The Interplay Between Obesity and Venous Thromboembolism: From Molecular Aspects to Clinical Issue
Abstract
1. Introduction
2. The Physiology of Adipose Tissue
2.1. Thermal Homeostasis
2.2. Energy Storage
2.3. Endocrine Functions
2.3.1. Leptin
2.3.2. Adiponectin
2.4. Immune Functions
3. Inflammation
3.1. Triggers of Obesity-Induced Inflammation
3.2. Macrophages
4. Leptin and Clinical Implications
5. The Association Between Obesity and VTE in Clinical Trials
6. Conclusions and Future Perspective
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMPK | AMP-activated protein kinase |
| APE | Acute pulmonary embolism |
| AT | Adipose tissue |
| ATGL | Adipose triglyceride lipase |
| ATM | Adipose tissue macrophage |
| ATP | Adenosine triphosphate |
| BAT | Brown adipose tissue |
| BMI | Body mass index |
| c-Fos | Cellular Fos proto-oncogene |
| cAMP | Cyclic AMP |
| CLS | Crown-like structures |
| CVD | Cardiovascular disease |
| DAMP | Damage-associated molecular pattern |
| DC | Dendritic cell |
| DOAC | Direct oral anticoagulant |
| DPP4i | Dipeptidyl peptidase-4 inhibitor |
| DVT | Deep vein thrombosis |
| EC | Endothelial cell |
| EHRA | European heart rhythm association |
| ER | Endoplasmic reticulum |
| ERK | Extracellular signal-regulated kinase |
| FAP | Fibroblast activation protein |
| FFA | Free fatty acid |
| FVIII | Factor VIII |
| GLP1-RA | Glucagon-like peptide-1 receptor agonist |
| HIF-1α | Hypoxia-inducible factor 1-alpha |
| HMW | High-molecular-weight |
| HSL | Hormone-sensitive lipase |
| IFN-γ | Interferon-γ |
| IL-10 | Interleukin-10 |
| IL-1β | Interleukin-1β |
| IL-6 | Interleukin-6 |
| JAK | Janus kinase |
| JAK2 | Janus kinase 2 |
| LMW | Low-molecular-weight |
| LPL | Lipoprotein lipase |
| LPS | Lipopolysaccharide |
| MCP-1 | Monocyte chemoattractant protein-1 |
| MESA | Multi-ethnic study of atherosclerosis |
| MetS | Metabolic syndrome |
| MMP-2 | Matrix metalloproteinase-2 |
| MMW | Medium-molecular-weight |
| NF-κB | Nuclear factor κB |
| NK | Natural killer |
| NKT | Natural killer T |
| NLRP3 | NLR family pyrin domain containing 3 |
| OB-R | Leptin receptor |
| PAI-1 | Plasminogen activator inhibitor-1 |
| PAMP | Pathogen-associated molecular pattern |
| PE | Pulmonary embolism |
| PGC-1α | Peroxisome receptor γ coactivator 1α |
| PHD | Prolyl hydroxylase domain protein |
| PI3K | Phosphatidylinositol 3-kinase |
| PKA | Protein kinase A |
| PLIN | Perilipin |
| PPARγ | Peroxisome proliferator-activated receptor gamma |
| PRDM16 | Positive regulatory domain zinc finger region protein |
| PRR | Pattern recognition receptor |
| PTS | Post-thrombotic syndrome |
| SASP | Senescence-associated secretory phenotype |
| SFA | Saturated fatty acid |
| SOCS3 | Suppressor of cytokine signaling 3 |
| STAT1 | Signal transducer and activator of transcription 1 |
| STAT3 | Signal transducer and activator of transcription 3 |
| SVF | Stromal vascular fraction |
| T2D | Type 2 diabetes |
| TAG | Triacylglycerol |
| TLR | Toll-like receptor |
| TNF-α | Tumor necrosis factor-α |
| UCP1 | Uncoupling protein 1 |
| UECVC | Upper extremity central venous catheters |
| UEDVT | Upper extremity deep vein thrombosis |
| VAT | Visceral adipose tissue |
| VFT | Visceral fat thickness |
| VTE | Venous thromboembolism |
| WAT | White adipose tissue |
| WC | Waist circumference |
References
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Hotoleanu, C. Association between obesity and venous thromboembolism. Med. Pharm. Rep. 2020, 93, 162–168. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Schafer, K.; Konstantinides, S. Adipokines and thrombosis. Clin. Exp. Pharmacol. Physiol. 2011, 38, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Li, J.; Feng, T.; Jin, L. Circulating adipokine concentrations and the risk of venous thromboembolism: A Mendelian randomization and mediation analysis. Front. Genet. 2023, 14, 1113111. [Google Scholar] [CrossRef]
- Mrozinska, S.; Cieslik, J.; Broniatowska, E.; Undas, A. Elevated leptin and decreased adiponectin independently predict the post-thrombotic syndrome in obese and non-obese patients. Sci. Rep. 2018, 8, 6938. [Google Scholar] [CrossRef] [PubMed]
- Puccini, M.; Rauch, C.; Jakobs, K.; Friebel, J.; Hassanein, A.; Landmesser, U.; Rauch, U. Being Overweight or Obese Is Associated with an Increased Platelet Reactivity Despite Dual Antiplatelet Therapy with Aspirin and Clopidogrel. Cardiovasc. Drugs Ther. 2023, 37, 833–837. [Google Scholar] [CrossRef]
- Amin, A.; Kartashov, A.; Ngai, W.; Steele, K.; Rosenthal, N. Effectiveness, safety, and costs of thromboprophylaxis with enoxaparin or unfractionated heparin in inpatients with obesity. Front. Cardiovasc. Med. 2023, 10, 1163684. [Google Scholar] [CrossRef]
- Linicus, Y.; Kindermann, I.; Cremers, B.; Maack, C.; Schirmer, S.; Bohm, M. Vena cava compression syndrome in patients with obesity presenting with edema and thrombosis. Obesity 2016, 24, 1648–1652. [Google Scholar] [CrossRef]
- La Rosa, F.; Montecucco, F.; Liberale, L.; Sessarego, M.; Carbone, F. Venous thrombosis and obesity: From clinical needs to therapeutic challenges. Intern. Emerg. Med. 2025, 20, 47–64. [Google Scholar] [CrossRef]
