Peripheral Serotonergic Activation in Severe Aortic Stenosis: A Biochemical Perspective
Abstract
1. Introduction
2. Results
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Design and Patient Selection
4.2. Ethics
4.3. 5-HT and 5-HIAA Measurements
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2021, 43, 561–632. [Google Scholar] [CrossRef]
- Zheng, K.H.; Tzolos, E.; Dweck, M.R. Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy. Cardiol. Clin. 2020, 38, 1–12. [Google Scholar] [CrossRef]
- Liberman, M.; Bassi, E.; Martinatti, M.K.; Lario, F.C.; Wosniak, J.J.; Pomerantzeff, P.M.; Laurindo, F.R. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 463–470. [Google Scholar] [CrossRef]
- Miller, J.D.; Chu, Y.; Brooks, R.M.; Richenbacher, W.E.; Peña-Silva, R.; Heistad, D.D. Dysregulation of Antioxidant Mechanisms Contributes to Increased Oxidative Stress in Calcific Aortic Valvular Stenosis in Humans. J. Am. Coll. Cardiol. 2008, 52, 843–850. [Google Scholar] [CrossRef]
- Peña-Silva, R.A.; Miller, J.D.; Chu, Y.; Heistad, D.D. Serotonin produces monoamine oxidase-dependent oxidative stress in human heart valves. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1354–H1360. [Google Scholar] [CrossRef]
- Neumann, J.; Hofmann, B.; Dhein, S.; Gergs, U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4765. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Davar, J.; Dreyfus, G.; Caplin, M.E. Carcinoid heart disease. Circulation 2007, 116, 2860–2865. [Google Scholar] [CrossRef]
- Connolly, H.M.; Crary, J.L.; McGoon, M.D.; Hensrud, D.D.; Edwards, B.S.; Edwards, W.D.; Schaff, H.V. Valvular Heart Disease Associated With Fenfluramine-Phentermine A Bstract Background Fenfluramine and phentermine have. N. Engl. J. Med. 1997, 337, 581–588. [Google Scholar] [CrossRef]
- Gustafsson, B.I.; Tømmerås, K.; Nordrum, I.; Loennechen, J.P.; Brunsvik, A.; Solligård, E.; Fossmark, R.; Bakke, I.; Syversen, U.; Waldum, H. Long-term serotonin administration induces heart valve disease in rats. Circulation 2005, 111, 1517–1522. [Google Scholar] [CrossRef]
- Elangbam, C.S.; Job, L.E.; Zadrozny, L.M.; Barton, J.C.; Yoon, L.W.; Gates, L.D.; Slocum, N. 5-Hydroxytryptamine (5HT)-induced valvulopathy: Compositional valvular alterations are associated with 5HT2B receptor and 5HT transporter transcript changes in Sprague-Dawley rats. Exp. Toxicol. Pathol. 2008, 60, 253–262. [Google Scholar] [CrossRef]
- Rouzaud-Laborde, C.; Delmas, C.; Pizzinat, N.; Tortosa, F.; Garcia, C.; Mialet-Perez, J.; Payrastre, B.; Sié, P.; Spreux-Varoquaux, O.; Sallerin, B.; et al. Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis. Am. J. Hematol. 2015, 90, 15–19. [Google Scholar] [CrossRef]
- Nigmatullina, R.R.; Kirillova, V.V.; Jourjikiya, R.K.; Mukhamedyarov, M.A.; Kudrin, V.S.; Klodt, P.M.; Palotás, A. Disrupted serotonergic and sympathoadrenal systems in patients with chronic heart failure may serve as new therapeutic targets and novel biomarkers to assess severity, progression and response to treatment. Cardiology 2009, 113, 277–286. [Google Scholar] [CrossRef]
- Selim, A.M.; Sarswat, N.; Kelesidis, I.; Iqbal, M.; Chandra, R.; Zolty, R. Plasma Serotonin in Heart Failure: Possible Marker and Potential Treatment Target. Heart Lung Circ. 2017, 26, 442–449. [Google Scholar] [CrossRef]
