Microplastics in Airborne Particulate Matter: A Comprehensive Review of Separation Techniques, In Vitro Toxicity and Health Impacts
Abstract
1. Search Strategy and Study Selection
2. Introduction
2.1. Background and Significance
2.2. Primary and Secondary MPs
2.3. Environmental Pathways and Ecological Impacts
2.4. Tire Wear Particles (TWPs) and Traffic-Related Emissions
2.5. Exposure Pathways and Potential Health Relevance
2.6. Monitoring Approaches and Research Gaps
3. Methods for Microplastic Separation from Suspended Particulate Matter (PM10)
3.1. Air Sampling
3.2. Separation of MPs from Suspended Particulate Matter Samples
3.3. Quantitative and Qualitative Analysis of MPs
4. Human Health Impact of MPs in PM
4.1. In Vitro Studies on the Carcinogenicity of MPs
4.2. Preparation of Material for In Vitro Studies
4.3. Potential Errors Affecting Toxicological Results
4.4. Future Research Agenda
4.4.1. Standardization of Exposure Metrics and Interlaboratory Comparability
4.4.2. Incorporation of Aged and Weathered Particles
4.4.3. Integration of “Omics”-Based Endpoints
4.4.4. Environmentally Realistic Exposure Doses and Modeling
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–17. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Persistence of plastic litter in the oceans. In Marine Anthropogenic Litter; Springer Nature: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, P.; Abhishek, K. Sampling, separation, and characterization methodology for quantification of microplastic from the environment. J. Hazard. Mater. Adv. 2024, 14, 100416. [Google Scholar] [CrossRef]
- Abad López, A.P.; Trilleras, J.; Arana, V.A.; Garcia-Alzate, L.S.; Grande-Tovar, C.D. Atmospheric microplastics: Exposure, toxicity, and detrimental health effects. RSC Adv. 2023, 13, 7468–7489. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, M.; Chen, B.; Liu, B.; Zhang, B. Transport of microplastic-antibiotic co-contaminants in tidal zones. Environ. Pollut. 2025, 372, 126072. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, S.; Cui, M. Aged polyamide microplastics enhance the adsorption of trimethoprim in soil environments. Environ. Monit. Assess. 2023, 195, 669. [Google Scholar] [CrossRef]
- Biswas, B.; Joseph, A.; Ranjan, V.P.; Goel, S. Adsorption of Emerging Contaminants on Microplastics in the Environment: A Systematic Review. ACS ES&T Water 2024, 12, 5207–5224. [Google Scholar] [CrossRef]
- Al-Jandal, N.; AlKhubaizi, A.; Saeed, T.; Hajeyah, M. Potential Adsorption Affinity of Estrogens on LDPE and PET Microplastics Exposed to Wastewater Treatment Plant Effluents. Int. J. Environ. Res. Public Health 2022, 19, 16027. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Yang, H.; Wu, Y.; Pu, Q.; He, W.; Li, X. A review of tire wear particles: Occurrence, adverse effects, and control strategies. Ecotoxicol. Environ. Saf. 2024, 283, 116782. [Google Scholar] [CrossRef]
- Vattanasit, U.; Kongpran, J.; Ikeda, A. Airborne microplastics: A narrative review of potential effects on the human respiratory system. Sci. Total Environ. 2023, 904, 166745. [Google Scholar] [CrossRef]
- Sangkham, S.; Faikhaw, O.; Munkong, N.; Sakunkoo, P.; Arunlertaree, C.; Chavali, M.; Mousazadeh, M.; Tiwari, A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar. Pollut. Bull. 2022, 181, 113832. [Google Scholar] [CrossRef]
- Österlund, H.; Blecken, G.; Lange, K.; Marsalek, J.; Gopinath, K.; Viklander, M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. Sci. Total Environ. 2023, 858, 159781. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Chen, B.H.; Hong, C.J.; Pandey, M.R.; Smithd, K.R. Indoor Air Pollution in Developing Countries. World Health Stat. Q. Rapp. Trimest. Stat. Sanit. Mond. 1990, 43, 127–138. [Google Scholar]
- Fang, C.; Awoyemi, O.S.; Saianand, G.; Xu, L.; Niu, J.; Naidu, R. Characterising microplastics in indoor air: Insights from Raman imaging analysis of air filter samples. J. Hazard. Mater. 2024, 464, 132969. [Google Scholar] [CrossRef] [PubMed]