- Lindhorst, A.; Raulien, N.; Wieghofer, P.; Eilers, J.; Rossi, F.M.V.; Bechmann, I.; Gericke, M. Adipocyte death triggers a pro-inflammatory response and induces metabolic activation of resident macrophages. Cell Death Dis. 2021, 12, 579. [Google Scholar] [CrossRef]
- Ten Cate, V.; Koeck, T.; Prochaska, J.; Schulz, A.; Panova-Noeva, M.; Rapp, S.; Eggebrecht, L.; Lenz, M.; Glunz, J.; Sauer, M.; et al. A targeted proteomics investigation of the obesity paradox in venous thromboembolism. Blood Adv. 2021, 5, 2909–2918. [Google Scholar] [CrossRef]
- Dellas, C.; Lankeit, M.; Reiner, C.; Schäfer, K.; Hasenfuß, G.; Konstantinides, S. BMI-independent inverse relationship of plasma leptin levels with outcome in patients with acute pulmonary embolism. Int. J. Obes. 2012, 37, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Barba, R.; Zapatero, A.; Losa, J.E.; ValdÉS, V.; TodolÍ, J.A.; Di Micco, P.; Monreal, M. Body mass index and mortality in patients with acute venous thromboembolism: Findings from the RIETE registry. J. Thromb. Haemost. 2008, 6, 595–600. [Google Scholar] [CrossRef]
- Santoyo Villalba, J.; Arcelus, J.I.; Expósito-Ruiz, M.; Martínez de Mandojana, A.; Soler Simon, S.; García Ortega, A.; Catella, J.; Villares Fernández, P.; Ortega-Paz, L.; Monreal, M.; et al. Influence of patient’s weight and body mass index on presentation, time of onset, and impact of postoperative venous thromboembolism (RIETE registry). J. Thromb. Thrombolysis 2025. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.K.; Kline, J.A. Metabolic syndrome increases risk of venous thromboembolism recurrence after acute deep vein thrombosis. Blood Adv. 2020, 4, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R. Obesity and thermoregulation. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 431–443. [Google Scholar]
- Chouchani, E.T.; Kazak, L.; Spiegelman, B.M. New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metab. 2019, 29, 27–37. [Google Scholar] [CrossRef]
- Cero, C.; Lea, H.J.; Zhu, K.Y.; Shamsi, F.; Tseng, Y.H.; Cypess, A.M. beta3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 2021, 6, e139160. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, J.; Jiang, M.; Phillips, C.J.C.; Shi, B. Thermogenesis and Energy Metabolism in Brown Adipose Tissue in Animals Experiencing Cold Stress. Int. J. Mol. Sci. 2025, 26, 3233. [Google Scholar] [CrossRef]
- Jiang, N.; Yang, M.; Han, Y.; Zhao, H.; Sun, L. PRDM16 Regulating Adipocyte Transformation and Thermogenesis: A Promising Therapeutic Target for Obesity and Diabetes. Front. Pharmacol. 2022, 13, 870250. [Google Scholar] [CrossRef]
- Chu, M.; Sampath, H.; Cahana, D.Y.; Kahl, C.A.; Somwar, R.; Cornea, A.; Roberts, C.T., Jr.; Varlamov, O. Spatiotemporal dynamics of triglyceride storage in unilocular adipocytes. Mol. Biol. Cell 2014, 25, 4096–4105. [Google Scholar] [CrossRef]
- Zweytick, D.; Athenstaedt, K.; Daum, G. Intracellular lipid particles of eukaryotic cells. Biochim. Biophys. Acta. 2000, 1469, 101–120. [Google Scholar] [CrossRef] [PubMed]
- Sztalryd, C.; Brasaemle, D.L. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1221–1232. [Google Scholar] [CrossRef]
- Kersten, S. Physiological regulation of lipoprotein lipase. Biochim. Biophys. Acta 2014, 1841, 919–933. [Google Scholar] [CrossRef]
- Yu, Y.H.; Ginsberg, H.N. Adipocyte signaling and lipid homeostasis: Sequelae of insulin-resistant adipose tissue. Circ. Res. 2005, 96, 1042–1052. [Google Scholar] [CrossRef]
- Harris, C.A.; Haas, J.T.; Streeper, R.S.; Stone, S.J.; Kumari, M.; Yang, K.; Han, X.; Brownell, N.; Gross, R.W.; Zechner, R.; et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J. Lipid Res. 2011, 52, 657–667. [Google Scholar] [CrossRef]
- Luo, L.; Liu, M. Adipose tissue in control of metabolism. J. Endocrinol. 2016, 231, R77–R99. [Google Scholar] [CrossRef] [PubMed]
- Braun, K.; Oeckl, J.; Westermeier, J.; Li, Y.; Klingenspor, M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. J. Exp. Biol. 2018, 221, jeb165381. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Zhang, Y.; Xu, Q.; Yu, X.M.; Zhang, X.S.; Wang, J.; Xue, C.; Yang, X.Y.; Zhang, R.X.; Xue, C.Y. Increased norepinephrine by medium-chain triglyceride attributable to lipolysis in white and brown adipose tissue of C57BL/6J mice. Biosci. Biotechnol. Biochem. 2012, 76, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.S.; Jessen, N.; Jorgensen, J.O.; Moller, N.; Lund, S. Dissecting adipose tissue lipolysis: Molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 2014, 52, R199–R222. [Google Scholar] [CrossRef]
- Broni, E.K.; Ogunmoroti, O.; Quispe, R.; Sweeney, T.; Varma, B.; Fashanu, O.E.; Lutsey, P.L.; Matthew, A.; Moyses, S.; Ndumele, C.E.; et al. Adipokines and incident venous thromboembolism: The Multi-Ethnic Study of Atherosclerosis. J. Thromb. Haemost. 2023, 21, 303–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Chrysafi, P.; Perakakis, N.; Farr, O.M.; Stefanakis, K.; Peradze, N.; Sala-Vila, A.; Mantzoros, C.S. Leptin alters energy intake and fat mass but not energy expenditure in lean subjects. Nat. Commun. 2020, 11, 5145. [Google Scholar] [CrossRef]