- Figueras, J.; Domingo, E.; Cortadellas, J.; Padilla, F.; Dorado, D.G.; Segura, R.; Galard, R.; Soler, J.S. Comparison of plasma serotonin levels in patients with variant angina pectoris versus healed myocardial infarction. Am. J. Cardiol. 2005, 96, 204–207. [Google Scholar] [CrossRef]
- García-Pedraza, J.Á.; García-Domingo, M.; Gómez-Roso, M.; Ruiz-Remolina, L.; Rodríguez-Barbero, A.; Martín, M.L.; Morán, A. Hypertension exhibits 5-HT 4 receptor as a modulator of sympathetic neurotransmission in the rat mesenteric vasculature. Hypertens. Res. 2019, 42, 618–627. [Google Scholar] [CrossRef]
- Dempsie, Y.; Morecroft, I.; Welsh, D.J.; MacRitchie, N.A.; Herold, N.; Loughlin, L.; Nilsen, M.; Peacock, A.J.; Harmar, A.; Bader, M.; et al. Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice. Circulation 2008, 117, 2928–2937. [Google Scholar] [CrossRef]
- McGee, M.; Whitehead, N.; Martin, J.; Collins, N. Drug-associated pulmonary arterial hypertension. Clin. Toxicol. 2018, 56, 801–809. [Google Scholar] [CrossRef]
- Elangbam, C.S. Drug-induced valvulopathy: An update. Toxicol. Pathol. 2010, 38, 837–848. [Google Scholar] [CrossRef]
- Hutcheson, J.D.; Setola, V.; Roth, B.L.; Merryman, W.D. Serotonin receptors and heart valve disease-It was meant 2B. Pharmacol. Ther. 2011, 132, 146–157. [Google Scholar] [CrossRef]
- Bouchareb, R.; Boulanger, M.-C.; Tastet, L.; Mkannez, G.; Nsaibia, M.J.; Hadji, F.; Dahou, A.; Messadeq, Y.; Arsenault, B.J.; Pibarot, P.; et al. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur. Heart J. 2019, 40, 1362–1373. [Google Scholar] [CrossRef]
- Fong, F.; Xian, J.; Demer, L.L.; Tintut, Y. Serotonin receptor type 2B activation augments TNF-α-induced matrix mineralization in murine valvular interstitial cells. J. Cell. Biochem. 2021, 122, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Jaffre, F.; Callebert, J.; Sarre, A.; Etienne, N.; Nebigil, C.G.; Launay, J.M.; Maroteaux, L.; Monassier, L. Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: Control of interleukin-6, interleukin-1β, and tumor necrosis factor-α cytokine production by ventricular fibroblasts. Circulation 2004, 110, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Edmonston, D.; Isakova, T.; Wolf, M. Plasma Serotonin and Cardiovascular Outcomes in Chronic Kidney Disease. J. Am. Heart Assoc. 2023, 12, e029785. [Google Scholar] [CrossRef] [PubMed]


| Population Characteristics | Total Patients n = 76 | Severe AS n = 38 | Control n = 38 | p-Value | |
|---|---|---|---|---|---|
| Age (years) | 76.5 ± 5 | 76.6 ± 5.7 | 76.5 ± 4.4 | 0.893 | |
| Gender (male) | 37 (48.7%) | 15 (39.4%) | 22 (57.8%) | 0.110 | |
| Body mass index (kg/m2) | 27.9 (24.8–31.2) | 26.9 (24.9–31.2) | 28.5 (24.5–31.2) | 0.677 | |
| Current smoking | 6 (7.9%) | 4 (0.1%) | 2 (0.05%) | 0.398 | |
| Comorbidities | |||||
| Arterial Hypertension | 69 (90.7%) | 34 (89.4%) | 35 (92.1%) | 0.691 | |
| Hyperlipidemia | 60 (78.9%) | 29 (76.3%) | 31 (81.5%) | 0.576 | |
| Diabetes mellitus | 24 (31.6%) | 13 (34.2%) | 11 (28.9%) | 0.623 | |
| Coronary artery disease | 36 (47.3%) | 14 (36.8%) | 22 (57.8%) | 0.066 | |
| History of myocardial revascularization | 16 (21.1%) | 7 (18.4%) | 9 (23.6%) | 0.576 | |
| Atrial fibrillation | 26 (34%) | 8 (21%) | 18 (47%) | 0.015 | |
| Heart failure (NYHA class II-IV) | 71 (93.4%) | 37 (97.3%) | 34 (89.4%) | 0.167 | |
| Cardiovascular medication | |||||
| CCB | 31 (40.8%) | 13 (34.2%) | 18 (47.3%) | 0.246 | |