- Özen, H.A.; Mutuk, T. The influence of road vehicle tyre wear on microplastics in a high-traffic university for sustainable transportation. Environ. Pollut. 2025, 367, 125536. [Google Scholar] [CrossRef]
- Worek, J.; Badura, X.; Białas, A.; Chwiej, J.; Kawoń, K.; Styszko, K. Pollution from Transport: Detection of Tyre Particles in Environmental Samples. Energies 2022, 15, 2816. [Google Scholar] [CrossRef]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, X.; Su, Y.; Wang, H.; Yu, R.; Zhou, S.; Xu, E.G.; Xing, B. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Sci. Total Environ. 2021, 795, 148902. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Vithanage, M. Microplastics in road dust and surrounding environment: Sources, fate and analytical approaches. Trends Environ. Anal. Chem. 2025, 45, e00256. [Google Scholar] [CrossRef]
- Järlskog, I.; Jaramillo-Vogel, D.; Rausch, J.; Gustafsson, M.; Strömvall, A.-M.; Andersson-Sköld, Y. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environ. Int. 2022, 170, 107618. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, L.; Du, C.; Li, Y.; Cheng, W.; Bi, H.; Li, G.; Zhuang, M.; Ren, D.; Wang, H.; et al. Human airway organoids as 3D in vitro models for a toxicity assessment of emerging inhaled pollutants: Tire wear particles. Front. Bioeng. Biotechnol. 2023, 10, 1105710. [Google Scholar] [CrossRef]
- O’Brien, S.; Rauert, C.; Ribeiro, F.; Okoffo, E.D.; Burrows, S.D.; O’Brien, J.W.; Wang, X.; Wright, S.L.; Thomas, K.V. There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Sci. Total Environ. 2023, 874, 162193. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Leitão, I.A.; VanSchaik, L.; Iwasaki, S.; Ferreira, A.J.D.; Geissen, V. Accumulation of airborne microplastics on leaves of different treespecies in the urban environment. Sci. Total Environ. 2024, 948, 174907, Erratum in Sci. Total Environ. 2024, 951, 175620. [Google Scholar] [CrossRef]
- Sivalingam, S.; Priya, P.G.; Lakshmi, S.; Gudimella, S.S.T. Microplastics in Asia: Overcoming sampling, analysis, and regulatory challenges to protect the ecosystem—A review. Environ. Sci. Atmos. 2024, 4, 1331–1351. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Samandra, S.; Clarke, B.; Alwan, W. From Collection to Analysis: A Practical Guide to Sample Preparation and Processing of Microplastics; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2024. [Google Scholar]
- Rodina, D.; Roth, C.; Wohlleben, W.; Pfohl, P. An innovative microplastic extraction technique: The switchable calcium chloride density separation column tested for biodegradable polymers, polyethylene, and polyamide. MethodsX 2024, 12, 102560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.; Peng, L.; Liu, J.; Wang, G. Analysis of Aging Mechanism of Polystyrene Microspheres by Using Single Particle Raman Spectroscopy. Zhongguo Jiguang Chin. J. Lasers 2022, 49, 0411002. [Google Scholar]
- Goodman, K.E.; Hare, J.T.; Khamis, Z.I.; Hua, T.; Sang, Q.-X.A. Exposure of Human Lung Cells to Polystyrene Microplastics Significantly Retards Cell Proliferation and Triggers Morphological Changes. Chem. Res. Toxicol. 2021, 34, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, C.; Di Serafino, A.; Aruffo, E.; Mascitelli, A.; Di Carlo, P. A549 as an In Vitro Model to Evaluate the Impact of Microplastics in the Air. Biology 2023, 12, 1243. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Huang, R.; Tang, C.; Hu, C.; Ning, P.; Wang, F. Cytotoxicity and Genotoxicity of Polystyrene Micro-and Nanoplastics with Different Size and Surface Modification in A549 Cells. Int. J. Nanomed. 2022, 17, 4509–4523. [Google Scholar] [CrossRef] [PubMed]