- LA, T. The leptin receptor. J. Biol. Chem. 1997, 272, 6093–6096. [Google Scholar] [CrossRef]
- Tartaglia, L.A.; Dembski, M.; Weng, X.; Deng, N.; Culpepper, J.; Devos, R.; Richards, G.J.; Campfield, L.A.; Clark, F.T.; Deeds, J.; et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995, 83, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-H.; Proenca, R.; Montez, J.M.; Carroll, K.M.; Darvishzadeh, J.G.; Lee, J.I.; Friedman, J.M. Abnormal splicing of the leptin receptor i diabetic mice. Nature 1996, 397, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, N.; Skoda, R.C. The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. Mol. Endocrinol. 1997, 11, 393–399. [Google Scholar] [CrossRef]
- Banks, A.S.; Davis, S.M.; Bates, S.H.; Myers, M.G., Jr. Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem. 2000, 275, 14563–14572. [Google Scholar] [CrossRef]
- Lehnert, H.; Jöhren, O.; Paulus, K.; Schulz, C. Intranasal Leptin Reduces Appetite and Induces Weight Loss in Rats with Diet-Induced Obesity (DIO). Endocrinology 2012, 153, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.J.; Qi, Y.; Enriquez, R.F.; Clarke, I.; Ip, C.K.; Wee, N.; Baldock, P.A.; Herzog, H. Energy partitioning between fat and bone mass is controlled via a hypothalamic leptin/NPY relay. Int. J. Obes. 2020, 44, 2149–2164. [Google Scholar] [CrossRef]
- Wang, P.; Loh, K.H.; Wu, M.; Morgan, D.A.; Schneeberger, M.; Yu, X.; Chi, J.; Kosse, C.; Kim, D.; Rahmouni, K.; et al. A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue. Nature 2020, 583, 839–844. [Google Scholar] [CrossRef]
- Tan, H.L.; Yin, L.; Tan, Y.; Ivanov, J.; Plucinska, K.; Ilanges, A.; Herb, B.R.; Wang, P.; Kosse, C.; Cohen, P.; et al. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature 2024, 636, 198–205. [Google Scholar] [CrossRef]
- Suriano, F.; Vieira-Silva, S.; Falony, G.; Roumain, M.; Paquot, A.; Pelicaen, R.; Regnier, M.; Delzenne, N.M.; Raes, J.; Muccioli, G.G.; et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: Two sides of the same coin. Microbiome 2021, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Pelleymounter, M.A.; Cullen, M.J.; Baker, M.B.; Hecht, R.; Winters, D.; Boone, T.; Collins, F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995, 269, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Coppari, R.; Ichinose, M.; Lee, C.E.; Pullen, A.E.; Kenny, C.D.; McGovern, R.A.; Tang, V.; Liu, S.M.; Ludwig, T.; Chua, S.C., Jr.; et al. The hypothalamic arcuate nucleus: A key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 2005, 1, 63–72. [Google Scholar] [CrossRef]
- Fujikawa, T.; Chuang, J.C.; Sakata, I.; Ramadori, G.; Coppari, R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc. Natl. Acad. Sci. USA 2010, 107, 17391–17396. [Google Scholar] [CrossRef]
- Morioka, T.; Asilmaz, E.; Hu, J.; Dishinger, J.F.; Kurpad, A.J.; Elias, C.F.; Li, H.; Elmquist, J.K.; Kennedy, R.T.; Kulkarni, R.N. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J. Clin. Investig. 2007, 117, 2860–2868. [Google Scholar] [CrossRef]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Boyko, E.J.; Fujimoto, W.Y.; Kahn, S.E.; Leonetti, D.L. Low Plasma Adiponectin Concentrations Predict Increases in Visceral Adiposity and Insulin Resistance. J. Clin. Endocrinol. Metab. 2017, 102, 4626–4633. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Çolak, Y.; Benn, M.; Nordestgaard, B.G. Causal Relationship between Plasma Adiponectin and Body Mass Index: One- and Two-Sample Bidirectional Mendelian Randomization Analyses in 460 397 Individuals. Clin. Chem. 2020, 66, 1548–1557. [Google Scholar] [CrossRef]
- Pajvani, U.B.; Hawkins, M.; Combs, T.P.; Rajala, M.W.; Doebber, T.; Berger, J.P.; Wagner, J.A.; Wu, M.; Knopps, A.; Xiang, A.H.; et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 2004, 279, 12152–12162. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lam, K.S.; Yau, M.H.; Xu, A. Post-translational modifications of adiponectin: Mechanisms and functional implications. Biochem. J. 2008, 409, 623–633. [Google Scholar] [CrossRef]
- Hyun Boo, K.; Woo Kim, J.; Song, M. Isolation and purification of high molecular weight adiponectin from human plasma fraction. J. Chromatogr. B 2024, 1238, 124111. [Google Scholar] [CrossRef]
- Garcia-Prieto, C.F.; Gil-Ortega, M.; Plaza, A.; Manzano-Lista, F.J.; Gonzalez-Blazquez, R.; Alcala, M.; Rodriguez-Rodriguez, P.; Viana, M.; Aranguez, I.; Gollasch, M.; et al. Caloric restriction induces H2O2 formation as a trigger of AMPK-eNOS-NO pathway in obese rats: Role for CAMKII. Free Radic. Biol. Med. 2019, 139, 35–45. [Google Scholar] [CrossRef]
- Gamberi, T.; Magherini, F.; Modesti, A.; Fiaschi, T. Adiponectin Signaling Pathways in Liver Diseases. Biomedicines 2018, 6, 52. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Vatner, D.F.; Goedeke, L.; Hirabara, S.M.; Zhang, Y.; Perry, R.J.; Shulman, G.I. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc. Natl. Acad. Sci. USA 2020, 117, 32584–32593. [Google Scholar] [CrossRef]
- Barthelemy, J.; Bogard, G.; Wolowczuk, I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front. Immunol. 2023, 14, 1083191. [Google Scholar] [CrossRef]