| ARBs/ACEi | 60 (78.9%) | 24 (63.1%) | 36 (94.7%) | 0.0008 | |
| BB | 57 (75%) | 27 (71%) | 30 (78.9%) | 0.429 | |
| MRA | 24 (31.6%) | 14 (36.8%) | 10 (26.3%) | 0.326 | |
| Statins | 58 (76.3%) | 30 (78.9%) | 28 (73.6%) | 0.591 | |
| Echocardiography parameters | |||||
| Aortic valve Vmax (m/s) | 2.9 (1.5–4.4) | 4.4 (4.2–4.9) | 1.5 (1.3–1.7) | <0.0001 | |
| Ascending aorta (mm) | 34.4 ± 4 | 34.1 ± 4.6 | 34.7 ± 3.3 | 0.477 | |
| LA (mm) | 45 (41.5–51) | 46.5 (43–51) | 45 (41–50) | 0.368 | |
| LVEDD (mm) | 49.2 ± 6.1 | 48.5 ± 6.8 | 50 ± 5.3 | 0.315 | |
| LVESD (mm) | 32.5 (28–39) | 32 (28–39) | 34.5 (29–39) | 0.727 | |
| IVS (mm) | 13.6 ± 2.8 | 15.5 ± 2.2 | 11.6 ± 1.9 | <0.0001 | |
| LVPW (mm) | 12.1 ± 2.4 | 13.4 ± 2.1 | 10.7 ± 1.9 | <0.0001 | |
| E/e’ | 12.5 ± 4.4 | 14.8 ± 3.4 | 10.2 ± 4.1 | <0.0001 | |
| PSAP (mmHg) | 35 (30–46) | 40 (33–49) | 35 (29–43) | 0.067 | |
| LVEF (%) | 51 (45–58) | 50.5 (45–55) | 53 (45–60) | 0.271 | |
| Biochemical Markers | Total Patients n = 76 | Severe AS n = 38 | Control n = 38 | p-Value |
|---|---|---|---|---|
| Hemoglobin (g/dL) | 13 ± 1.8 | 13 ± 1.8 | 12.9 ± 1.8 | 0.750 |
| Creatinine (mg/dL) | 1 (0.8–1.2) | 0.9 (0.7–1.2) | 1 (0.8–1.3) | 0.167 |
| NT-proBNP (pg/mL) | 1582.5 (871.5–2801) | 2536 (1221–4128) | 1006.5 (540–1956) | 0.0001 |
| Total cholesterol (mg/dL) | 150 (129.3–182) | 144.7 (127.5–182.1) | 163 (130–182) | 0.248 |
| LDL-C (mg/dL) | 90.5 ± 34.9 | 83.8 ± 33.7 | 97.2 ± 35.2 | 0.095 |
| HDL-C (mg/dL) | 44.8 (37–56.8) | 46 (37.9–58) | 43.5 (37–53) | 0.529 |
| Triglycerides (mg/dL) | 98.7 (83.2–134.5) | 95.1 (72–113.4) | 112 (85–173) | 0.181 |
| Glucose (mg/dL) | 103 (95–116.5) | 103.5 (98–117) | 103 (95–116) | 0.429 |
| 5-HT (ng/mL) | 1036.4 (903.4–1106.6) | 1066.5 (961.9–1112) | 977.4 (394.3–1097.9) | 0.034 |
| 5-HIAA (ng/mL) | 52.3 ± 14.7 | 57 ± 12.7 | 47.5 ± 15.3 | 0.004 |
| Vmax | Mean PG | LVPW | IVS | E/e’ | NT-proBNP | Age | |
|---|---|---|---|---|---|---|---|
| 5-HT | 0.23 | 0.2 | 0.22 | 0.08 | 0.16 | 0.27 | −0.31 |
| 5-HIAA | 0.26 | −0.01 | 0.2 | 0.31 | 0.22 | 0.2 | −0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercean, D.B.; Tomoaia, R.; Berindan-Neagoe, I.; Budişan, L.; Pop, D.; Șerban, A.M.; Melincovici, C.S.; Mihu, C.M. Peripheral Serotonergic Activation in Severe Aortic Stenosis: A Biochemical Perspective. Int. J. Mol. Sci. 2025, 26, 10250. https://doi.org/10.3390/ijms262110250
Mercean DB, Tomoaia R, Berindan-Neagoe I, Budişan L, Pop D, Șerban AM, Melincovici CS, Mihu CM. Peripheral Serotonergic Activation in Severe Aortic Stenosis: A Biochemical Perspective. International Journal of Molecular Sciences. 2025; 26(21):10250. https://doi.org/10.3390/ijms262110250
Chicago/Turabian StyleMercean, Denisa Bianca, Raluca Tomoaia, Ioana Berindan-Neagoe, Liviuţa Budişan, Dana Pop, Adela Mihaela Șerban, Carmen Stanca Melincovici, and Carmen Mihaela Mihu. 2025. "Peripheral Serotonergic Activation in Severe Aortic Stenosis: A Biochemical Perspective" International Journal of Molecular Sciences 26, no. 21: 10250. https://doi.org/10.3390/ijms262110250
APA StyleMercean, D. B., Tomoaia, R., Berindan-Neagoe, I., Budişan, L., Pop, D., Șerban, A. M., Melincovici, C. S., & Mihu, C. M. (2025). Peripheral Serotonergic Activation in Severe Aortic Stenosis: A Biochemical Perspective. International Journal of Molecular Sciences, 26(21), 10250. https://doi.org/10.3390/ijms262110250