- Michelini, S.; Mawas, S.; Kurešepi, E.; Barbero, F.; Šimunović, K.; Miremont, D.; Devineau, S.; Schicht, M.; Ganin, V.; Haugen, Ø.P.; et al. Pulmonary hazards of nanoplastic particles: A study using polystyrene in in vitro models of the alveolar and bronchial epithelium. J. Nanobiotechnol. 2025, 23, 388. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, K.-F.; Lin, K.-Y.A.; Tsang, Y.F.; Hsu, Y.-F.; Lin, C.-H. Evaluation of the pulmonary toxicity of PSNPs using a Transwell-based normal human bronchial epithelial cell culture system. Sci. Total Environ. 2023, 895, 165213. [Google Scholar] [CrossRef]
- Yang, W.; Jannatun, N.; Zeng, Y.; Liu, T.; Zhang, G.; Chen, C.; Li, Y. Impacts of microplastics on immunity. Front. Toxicol. 2022, 4, 956885. [Google Scholar] [CrossRef]
- Rybalchenko, Y.V. The effect of nanoplastics and microplastics on lung morphology and physiology: A systematic review. Med. Ecol. Probl. 2024, 28, 42–60. [Google Scholar] [CrossRef]
- Milillo, C.; Aruffo, E.; Di Carlo, P.; Patruno, A.; Gatta, M.; Bruno, A.; Dovizio, M.; Marinelli, L.; Dimmito, M.P.; Di Giacomo, V.; et al. Polystyrene nanoplastics mediate oxidative stress, senescence, and apoptosis in a human alveolar epithelial cell line. Front. Public Health 2024, 12, 1385387. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Halimu, G.; Zhang, Q.; Song, Y.; Fu, X.; Li, Y.; Li, Y.; Zhang, H. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci. Total Environ. 2019, 694, 133794. [Google Scholar] [CrossRef]
- Goodman, K.E.; Hua, T.; Sang, Q.X.A. Effects of Polystyrene Microplastics on Human Kidney and Liver Cell Morphology, Cellular Proliferation, and Metabolism. ACS Omega 2022, 7, 34136–34153. [Google Scholar] [CrossRef]
- Krzeszowiak, J.; Pawlas, K. Pył zawieszony (PM2,5 oraz PM10), właściwości oraz znaczenie epidemiologiczne ekspozycji krótko- i długookresowej dla chorób układu oddechowego oraz krążenia. Med. Sr.—Environ. Med. 2018, 21, 7–13. [Google Scholar]
- Krzeszowiak, J.; Pawlas, K.; Rabczenko, D. Effect of short-term exposure to particulate matter (PM2.5 and PM10) and its impact on sudden exacerbations of selected cardiovascular and respiratory diseases in Wrocław during 2009–2013, based on registers of ambulance emergency calls. Environ. Med. 2021, 22, 49–56. [Google Scholar] [CrossRef]
- Davidson, C.I.; Phalen, R.F.; Solomon, P.A. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 2005, 39, 737–749. [Google Scholar] [CrossRef]
- Palaniappan, S.; Sadacharan, C.M.; Rostama, B. Polystyrene and Polyethylene Microplastics Decrease Cell Viability and Dysregulate Inflammatory and Oxidative Stress Markers of MDCK and L929 Cells In Vitro. Expo. Health 2022, 14, 75–85. [Google Scholar] [CrossRef]
- Harhash, M.; Schroeder, H.; Zavarsky, A.; Kamp, J.; Linkhorst, A.; Lauschke, T.; Dierkes, G.; Ternes, T.A.; Duester, L. Efficiency of five samplers to trap suspended particulate matter and microplastic particles of different sizes. Chemosphere 2023, 338, 139479. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, J.; Sohn, J.; Kim, C. Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea. Yonsei Med. J. 2023, 64, 301–308. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The plastic brain: Neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef]
- Winiarska, E.; Jutel, M.; Zemelka-Wiacek, M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ. Res. 2024, 251, 118535. [Google Scholar] [CrossRef]
- Saha, S.C.; Saha, G. Effect of microplastics deposition on human lung airways: A review with computational benefits and challenges. Heliyon 2024, 10, e24355. [Google Scholar] [CrossRef]
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis inovary through oxidative stress inrats. Toxicology 2021, 449, 152665, Erratum in Toxicology 2022, 478, 153291. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.S.; Singh, S. Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems. Sustainability 2023, 15, 13252. [Google Scholar] [CrossRef]
