 2021, 12, 729085. [Google Scholar] [CrossRef]
- Fauriat, C.; Just-Landi, S.; Mallet, F.; Arnoulet, C.; Sainty, D.; Olive, D.; Costello, R.T. Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007, 109, 323–330. [Google Scholar] [CrossRef]
- Xu, J.; Niu, T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J. Hematol. Oncol. J. Hematol. Oncol. 2020, 13, 167. [Google Scholar] [CrossRef]
- Carlsten, M.; Järås, M. Natural Killer Cells in Myeloid Malignancies: Immune Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to Bolster the Endogenous NK Cells. Front. Immunol. 2019, 10, 2357. [Google Scholar] [CrossRef]
- D’Silva, S.Z.; Singh, M.; Pinto, A.S. NK cell defects: Implication in acute myeloid leukemia. Front Immunol. 2023, 14, 1112059. [Google Scholar] [CrossRef]
- Bittencourt, M.C.B.; Ciurea, S.O. Recent Advances in Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Biol. Blood Marrow Transplant. 2020, 26, e215–e221. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; de Wreede, L.C.; van Biezen, A.; Finke, J.; Ehninger, G.; Ganser, A.; Volin, L.; Niederwieser, D.; Beelen, D.; Alessandrino, P.; et al. Outcome after relapse of myelodysplastic syndrome and secondary acute myeloid leukemia following allogeneic stem cell transplantation: A retrospective registry analysis on 698 patients by the Chronic Malignancies Working Party of the European Society of Blood and Marrow Transplantation. Haematologica 2018, 103, 237–245. [Google Scholar]
- Anand, P.; Stein, J.; Filippini Velázquez, G.; Abdulmajid, J.; Feng, X.; Wichmann, C.; Chen-Wichmann, L.; Schmid, C.; Schmetzer, H. Monitoring of (Leukemia Specific) Immune Cells after AML Relapse Post-Transplantation across Treatment Groups and Disease Stages. 2025; in revision. [Google Scholar]
- Giaccone, L.; Felicetti, F.; Butera, S.; Faraci, D.; Cerrano, M.; Dionisi Vici, M.; Brunello, L.; Fortunati, N.; Brignardello, E.; Bruno, B. Optimal Delivery of Follow-Up Care After Allogeneic Hematopoietic Stem-Cell Transplant: Improving Patient Outcomes with a Multidisciplinary Approach. J. Blood Med. 2020, 11, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Lulla, P.D.; Naik, S.; Vasileiou, S.; Tzannou, I.; Watanabe, A.; Kuvalekar, M.; Lulla, S.; Carrum, G.; Ramos, C.A.; Kamble, R.; et al. Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood 2021, 137, 2585–2597, Erratum in Blood 2022, 139, 1257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moussion, C.; Delamarre, L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol. 2024, 71, 101848. [Google Scholar] [CrossRef]
- Chiad, Z.; Chojecki, A. Graft versus Leukemia in 2023. Best Pract. Res. Clin. Haematol. 2023, 36, 101476. [Google Scholar] [CrossRef]
- Thompson, L.F.; Tsukamoto, H.; Chernogorova, P.; Zeiser, R. A delicate balance: CD73-generated adenosine limits the severity of graft vs. host disease but also constrains the allogeneic graft vs. tumor effect. Oncoimmunology 2013, 2, e22107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.B.; McDonough, S.; Chen, H.; Kennedy, J.; Illiano, C.; Attar, E.C.; Ballen, K.K.; Dey, B.R.; McAfee, S.L.; Jagasia, M.; et al. Expression of α4β7 integrin on memory CD8+ T cells at the presentation of acute intestinal GVHD (Abstract). Bone Marrow Transplant. 2013, 48, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, A.; Alpdogan, O.; Willis, L.M.; Eng, J.M.; Greenberg, A.S.; Kappel, B.J.; Liu, C.; Murphy, G.J.; Heller, G.; van den Brink, M.R.M. LPAM (α4β7 integrin) is an important homing integrin on alloreactive T cells in the development of intestinal graft-versus-host disease. Blood 2004, 103, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Dekker, L.; de Koning, C.; Lindemans, C.; Nierkens, S. Reconstitution of T Cell Subsets Following Allogeneic Hematopoietic Cell Transplantation. Cancers 2020, 12, 1974. [Google Scholar] [CrossRef]