- Vadde, R.; Gupta, M.K.; Nagaraju, G.P. Is Adipose Tissue an Immunological Organ? Crit. Rev. Immunol. 2019, 39, 481–490. [Google Scholar] [CrossRef]
- Hwa Cho, H.; Bae, Y.C.; Jung, J.S. Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells 2006, 24, 2744–2752. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, J.; Batra, A.; Stroh, T.; Fedke, I.; Glauben, R.; Okur, B.; Zeitz, M.; Siegmund, B. Toll-like receptor expression and response to specific stimulation in adipocytes and preadipocytes: On the role of fat in inflammation. Ann. N. Y. Acad. Sci. 2006, 1072, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Batra, A.; Pietsch, J.; Fedke, I.; Glauben, R.; Okur, B.; Stroh, T.; Zeitz, M.; Siegmund, B. Leptin-dependent toll-like receptor expression and responsiveness in preadipocytes and adipocytes. Am. J. Pathol. 2007, 170, 1931–1941. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, G.I.; Langley, K.G.; Berglund, N.A.; Kammoun, H.L.; Reibe, S.; Estevez, E.; Weir, J.; Mellett, N.A.; Pernes, G.; Conway, J.R.W.; et al. Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metab. 2018, 27, 1096–1110.e1095. [Google Scholar] [CrossRef]
- Poulain-Godefroy, O.; Froguel, P. Preadipocyte response and impairment of differentiation in an inflammatory environment. Biochem. Biophys. Res. Commun. 2007, 356, 662–667. [Google Scholar] [CrossRef]
- McKernan, K.; Varghese, M.; Patel, R.; Singer, K. Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte 2020, 9, 212–222. [Google Scholar] [CrossRef]
- Gao, K.; Su, Z.; Meng, J.; Yao, Y.; Li, L.; Su, Y.; Mohammad Rahimi, G.R. Effect of Exercise Training on Some Anti-Inflammatory Adipokines, High Sensitivity C-Reactive Protein, and Clinical Outcomes in Sedentary Adults with Metabolic Syndrome. Biol. Res. Nurs. 2023, 26, 125–138. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Pu, H.; Wei, Q.; Duan, M.; Zhang, C.; Jiang, T.; Shou, X.; Zhang, J.; Yang, Y. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis. 2016, 15, 33. [Google Scholar] [CrossRef]
- Kratochvill, F.; Neale, G.; Haverkamp, J.M.; Van de Velde, L.A.; Smith, A.M.; Kawauchi, D.; McEvoy, J.; Roussel, M.F.; Dyer, M.A.; Qualls, J.E.; et al. TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Rep. 2015, 12, 1902–1914. [Google Scholar] [CrossRef]
- Savulescu-Fiedler, I.; Mihalcea, R.; Dragosloveanu, S.; Scheau, C.; Baz, R.O.; Caruntu, A.; Scheau, A.E.; Caruntu, C.; Benea, S.N. The Interplay between Obesity and Inflammation. Life 2024, 14, 856. [Google Scholar] [CrossRef] [PubMed]
- Imiela, A.M.; Stepnicki, J.; Zawadzka, P.S.; Bursa, A.; Pruszczyk, P. Chemerin as a Driver of Cardiovascular Diseases: New Perspectives and Future Directions. Biomedicines 2025, 13, 1481. [Google Scholar] [CrossRef] [PubMed]
- Bozaoglu, K.; Bolton, K.; McMillan, J.; Zimmet, P.; Jowett, J.; Collier, G.; Walder, K.; Segal, D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 2007, 148, 4687–4694. [Google Scholar] [CrossRef]
- Tang, C.; Chen, G.; Wu, F.; Cao, Y.; Yang, F.; You, T.; Liu, C.; Li, M.; Hu, S.; Ren, L.; et al. Endothelial CCRL2 induced by disturbed flow promotes atherosclerosis via chemerin-dependent beta2 integrin activation in monocytes. Cardiovasc. Res. 2023, 119, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput. Biol. 2009, 5, e1000324. [Google Scholar] [CrossRef]
- Imiela, A.M.; Kucharska, J.; Kuklinski, F.; Fernandez Moreno, T.; Dzik, K.; Pruszczyk, P. Advanced Research in the Pathophysiology of Venous Thromboembolism-Acute Pulmonary Embolism. Biomedicines 2025, 13, 906. [Google Scholar] [CrossRef]
- Zamarron, B.F.; Mergian, T.A.; Cho, K.W.; Martinez-Santibanez, G.; Luan, D.; Singer, K.; DelProposto, J.L.; Geletka, L.M.; Muir, L.A.; Lumeng, C.N. Macrophage Proliferation Sustains Adipose Tissue Inflammation in Formerly Obese Mice. Diabetes 2017, 66, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Caspar-Bauguil, S.; Cousin, B.; Galinier, A.; Segafredo, C.; Nibbelink, M.; Andre, M.; Casteilla, L.; Penicaud, L. Adipose tissues as an ancestral immune organ: Site-specific change in obesity. FEBS Lett. 2005, 579, 3487–3492. [Google Scholar] [CrossRef]
- Haugstoyl, M.E.; Cornillet, M.; Strand, K.; Stiglund, N.; Sun, D.; Lawrence-Archer, L.; Hjellestad, I.D.; Busch, C.; Mellgren, G.; Bjorkstrom, N.K.; et al. Phenotypic diversity of human adipose tissue-resident NK cells in obesity. Front. Immunol. 2023, 14, 1130370. [Google Scholar] [CrossRef]
- Shantaram, D.; Hoyd, R.; Blaszczak, A.M.; Antwi, L.; Jalilvand, A.; Wright, V.P.; Liu, J.; Smith, A.J.; Bradley, D.; Lafuse, W.; et al. Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils. Nat. Commun. 2024, 15, 5434. [Google Scholar] [CrossRef]
- Imiela, A.M.; Mikolajczyk, T.P.; Kolodziejczyk-Kruk, S.; Kadziela, J.; Spiewak, M.; Januszewicz, M.; Kabat, M.; Sterlinski, I.; Was, M.; Wrobel, A.; et al. Plasmacytoid Dendritic Cell Content Is Associated with Plasma Aldosterone Concentration in Patients with Primary Aldosteronism. Am. J. Hypertens. 2025, 38, 644–653. [Google Scholar] [CrossRef]