- Zou, H.; Qu, H.; Bian, Y.; Sun, J.; Wang, T.; Ma, Y.; Yuan, Y.; Gu, J.; Bian, J.; Liu, Z. Polystyrene Microplastics Induce Oxidative Stress in Mouse Hepatocytes in Relation to Their Size. Int. J. Mol. Sci. 2023, 24, 7382. [Google Scholar] [CrossRef]
- Liang, B.; Zhong, Y.; Huang, Y.; Lin, X.; Liu, J.; Lin, L.; Hu, M.; Jiang, J.; Dai, M.; Wang, B.; et al. Underestimated health risks: Polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part. Fibre Toxicol. 2021, 18, 20. [Google Scholar] [CrossRef]
- Glaubitz, F.; Rocha Vogel, A.; Kolberg, Y.; von Tümpling, W.; Kahlert, H. Detailed insights in adsorption process of heavy metals on tire wear particles. Environ. Pollut. 2023, 335, 122293. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.S.; Pestana, C.J.; Moffat, C.F.; Gkoulemani, N.; Hui, J.; Irvine, J.T.; Lawton, L.A. Aging microplastics enhances the adsorption of pharmaceuticals in freshwater. Sci. Total Environ. 2024, 912, 169467. [Google Scholar] [CrossRef]
- Lim, C.; Kim, N.; Lee, J.; Yoon, Y. Potential of Adsorption of Diverse Environmental Contaminants onto Microplastics. Water 2022, 14, 4086. [Google Scholar] [CrossRef]
- Lee, M.; Kim, H.; Ryu, H.-S.; Moon, J.; Khant, N.A.; Yu, C.; Yu, J.-H. Review on invasion of microplastic in our ecosystem and implications. Sci. Prog. 2022, 105, 00368504221140766. [Google Scholar] [CrossRef] [PubMed]
- Halappanavar, S.; Mallach, G. Adverse outcome pathways and in vitro toxicology strategies for microplastics hazard testing. Curr. Opin. Toxicol. 2021, 28, 52–61. [Google Scholar] [CrossRef]
- Joo, S.H.; Liang, Y.; Kim, M.; Byun, J.; Choi, H. Microplastics with adsorbed contaminants: Mechanisms and Treatment. Environ. Chall. 2021, 3, 100042. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.-S.; Wu, Y.-S.; Nagandran, S.; Batumalaie, K.; et al. Microplastic sources, formation, toxicity and remediation: A review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef]
- Gerdes, Z.; Hermann, M.; Ogonowski, M.; Gorokhova, E. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Sci. Rep. 2019, 9, 10695. [Google Scholar] [CrossRef]



| Method | Reagent/Filter | Description | Advantages/Application | Limitations Reported | Ref. |
|---|---|---|---|---|---|
| Sample collection | Quartz fiber, glass fiber, PTFE filters | Filtration of airborne PM to collect MPs on solid substrate. Filters pre-cleaned and baked at 550 °C to remove organic residues. | Commonly used for PM10, PM2.5 samplers; compatible with microscopic and spectroscopic analysis. | Risk of airborne contamination during sampling and handling; fibers from clothing may interfere; procedural blanks essential. | [5] |
| Digestion | H2O2 | Mild oxidation of organic matter; reaction accelerated by heating (50–60 °C). | Effective for removing natural organics with minimal polymer degradation; environmentally safe. | Incomplete digestion for lipid-rich samples; may slightly deform MPs at high temp. | [34] |
| H2O2 + Fe2+ | Radical-based oxidation; strong removal of biological residues. | Highly effective for organic matrices; short reaction time. | May oxidize polymer surfaces and alter FTIR/Raman spectra; reaction exothermic—temp control required. | [5,34] | |
| KOH | Hydrolytic removal of proteins and fats; long incubation (24–48 h at 40 °C). | Suitable for organic-rich samples (e.g., indoor dust). | May damage polyamide and polyester; prolonged contact affects morphology. | [34] | |
| NaOH | Similar to KOH but less effective for lipids. | Inexpensive, widely available. | Degrades PET and PVC; unsuitable for long digestion periods. | [34] | |
| Enzymatic | Enzymatic hydrolysis of cellulose, fats, and proteins. | Gentle, preserves polymer integrity and color; ideal for QA/QC validation. | Time-consuming and costly; enzyme activity depends on pH/temp. | [34] | |
| Acidic | Strong acid digestion to remove mineral/organic matter. | Rapid cleaning of heavily contaminated samples. | Causes polymer degradation and color loss; unsuitable for spectroscopy. | [28] | |