- Fujii Sichiro Shimizu, K.; Klimek, V.; Geller, M.D.; Nimer, S.D.; Dhodapkar, M.V. Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br. J. Haematol. 2003, 122, 617–622. [Google Scholar] [CrossRef]
- Altman, J.B.; Benavides, A.D.; Das, R.; Bassiri, H. Antitumor Responses of Invariant Natural Killer T Cells. J. Immunol. Res. 2015, 2015, 652875. [Google Scholar] [CrossRef]
- Heuser, M.; Ofran, Y.; Boissel, N.; Brunet Mauri, S.; Craddock, C.; Janssen, J.; Wierzbowska, A.; Buske, C.; ESMO Guidelines Committee. Acute myeloid leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 697–712, Erratum in Ann. Oncol. 2021, 32, 821. [Google Scholar] [CrossRef] [PubMed]
- Klauer, L.K.; Rejeski, H.A.; Ugur, S.; Rackl, E.; Abdulmajid, J.; Fischer, Z.; Pepeldjiyska, E.; Frischhut, A.; Schmieder, N.; Völker, A.; et al. Leukemia-Derived Dendritic Cells Induce Anti-Leukemic Effects Ex Vivo in AML Independently of Patients’ Clinical and Biological Features. Int. J. Mol. Sci. 2025, 26, 1700. [Google Scholar] [CrossRef]





| Cell Type | Name of Subgroups | Abbreviation of Subgroups | Surface Marker | Abbreviation | Reference |
|---|---|---|---|---|---|
| Myeloid cells | |||||
| Blast cells | Leukemic blasts | Bla | Bla+ (CD15+, CD34+, CD117+) | Bla/cells | [26] |
| Dendritic cells | Dendritic cells | DC | DC+ (CD80+, CD206+) | DC/cells | [25] |
| Leukemia derived DC | DCleu | DC+Bla+ | DCleu/cells | [25] | |
| DCleu/Bla | [25] | ||||
| DCleu/DC | [25] | ||||
| Immune reactive cells | |||||
| Innate immune system | NK cells | NK | CD3−CD56+ | NK/cells | [27] |
| CIK cells | CIK | CD3+CD56+ | CIK/cells | [27] | |
| Invariant natural killer T cells | iNKT | 6B11+ | iNKT/cells | [28] | |
| Adaptive immune system | CD3+ pan T cells | T | CD3+ | T/cells | [29] |
| CD4+coexpressing T cells | T4+ | CD3+CD4+ | T4+/T and cells | [29] | |
| CD8+coexpressing T cells | T4− | CD3+CD4− | T4−/T and cells | [29] | |
| Non-naive T cells | Tnn | CD3+CD45RO+ | Tnn/T and cells | [30] | |
| Effector memory T cells | Tem | CD3+CD45RO+CD197− | Tem/T and cells | [27] | |
| Central memory T cells | Tcm | CD3+CD45RO+CD197+ | Tcm/T and cells | [30] | |
| γδ T cells | Tgd | CD3+TCRgd+ | Tgd/T and cells | [31] | |
| Integrine β7 T cells | Tβ7 | CD3+Intβ7+ | Tβ7/T and cells | [31] | |
| Regulatory T cells | Treg | CD3+CD4+CD25++CD127(+) | Treg/T and cells | [32] | |
| CTLA4 expressing T cells | T152 | CD3+CD152+ | T152/T and cells | [33] | |
| 4-1BB expressing T cells | T137 | CD3+CD137+ | T137/T and cells | [34] | |
| CD40L expressing T cells | T154 | CD3+CD154+ | T154/T and cells | [35] | |
| Intracellularly IFNg producing cells | |||||
| Innate immune cells | NK cells | NKIFNg | IFNg+CD3−CD56+ | NKIFNg/NK and cells | [25] |
| CIK cells | CIKIFNg | IFNg+CD3+CD56+ | CIKIFNg/CIK and cells | [25] | |
| Adaptive immune system | CD3+ pan T cells | TIFNg | IFNg+CD3+ | TIFNg/T and cells | [25] |
| CD4+-coexpressing T cells | T4+IFNg | IFNg+CD3+CD4+ | T4+IFNg/T4+ and cells | [25] | |
| CD8+-coexpressing T cells | T4−IFNg | IFNg+CD3+CD4− | T4−IFNg/T4− and cells | [25] | |
| Non-naive T cells | Tnn IFNg | IFNg+CD3+CD45RO+ | TnnIFNg/Tnn and cells | [25] | |
| Effector memory T cells | TemIFNg | IFNg+CD3+CD45RO+CD197− | TemIFNg/Tem and cells | [25] | |