- Yang, Z.H.; Chen, F.Z.; Zhang, Y.X.; Ou, M.Y.; Tan, P.C.; Xu, X.W.; Li, Q.F.; Zhou, S.B. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: Mechanisms and opportunities. MedComm 2024, 5, e560. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Gastaldelli, A.; Yki-Jarvinen, H.; Scherer, P.E. Why does obesity cause diabetes? Cell Metab. 2022, 34, 11–20. [Google Scholar] [CrossRef]
- Mi, B.; Wu, C.; Gao, X.; Wu, W.; Du, J.; Zhao, Y.; Wang, D.; Dang, S.; Yan, H. Long-term BMI change trajectories in Chinese adults and its association with the hazard of type 2 diabetes: Evidence from a 20-year China Health and Nutrition Survey. BMJ Open Diabetes Res. Care 2020, 8, e000879. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of Body Mass Index with Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef]
- Chen, Z.; Iona, A.; Parish, S.; Chen, Y.; Guo, Y.; Bragg, F.; Yang, L.; Bian, Z.; Holmes, M.V.; Lewington, S.; et al. Adiposity and risk of ischaemic and haemorrhagic stroke in 0.5 million Chinese men and women: A prospective cohort study. Lancet Glob. Health 2018, 6, e630–e640. [Google Scholar] [CrossRef]
- Mirabelli, M.; Misiti, R.; Sicilia, L.; Brunetti, F.S.; Chiefari, E.; Brunetti, A.; Foti, D.P. Hypoxia in Human Obesity: New Insights from Inflammation towards Insulin Resistance-A Narrative Review. Int. J. Mol. Sci. 2024, 25, 9802. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, J.W.; Osborne, O.; Oh, D.Y.; Sasik, R.; Schenk, S.; Chen, A.; Chung, H.; Murphy, A.; Watkins, S.M.; et al. Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 2014, 157, 1339–1352. [Google Scholar] [CrossRef]
- Pourdashti, S.; Faridi, N.; Monem-Homaie, F.; Yaghooti, S.H.; Soroush, A.; Bathaie, S.Z. The size of human subcutaneous adipocytes, but not adiposity, is associated with inflammation, endoplasmic reticulum stress, and insulin resistance markers. Mol. Biol. Rep. 2023, 50, 5755–5765. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, Q.; Cao, J.; Xie, N.; Liu, K.; Shou, P.; Qian, F.; Wang, Y.; Shi, Y. Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis. 2016, 7, e2167. [Google Scholar] [CrossRef] [PubMed]
- Faria, S.S.; Correa, L.H.; Heyn, G.S.; de Sant’Ana, L.P.; Almeida, R.D.N.; Magalhaes, K.G. Obesity and Breast Cancer: The Role of Crown-Like Structures in Breast Adipose Tissue in Tumor Progression, Prognosis, and Therapy. J. Breast Cancer 2020, 23, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Roos, J.; Zinngrebe, J.; Huber-Lang, M.; Lupu, L.; Schmidt, M.A.; Strobel, H.; Westhoff, M.A.; Stifel, U.; Gebhard, F.; Wabitsch, M.; et al. Trauma-associated extracellular histones mediate inflammation via a MYD88-IRAK1-ERK signaling axis and induce lytic cell death in human adipocytes. Cell Death Dis. 2024, 15, 285. [Google Scholar] [CrossRef]
- Arias, C.; Alvarez-Indo, J.; Cifuentes, M.; Morselli, E.; Kerr, B.; Burgos, P.V. Enhancing adipose tissue functionality in obesity: Senotherapeutics, autophagy and cellular senescence as a target. Biol. Res. 2024, 57, 51. [Google Scholar] [CrossRef]
- Chen, X.; Feng, J.; Chang, Q.; Lu, F.; Yuan, Y. Senescence of donor cells impairs fat graft regeneration by suppressing adipogenesis and increasing expression of senescence-associated secretory phenotype factors. Stem Cell Res. Ther. 2021, 12, 311. [Google Scholar] [CrossRef]
- Seo, J.B.; Riopel, M.; Cabrales, P.; Huh, J.Y.; Bandyopadhyay, G.K.; Andreyev, A.Y.; Murphy, A.N.; Beeman, S.C.; Smith, G.I.; Klein, S.; et al. Knockdown of Ant2 Reduces Adipocyte Hypoxia And Improves Insulin Resistance in Obesity. Nat. Metab. 2019, 1, 86–97. [Google Scholar] [CrossRef]
- Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF transcription factors, inflammation, and immunity. Immunity 2014, 41, 518–528. [Google Scholar] [CrossRef]
- Rausch, M.E.; Weisberg, S.; Vardhana, P.; Tortoriello, D.V. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. 2008, 32, 451–463. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Patra, D.; Ramprasad, P.; Sharma, S.; Dey, U.; Kumar, V.; Singh, S.; Dasgupta, S.; Kumar, A.; Tikoo, K.; Pal, D. Adipose tissue macrophage-derived microRNA-210-3p disrupts systemic insulin sensitivity by silencing GLUT4 in obesity. J. Biol. Chem. 2024, 300, 107328. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Imiela, A.M.; Mikolajczyk, T.P.; Guzik, T.J.; Pruszczyk, P. Acute Pulmonary Embolism and Immunity in Animal Models. Arch. Immunol. Ther. Exp. 2024, 72, 3. [Google Scholar] [CrossRef] [PubMed]
- Imiela, A.M.; Mikolajczyk, T.P.; Pruszczyk, P. Novel Insight into Inflammatory Pathways in Acute Pulmonary Embolism in Humans. Arch. Immunol. Ther. Exp. 2024, 72, 21. [Google Scholar] [CrossRef]
- Zhang, M.; Sheng, S.; Zhang, W.; Zhang, J.; Zhang, Z.; Zhang, M.; Hatch, G.M.; Chen, L. MiR27a Promotes the Development of Macrophage-like Characteristics in 3T3-L1 Preadipocytes. Int. J. Biol. Sci. 2018, 14, 1599–1609. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef]
- Russo, L.; Lumeng, C.N. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018, 155, 407–417. [Google Scholar] [CrossRef]