| Density separation | NaCl | MPs float in saline while heavier particles settle. | Cheap, safe, easy disposal; good for PE/PP. | Inefficient for dense polymers (PET, PVC); may underestimate MPs. | [35] |
| CaCl2 | Medium-density separation for mixed MP types. | Simple preparation; reusable solution. | Crystallization on filters affects weighing; incomplete separation for very dense MPs. | [35] | |
| NaI | High-density solution ensures recovery of heavy polymers. | Effective for PET, PVC, and composite MPs. | Expensive, toxic; must be filtered/recycled; may contaminate FTIR background. | [34,35] | |
| ZnCl2 | Very dense liquid allowing full recovery of all polymers. | High efficiency; suitable for complex PM matrices. | Highly corrosive and environmentally hazardous; disposal issues. | [34] | |
| QA/QC controls | Reference materials/ clean filter | Control samples analyzed in parallel to environmental samples. | Detects and corrects background contamination. | Neglecting blanks leads to false positives; synthetic clothing should be avoided. | [28,34] |
| Endpoints | Key Findings | Limitations Reported | Ref. |
|---|---|---|---|
| Cell viability, ROS production, cytokine secretion, barrier integrity. | Dose-dependent cytotoxicity and oxidative stress; disruption of epithelial barrier; increased pro-inflammatory signaling. | Pristine MPs used; exposure concentrations exceed environmental levels; short exposure duration. | [37] |
| ROS generation, mitochondrial function, EMT markers. | Surface chemistry modulates toxicity; amine-modified particles induce stronger ROS and EMT-related changes. | Surface chemistry is not representative of environmental MPs; limited exposure durations; no chronic studies. | [38] |
| Cell viability, oxidative stress, inflammatory cytokine expression, apoptosis. | Consistent oxidative stress and inflammation across studies; apoptosis responses vary by polymer type. | Focus on A549 cells limits extrapolation; large variability in study designs. | [39] |
| Cytokine secretion, oxidative damage, DNA strand breaks. | Polystyrene nanoparticles trigger inflammatory responses and genotoxicity in bronchial epithelial cells. | Nanoplastics studied do not reflect environmental weathering; artificial culture conditions. | [40] |
| ROS production, apoptosis, mitochondrial damage. | Environmental MPs induce higher oxidative damage compared to pristine particles; weathering increases toxicity. | Limited particle characterization; lack of dose–response curve for environmentally derived MPs. | [41] |
| Inflammatory cytokine expression, oxidative stress biomarkers. | Airborne PM-bound MPs induce stronger inflammatory signaling than isolated MPs; synergistic pollutant effects observed. | PM matrix complexity makes causal attribution difficult; short-term exposures only. | [42] |
| Cell viability, oxidative stress, autophagy markers. | MPs disrupt autophagy processes, contributing to oxidative stress and cell death. | Mechanistic link between autophagy disruption and in vivo effects remain speculative. | [43] |
| Oxidative stress, inflammatory mediator release, epithelial barrier function. | Barrier integrity compromised; increased IL-8 and TNF-α production; oxidative stress dose-dependent. | Only pristine MPs tested; relevance to inhaled environmental MPs uncertain. | [44] |
| Pulmonary toxicity mechanisms (ROS, inflammation, fibrosis). | Summarizes mechanistic pathways from in vitro and in vivo evidence; highlights chronic exposure risks. | Mechanistic evidence largely from high-dose exposures; nanoplastics poorly represented. | [45] |
| Respiratory health outcomes in in vivo and in vitro models. | Evidence supports pulmonary toxicity from inhaled MPs; outcomes vary by particle size, polymer type, and exposure route. | Heterogeneity in experimental conditions; environmental exposure levels underrepresented. | [46] |