| Central memory T cells | TcmIFNg | IFNg+CD3+CD45RO+CD197+ | TcmIFNg/Tcm and cells | [25] | |
| γδ T cells | TgdTNFα | TNFα+CD3+TCRgd+ | TgdTNFα/T and cells | [36] | |
| Integrine β7 T cells | Tβ7IFNg | IFNg+CD3+Intβ7+ | Tβ7IFNg/Tβ7 and cells | [31] | |
| Degranulating cells (CD107a) | |||||
| Innate immune cells | NK cells | NK107a | CD107a+CD3−CD56+ | NK107a/NK and cells | [25] |
| CIK cells | CIK107a | CD107a+CD3+CD56+ | CIK107a/CIK and cells | [25] | |
| Invariant natural killer T cells | iNKT107a | CD107a+6B11+ | iNKT107a/iNKT and cells | [37] | |
| Adaptive immune system | CD3+ pan T cells | T107a | CD107a+CD3+ | T107a/T and cells | [25] |
| Non-naive T cells | Tnn107a | CD107a+CD3+CD45RO+ | Tnn107a/Tnn and cells | [25] | |
| Effector memory T cells | Tem107a | CD107a+CD3+CD45RO+CD197− | Tem107a/Tem and cells | [25] | |
| Central memory T cells | Tcm107a | CD107a+CD3+CD45RO+CD197+ | Tcm107a/Tcm and cells | [25] | |
| γδ T cells | Tgd107a | CD107a+CD3+TCRgd+ | TCRγδ107a/TCRγδ and cells | [32,36] | |
| Integrine β7 T cells | Tβ7107a | CD107a+CD3+Intβ7+ | Tβ7107a/Tβ7 and cells | [31] | |
| Regulatory T cells | Treg107a | CD107a+CD3+CD4+CD25++CD127(+) | Treg107a/Treg and cells | [32] |
| Cell Types: | Finding and Mode of Action: | Associated with favorable Prognosis |
|---|---|---|
| Myeloid cells |
|
|
| (leukemia-specific) adaptive immune effector, memory and regulatory cells | (LEUKEMIA SPECIFIC) EFFECTOR CELLS
|
|
| (leukemia-specific) innate immune effector cells | (LEUKEMIA SPECIFIC) EFFECTOR CELLS
|
|
| Patient No. | Sex | Age | Etiology | Stage at 1st Analysis | ELN Risk Stratification | Response to Induction | Blast Phenotype (CD) | Blasts in PB (%) | Analyzed in Following Treatment Groups |
| 1599 | f | 71 | pAML | diagnosis | intermediate | No | 7, 13, 33, 34, 117 | 79 | Dgn |
| 1603 | f | 32 | pAML | diagnosis | adverse | No | 15, 33, 34, 117 | 47 | Dgn, PChemo, PHMA+V |
| 1608 | f | 62 | pAML | diagnosis | adverse | Yes | 13, 33, 34, 117 | 55 | Dgn, CR |
| 1612 | m | 77 | pAML | diagnosis | adverse | No | 13, 34, 117 | 9 | Dgn, PHMA+V |
| 1618 | m | 64 | pAML | diagnosis | favorable | Yes | 13, 33, 117 | 29 | Dgn, CR |
| 1622 | f | 49 | pAML | diagnosis | favorable | Yes | 13, 33, 117 | 38 | Dgn, CR |
| 1627 | f | 59 | pAML | diagnosis | intermediate | No | 33, 34, 117 | 50 | Dgn, PChemo, PHMA+V |
| 1630 | m | 29 | pAML | diagnosis | favorable | No | 13, 15, 33, 64, 65, 117 | 26 | Dgn, PChemo |
| 1635 | m | 51 | pAML | diagnosis | intermediate | Yes | 13, 33, 34, 117 | 25 | Dgn, CR |
| 1609 | m | 72 | sAML | diagnosis | favorable | Yes | 7, 13, 33, 117 | 22 | Dgn, CR |
| 1624 | f | 77 | sAML | diagnosis | adverse | No | 33, 34, 117 | 38 | Dgn, PChemo, PHMA+V |
| 1638 | m | 68 | sAML | diagnosis | adverse | No | 13, 33, 34, 117 | 65 | Dgn, PChemo |
| 1642 | f | 64 | sAML | diagnosis | adverse | Yes | 33, 34, 117 | 16 | Dgn, CR |
| 1651 | f | 62 | sAML | diagnosis | intermediate | Yes | 13, 33, 34, 117 | 16 | Dgn |
| 1511 | m | 76 | pAML | persistence | 13, 33, 34, 117 | 42 | PChemo | ||
| 1482 | m | 75 | sAML | persistence | 15, 33, 64, 117 | 48 | PChemo, PKitM, CR, | ||
| 1601 | f | 75 | sAML | persistence | 4, 7, 33, 117 | 73 | PKitM, PHMA+V | ||
| Patient No. | Sex | Age | WHO Classification | No. of SCTs | Stage at 1st Analysis | Blast Phenotype (CD) | Blasts in PB (%) | Analyzed in Following Treatment Groups | |
| 1632 | f | 56 | AML with defining genetic abnormalities | 2 | relapse after SCT | 34, 117, 33, 13, 7 | 7 | RelpostSCT | |