- Imiela, A.M.; Siedlinski, M.; Dobrowolski, P.; Pregowska-Chwala, B.; Kabat, M.; Oliveira Silva, R.N.; Koshy, A.M.; Wrobel, A.; Cendrowska-Demkow, I.; Januszewicz, M.; et al. Altered monocytic phenotypes are linked to a hypertension form: A clinical observational study. Kardiol. Pol. 2022, 80, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, C.; Shi, T.; Cai, Q.; Wang, T.; Xiong, Y.; Zhang, Y.; Jiang, W.; Lu, M.; Chen, Z.; et al. FAP expression in adipose tissue macrophages promotes obesity and metabolic inflammation. Proc. Natl. Acad. Sci. USA 2023, 120, e2303075120. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Qi, Y.; Yi, H.; Mao, C.; Meng, Q.; Wang, H.; Zheng, C. The Roles of Adipose Tissue Macrophages in Human Disease. Front. Immunol. 2022, 13, 908749. [Google Scholar] [CrossRef]
- Lumeng, C.N.; DelProposto, J.B.; Westcott, D.J.; Saltiel, A.R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008, 57, 3239–3246. [Google Scholar] [CrossRef]
- Wentworth, J.M.; Naselli, G.; Brown, W.A.; Doyle, L.; Phipson, B.; Smyth, G.K.; Wabitsch, M.; O’Brien, P.E.; Harrison, L.C. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 2010, 59, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Perrard, X.D.; Wang, Q.; Perrard, J.L.; Polsani, V.R.; Jones, P.H.; Smith, C.W.; Ballantyne, C.M. CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arter. Thromb. Vasc. Biol. 2010, 30, 186–192. [Google Scholar] [CrossRef]
- Lu, C.H.; Lai, C.Y.; Yeh, D.W.; Liu, Y.L.; Su, Y.W.; Hsu, L.C.; Chang, C.H.; Catherine Jin, S.L.; Chuang, T.H. Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediat. Inflamm. 2018, 2018, 3523642. [Google Scholar] [CrossRef]
- Shaheryar, Z.A.; Khan, M.A.; Adnan, C.S.; Zaidi, A.A.; Hanggi, D.; Muhammad, S. Neuroinflammatory Triangle Presenting Novel Pharmacological Targets for Ischemic Brain Injury. Front. Immunol. 2021, 12, 748663. [Google Scholar] [CrossRef] [PubMed]
- Mussbacher, M.; Derler, M.; Basilio, J.; Schmid, J.A. NF-kappaB in monocytes and macrophages—An inflammatory master regulator in multitalented immune cells. Front. Immunol. 2023, 14, 1134661. [Google Scholar] [CrossRef]
- Callahan, V.; Hawks, S.; Crawford, M.A.; Lehman, C.W.; Morrison, H.A.; Ivester, H.M.; Akhrymuk, I.; Boghdeh, N.; Flor, R.; Finkielstein, C.V.; et al. The Pro-Inflammatory Chemokines CXCL9, CXCL10 and CXCL11 Are Upregulated Following SARS-CoV-2 Infection in an AKT-Dependent Manner. Viruses 2021, 13, 1062. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fu, E.; Lou, H.; Mao, X.; Yan, B.; Tong, F.; Sun, J.; Wei, L. IL-6 induced M1 type macrophage polarization increases radiosensitivity in HPV positive head and neck cancer. Cancer Lett. 2019, 456, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Chen, J.; Xu, G.; Zhang, Z.; Xue, J.; Zeng, H.; Jiang, J.; Chen, T.; Qin, Z.; Li, H.; et al. STAT1 and CXCL10 involve in M1 macrophage polarization that may affect osteolysis and bone remodeling in extrapulmonary tuberculosis. Gene 2022, 809, 146040. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, M.; Liang, J.; Zuo, X.; Jia, X.; Shan, J.; Li, Z.; Yu, J.; Xuan, Z.; Luo, L.; et al. M1-type polarized macrophage contributes to brain damage through CXCR3.2/CXCL11 pathways after RGNNV infection in grouper. Virulence 2024, 15, 2355971. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Liu, Z.; Liu, Y.; Luo, M.; Chen, N.; Deng, X.; Luo, Y.; He, J.; Zhang, L.; et al. PAI-1 Exacerbates White Adipose Tissue Dysfunction and Metabolic Dysregulation in High Fat Diet-Induced Obesity. Front. Pharmacol. 2018, 9, 2196–2201. [Google Scholar] [CrossRef]
- Konstantinides, S.; Schäfer, K.; Neels, J.G.; Dellas, C.; Loskutoff, D.J. Inhibition of Endogenous Leptin Protects Mice From Arterial and Venous Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 2196–2201. [Google Scholar] [CrossRef]
- Nakata, M.; Yada, T.; Soejima, N.; Maruyama, I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes 1999, 48, 426–429. [Google Scholar] [CrossRef]
- Bodary, P.F.; Westrick, R.J.; Wickenheiser, K.J.; Shen, Y.; Eitzman, D.T. Effect of leptin on arterial thrombosis following vascular injury in mice. JAMA 2002, 287, 1706–1709. [Google Scholar] [CrossRef]
- Bouloumié, A.; Marumo, T.; Lafontan, M.; Busse, R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999, 13, 1231–1238. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Mazor, R.; Friedmann-Morvinski, D.; Alsaigh, T.; Kleifeld, O.; Kistler, E.B.; Rousso-Noori, L.; Huang, C.; Li, J.B.; Verma, I.M.; Schmid-Schönbein, G.W. Cleavage of the leptin receptor by matrix metalloproteinase–2 promotes leptin resistance and obesity in mice. Sci. Transl. Med. 2018, 10, eaah6324. [Google Scholar] [CrossRef] [PubMed]
- Colling, M.E.; Tourdot, B.E.; Kanthi, Y. Inflammation, Infection and Venous Thromboembolism. Circ. Res. 2021, 128, 2017–2036. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Sánchez-Jiménez, F.; Vilariño-García, T.; Sánchez-Margalet, V. Role of Leptin in Inflammation and Vice Versa. Int. J. Mol. Sci. 2020, 21, 5887. [Google Scholar] [CrossRef] [PubMed]
- Bełtowski, J. Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin. Exp. Pharmacol. Physiol. 2012, 39, 168–178. [Google Scholar] [CrossRef]