| Polymer/ Type/Size | Dose | Model | Key Endpoints | Key Limitations | Ref. |
|---|---|---|---|---|---|
| PS-NPs (unmodified, –NH2, –COOH), 80 nm | 2.5–400 µg·mL−1 | A549 (submerged) | Decreased cell viability; induction of micronuclei (genotoxicity); increased reactive oxygen species (oxidative stress) | High doses; pristine spherical NPs; lack of aging; short exposure; limited mechanistic data | [39] |
| PS-NPs 25 nm and 70 nm | Concentration-dependent (dose N/A) | A549 (submerged) | Enhanced cellular uptake for 25 nm particles; induction of apoptosis; S-phase cell-cycle arrest; upregulation of IL-8 and TNF-α | Simplified model; pristine PS; short-term exposure | [45] |
| PS-MPs 0.5 and 5 µm | 10 mg·L−1 (in drinking water) | Mouse C57BL/6J (in vivo, 3-month) | Reduction in body-to-liver weight ratio; increased oxidative stress; decreased antioxidant enzyme activity; ultrastructural hepatic damage (stronger for 5 µm particles) | Not inhalation model; in vivo only; mechanism (SIRT3/SOD2) partly identified | [58] |
| PS (9.5–11.5 µm), PE (1–4 µm) | 1, 10, 20 µg·mL−1 | MDCK; L929 (submerged) | Dose-dependent reduction in viability; increased metabolic activity; upregulation of SOD3 and TNF-α; downregulation of IL-1β | Non-pulmonary lines; pristine microspheres; mechanistic data limited | [50] |
| PS MPs/NPs (25–100 nm range) | Variable (µg·mL−1) | A549; BEAS-2B (submerged) | Enhanced ROS generation; mitochondrial dysfunction; DNA strand breaks; size-dependent cellular internalization | High acute doses; pristine particles | [59] |
| Tire Wear Particles (TWPs) ≈ 100 nm | Up to 200 µg·mL−1 | Human airway organoids (hAOs from HBECs) | Inhibition of organoid growth; increased apoptosis and ROS generation (2.8-fold); upregulation of IL-6, TNF-α, CAT, and SOD2; downregulation of KRT5 and SCGB1A1 | Complex mixture (additives, metals); unclear dose–exposure translation; short exposure time | [27] |
| PS-NPs 156 ± 12 nm | 1–1000 ng·cm−2 | BEAS-2B (Transwell, quasi-ALI) | Cytotoxic effects at ≥10 ng·cm−2; oxidative stress at ≥1 ng·cm−2; activation of NF-κB, NLRP3, and ROCK-1; induction of apoptosis and autophagy at higher doses | Pristine PS; short-term; needs chronic low-dose validation; limited dose-response data | [41] |
| PS-NPs 800 nm | 10–500 µg·mL−1 | A549 (submerged) | Decreased viability; increased H2O2 production; upregulation of senescence markers (CDKN1A, IL1A/B, IL6, CXCL8); activation of apoptotic genes (BAX, CASP3, BCL2) | High doses; submerged culture; short exposure duration | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchmanowicz, D.; Styszko, K.; Chen, X.; Terribile, G.; Jakhar, R.; Sancini, G.; Pyssa, J. Microplastics in Airborne Particulate Matter: A Comprehensive Review of Separation Techniques, In Vitro Toxicity and Health Impacts. Int. J. Mol. Sci. 2025, 26, 10332. https://doi.org/10.3390/ijms262110332
Uchmanowicz D, Styszko K, Chen X, Terribile G, Jakhar R, Sancini G, Pyssa J. Microplastics in Airborne Particulate Matter: A Comprehensive Review of Separation Techniques, In Vitro Toxicity and Health Impacts. International Journal of Molecular Sciences. 2025; 26(21):10332. https://doi.org/10.3390/ijms262110332
Chicago/Turabian StyleUchmanowicz, Dominika, Katarzyna Styszko, Xijuan Chen, Giulia Terribile, Rakshit Jakhar, Giulio Sancini, and Justyna Pyssa. 2025. "Microplastics in Airborne Particulate Matter: A Comprehensive Review of Separation Techniques, In Vitro Toxicity and Health Impacts" International Journal of Molecular Sciences 26, no. 21: 10332. https://doi.org/10.3390/ijms262110332
APA StyleUchmanowicz, D., Styszko, K., Chen, X., Terribile, G., Jakhar, R., Sancini, G., & Pyssa, J. (2025). Microplastics in Airborne Particulate Matter: A Comprehensive Review of Separation Techniques, In Vitro Toxicity and Health Impacts. International Journal of Molecular Sciences, 26(21), 10332. https://doi.org/10.3390/ijms262110332