| 1641 | f | 64 | AML, post cytotoxic therapy | 2 | relapse after SCT | 34, 33, 13, 64, 14, 65, 117, 15 | 5 | RelpostSCT, PHMA+V post SCT, CRpostSCT | |
| 1650 | f | 64 | AML, myelodysplasia-related | 2 | relapse after SCT | 34, 13, 117, 56 | 1 | RelpostSCT, PHMA+V postSCT, CRpostSCT | |
| 1654 | m | 71 | AML with defining genetic abnormalities | 1 | relapse after SCT | 13, 34, 117 | 16 | RelpostSCT, PHMA+V postSCT, CRpostSCT | |
| 1655 | m | 66 | AML, myelodysplasia-related | 2 | relapse after SCT | 34, 13, 117, | 6 | RelHMA+V postSCT, CRpostSCT | |
| 1656 | f | 42 | AML with defining genetic abnormalities | 2 | relapse after SCT | 34, 13, 33, 117, 56 | 8 | RelpostSCT, PHMA+V postSCT | |
| 1658 | f | 59 | AML defined by differentiation | 1 | relapse after SCT | 33, 64, 14, 56 | 14 | RelpostSCT | |
| 1660 | m | 70 | MDS defined by morphology | 2 | relapse after SCT | 34, 117, 33, 13, 123 | 6 | RelpostSCT, PHMA+V postSCT, CRpostSCT | |
| 1663 | f | 46 | AML defined by differentiation | 3 | relapse after SCT | 34, 117, 33, 7, 13, 65, 15 | 5 | RelpostSCT, CRpostSCT | |
| 1664 | m | 65 | AML with defining genetic abnormalities | 2 | relapse after SCT | 34, 117, 33, 13, 65 | 3 | RelHMA+V postSCT, PKit-M postSCT | |
| 1665 | m | 68 | AML, myelodysplasia-related | 1 | relapse after SCT | 33, 34, 13, 15 | 1 | RelpostSCT, CRpostSCT | |
| 1674 | f | 51 | AML, myelodysplasia-related | 1 | relapse after SCT | 34, 13, 33, 117 | 7 | RelpostSCT, PHMA+V postSCT | |
| 1640 | f | 73 | AML with defining genetic abnormalities | 2 | partial remission after SCT | 33, 7, 117, 13, 34 | 1 | CRpostSCT | |
| 1603 | f | 32 | AML with recurrent genetic aberrations | 1 | complete remission after SCT | 15, 33, 34, 117 | CRpost SCT | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein, J.; Anand, P.; Abdulmajid, J.; Hartz, A.; Unterfrauner, M.; Feng, X.; Schmieder, N.; Kruk, L.; Bojko, P.; Schmohl, J.; et al. Monitoring of (Leukemia-Specific) Immune Cells in Stages, Treatment Groups and in the Course of Disease and Therapy Contributes to Qualify Antileukemic Potential and Survival in Patients with AML. Int. J. Mol. Sci. 2025, 26, 10336. https://doi.org/10.3390/ijms262110336
Stein J, Anand P, Abdulmajid J, Hartz A, Unterfrauner M, Feng X, Schmieder N, Kruk L, Bojko P, Schmohl J, et al. Monitoring of (Leukemia-Specific) Immune Cells in Stages, Treatment Groups and in the Course of Disease and Therapy Contributes to Qualify Antileukemic Potential and Survival in Patients with AML. International Journal of Molecular Sciences. 2025; 26(21):10336. https://doi.org/10.3390/ijms262110336
Chicago/Turabian StyleStein, Julian, Philipp Anand, Joudi Abdulmajid, Anne Hartz, Marianne Unterfrauner, Xiaojia Feng, Nicolas Schmieder, Linus Kruk, Peter Bojko, Joerg Schmohl, and et al. 2025. "Monitoring of (Leukemia-Specific) Immune Cells in Stages, Treatment Groups and in the Course of Disease and Therapy Contributes to Qualify Antileukemic Potential and Survival in Patients with AML" International Journal of Molecular Sciences 26, no. 21: 10336. https://doi.org/10.3390/ijms262110336
APA StyleStein, J., Anand, P., Abdulmajid, J., Hartz, A., Unterfrauner, M., Feng, X., Schmieder, N., Kruk, L., Bojko, P., Schmohl, J., Schmid, C., Filippini Velázquez, G., & Schmetzer, H. M. (2025). Monitoring of (Leukemia-Specific) Immune Cells in Stages, Treatment Groups and in the Course of Disease and Therapy Contributes to Qualify Antileukemic Potential and Survival in Patients with AML. International Journal of Molecular Sciences, 26(21), 10336. https://doi.org/10.3390/ijms262110336