- Ageno, W.; Piantanida, E.; Dentali, F.; Mera, V.; Squizzato, A.; Marchesi, C.; Steidl, L.; Venco, A. Weight gain after acute deep venous thrombosis: A prospective observational study. Thromb. Res. 2003, 109, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Barba, R.; Marco, J.; MartÍN-Alvarez, H.; Rondon, P.; FernÁNdez-Capitan, C.; Garcia-Bragado, F.; Monreal, M. The influence of extreme body weight on clinical outcome of patients with venous thromboembolism: Findings from a prospective registry (RIETE). J. Thromb. Haemost. 2005, 3, 856–862. [Google Scholar] [CrossRef]
- Horvei, L.D.; Braekkan, S.K.; Mathiesen, E.B.; Njolstad, I.; Wilsgaard, T.; Hansen, J.B. Obesity measures and risk of venous thromboembolism and myocardial infarction. Eur. J. Epidemiol. 2014, 29, 821–830. [Google Scholar] [CrossRef]
- Horvei, L.D.; Braekkan, S.K.; Hansen, J.B. Weight Change and Risk of Venous Thromboembolism: The Tromso Study. PLoS ONE 2016, 11, e0168878. [Google Scholar] [CrossRef]
- Samuels, J.M.; Moore, E.E.; Coleman, J.R.; Sumislawski, J.J.; Cohen, M.J.; Silliman, C.C.; Banerjee, A.; Ghasabyan, A.; Chandler, J.; Sauaia, A. Obesity is associated with postinjury hypercoagulability. J. Trauma Acute Care Surg. 2019, 87, 876–882. [Google Scholar] [CrossRef]
- Glise Sandblad, K.; Jern, S.; Aberg, M.; Robertson, J.; Toren, K.; Lindgren, M.; Adiels, M.; Hansson, P.O.; Rosengren, A. Obesity in adolescent men increases the risk of venous thromboembolism in adult life. J. Intern. Med. 2020, 287, 734–745. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Bruzelius, M.; Xiong, Y.; Hakansson, N.; Akesson, A.; Larsson, S.C. Overall and abdominal obesity in relation to venous thromboembolism. J. Thromb. Haemost. 2021, 19, 460–469. [Google Scholar] [CrossRef]
- Frischmuth, T.; Hindberg, K.; Gabrielsen, M.E.; Brumpton, B.M.; Hveem, K.; Brækkan, S.K.; Hansen, J.-B.; Morelli, V.M. Joint Effect of Multiple Prothrombotic Genotypes and Obesity on the Risk of Incident Venous Thromboembolism. Thromb. Haemost. 2022, 122, 267–276. [Google Scholar] [CrossRef]
- Druar, N.M.; Vosburg, R.W.; Cahan, M. Obesity increases the risk for upper extremity deep vein thrombosis and pulmonary embolism in patients with upper extremity central venous catheters. Clin. Obes. 2022, 12, e12526. [Google Scholar] [CrossRef]
- Sari, M.; Ilhan, Y.; Sezgin Goksu, S.; Kostek, O.; Tatli, A.M.; Coskun, H.S. The Relationship between Nutritional Parameters and Thrombosis Risk in Cancer Patients. Nutr. Cancer 2022, 74, 1370–1375. [Google Scholar] [CrossRef]
- Mahmoud, A.; Sandblad, K.G.; Lundberg, C.E.; Hellsen, G.; Hansson, P.O.; Adiels, M.; Rosengren, A. Prepregnancy overweight and obesity and long-term risk of venous thromboembolism in women. Sci. Rep. 2023, 13, 14597. [Google Scholar] [CrossRef] [PubMed]
- Frischmuth, T.; Tøndel, B.G.; Brækkan, S.K.; Hansen, J.-B.; Morelli, V.M. The Risk of Incident Venous Thromboembolism Attributed to Overweight and Obesity The Tromsø Study. Thromb. Haemost. 2024, 124, 239–249. [Google Scholar] [CrossRef]
- Taşçı, F.; Ataş, İ.; Yazıcı, M.M.; Güler, E.; Bilir, Ö. Is visceral fat thickness related to outcomes in cancer patients with pulmonary embolism? Rev. Assoc. Médica Bras. 2025, 71, e20240649. [Google Scholar] [CrossRef]
- Loid, P.; Langstrom, S.; Viljakainen, H.; Makipernaa, A.; Heikinheimo, M.; Makitie, O. Prothrombotic state in young females with severe early-onset obesity. Pediatr. Res. 2018, 83, 2–4. [Google Scholar] [CrossRef]
- Takahashi, N.; Yoshizaki, T.; Hiranaka, N.; Kumano, O.; Suzuki, T.; Akanuma, M.; Yui, T.; Kanazawa, K.; Yoshida, M.; Naito, S.; et al. The production of coagulation factor VII by adipocytes is enhanced by tumor necrosis factor-alpha or isoproterenol. Int. J. Obes. 2015, 39, 747–754. [Google Scholar] [CrossRef]
- Timp, J.F.; Lijfering, W.M.; Flinterman, L.E.; van Hylckama Vlieg, A.; le Cessie, S.; Rosendaal, F.R.; Cannegieter, S.C. Predictive value of factor VIII levels for recurrent venous thrombosis: Results from the MEGA follow-up study. J. Thromb. Haemost. 2015, 13, 1823–1832. [Google Scholar] [CrossRef]
- Shimomura, I.; Funahasm, T.; Takahashi, M.; Maeda, K.; Kotani, K.; Nakamura, T.; Yamashita, S.; Miura, M.; Fukuda, Y.; Takemura, K.; et al. Enhanced expression of PAI-1 in visceral fat possible contributor to vascular disease in obesity. Nat. Med. 1996, 2, 800–803. [Google Scholar] [CrossRef]
- Samson, S.L.; Garber, A.J. Metabolic syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace 2021, 23, 1612–1676. [Google Scholar] [CrossRef]
- Chiang, C.H.; Song, J.; Chang, Y.C.; Osataphan, S.; Lee, Y.C.; Chang, K.Y.; Chi, K.Y.; Chiang, C.H.; Dua, A.; Lake, L.; et al. Glucagon-like peptide 1 receptor agonists and venous thromboembolism in type 2 diabetes: A target trial emulation. Blood Adv. 2025, 9, 2410–2418. [Google Scholar] [CrossRef]

| Author | Country | Year | Study Design | Total Patients | Main Conclusions |
|---|---|---|---|---|---|
| Ageno W. et al. [128] | Italy | 2003 | prospective observational study | 72 | A substantial increase in BMI is observed in patients during the 6 months subsequent to a VTE. Weight loss is crucial to reduce the risk of future thrombotic episodes. |
| Barba R. et al. [129] | Spain | 2005 | observational study | 8845 | In VTE patients, body weight (>100 kg) was not linked to an increased risk of recurrence or major bleeding compared to patients weighing 50–100 kg. BMI < 50 kg was related with higher risk of bleeding complications. |
| Horvei L.D. et al. [130] | Norway | 2014 | prospective, population-based cohort study | 6379 | The increased risk of VTE associated with obesity is linked to overall body fat. |
| Horvei L.D. et al. [131] | Norway | 2016 | prospective, population-based cohort study | 17,802 | An increase of over 7.5 kg was linked to a nearly 2-fold greater risk, and this risk amplification was most prominent in the cohort with baseline BMI ≥ 30. |
| Samuels J.M. et al. [132] | USA | 2019 | retrospective study | 687 | Among severely injured individuals, obesity is associated with a prothrombotic state manifesting as increased clot stability and impaired fibrinolytic activity. |
| Glise Sandblad K. et al. [133] | Sweden | 2020 | prospective cohort study | 1,639,838 | Late adolescent obesity is a risk factor for the development of VTE in adulthood. Compared to leaner peers, young men with BMI ≥ 30 have a nearly 3-fold increased risk of VTE. This risk increases to almost 5-fold for subjects with BMI ≥ 35. |
| Stewart L.K. & Kline J.A. [16] | USA | 2020 | retrospective study | 151,054 | MetS and its constituent components, including obesity, are significant risk factors for recurrent VTE. |
| Yuan S. et al. [134] | Sweden | 2021 | prospective cohort study | 74,317 | WC is the superior to BMI as VTE predictor. An elevated WC accounts for an estimated 23.7% of VTE cases—nearly double the 12.4% attributed to BMI. |
| Ten Cate V. et al. [12] | Germany | 2021 | prospective cohort study | 693 | Obesity was linked to a 50% lower risk of recurrent VTE or death, but leptin resistance negated its protective role, ruling it out as the cause of this paradox. |
| Frischmuth T. et al. [135] | Norway | 2022 | population-based case–cohort study | 1470 | The concurrent presence of obesity and multiple prothrombotic genetic variants additively increases the overall risk of VTE. |
| Druar N.M. et al. [136] | USA | 2022 | retrospective study | 1,002,831 | In hospitalized patients with UECVCs, obesity is a significant predictor for both UEDVT and PE. |
| Sari M. et al. [137] | Turkey | 2022 | cross-sectional, retrospective, single-center study | 582 | A significant association exists between obesity and thrombosis risk in individuals with cancer. Increased body weight, BMI ≥ 35, and waist circumference (97.58 cm for the medium-high risk group compared to 93.40 cm for the low-risk group) are key predictors of a higher risk score. |
| Mahmoud A. et al. [138] | Sweden | 2023 | prospective cohort study | 1,068,040 | There is a direct, dose–response relationship between early-pregnancy BMI and the long-term risk of post-pregnancy VTE. This elevated risk is present even in women with a high-normal BMI of 22.5–25 and is more than tripled for those with BMI ≥ 35 when compared to lean women. |
| Frischmuth T. et al. [139] | Norway | 2024 | prospective, population-based cohort study | 36,341 | Excess body weight, defined as a BMI ≥ 25, accounts for nearly 25% of the total incidence of VTE at the population level. |
| Taşçı F. et al. [140] | Turkey | 2025 | retrospective study | 75 | For patients with cancer-associated PE, a decreased visceral fat thickness (VFT) was significantly correlated with an increased risk of 90-day mortality. This association may be linked to altered AT catabolism and remodeling that occurs during malignancy, where diminished fat reserves could signify greater disease severity and progression. |
| Santoyo Villalba J. et al. [15] | International (based on the RIETE registry, which includes data from 204 hospitals across 25 countries) | 2025 | observational study | 3196 | Among patients who have undergone surgery, higher BMI and weight correlate with an increased probability of developing a PE as opposed to an isolated DVT. Furthermore, the onset of VTE tends to occur more rapidly after surgery in individuals with obesity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzka, P.S.; Imiela, A.M.; Pruszczyk, P. The Interplay Between Obesity and Venous Thromboembolism: From Molecular Aspects to Clinical Issue. Int. J. Mol. Sci. 2025, 26, 10292. https://doi.org/10.3390/ijms262110292
Zawadzka PS, Imiela AM, Pruszczyk P. The Interplay Between Obesity and Venous Thromboembolism: From Molecular Aspects to Clinical Issue. International Journal of Molecular Sciences. 2025; 26(21):10292. https://doi.org/10.3390/ijms262110292
Chicago/Turabian StyleZawadzka, Patrycja Sandra, Anna M. Imiela, and Piotr Pruszczyk. 2025. "The Interplay Between Obesity and Venous Thromboembolism: From Molecular Aspects to Clinical Issue" International Journal of Molecular Sciences 26, no. 21: 10292. https://doi.org/10.3390/ijms262110292
APA StyleZawadzka, P. S., Imiela, A. M., & Pruszczyk, P. (2025). The Interplay Between Obesity and Venous Thromboembolism: From Molecular Aspects to Clinical Issue. International Journal of Molecular Sciences, 26(21), 10292. https://doi.org/10.3390/ijms262110292

