Role of the Inflammasome Pathway According to the Expression of Proteins and Genetic Polymorphisms in COVID-19 Patients
Abstract
1. Introduction
2. Results
2.1. Sociodemographic and Clinical Information
2.2. Immunohistochemistry Findings
2.3. Genotyping Findings
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Tissue Processing and Immunohistochemistry
4.3. Morphometric Analysis
4.4. DNA Extraction and Genotyping
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | Angiotensin-converting enzyme 2 |
ASC | Apoptosis-associated speck-like protein containing a CARD |
CARD | Caspase Recruitment Domain |
CONEP | National Research Ethics Committee |
DAB | 3,3-diaminobenzidine |
DAD | Diffuse alveolar damage |
DNA | Deoxyribonucleic acid |
GSDMD | Gasdermin D |
HRP | Horseradish peroxidase |
ICU | Intensive Care Unit |
IHQ | Immunohistochemistry |
IL | Interleucin |
NETs | Neutrophil extracellular traps |
NF-κB | Nuclear factor kappa B |
NK | Natural killer |
NLRP3 | Nod (Nucleotide-binding oligomerization domain)-, LRR (Leucine-rich repeat)- and pyrin domain-containing protein 3 |
PAMP | Pathogen-Associated Molecular Patterns |
RNA | Ribonucleic acid |
ROS | Reactive oxygen species |
RT-PCR | Real-Time Polymerase Chain Reaction |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
SNP | Single-Nucleotide Polymorphism |
TLR | Toll-Like receptor |
TMA | Tissue Microarray |
TNF-α | Tumor Necrosis Factor-alpha |
References
- Khreefa, Z.; Barbier, M.T.; Koksal, A.R.; Love, G.; Del Valle, L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023, 12, 262. [Google Scholar] [CrossRef]
- Kartsonaki, C.; Baillie, J.K.; Barrio, N.G.; Baruch, J.; Beane, A.; Blumberg, L.; Bozza, F.; Broadley, T.; Burrell, A.; Carson, G.; et al. Characteristics and outcomes of an international cohort of 600000 hospitalized patients with COVID-19. Int. J. Epidemiol. 2023, 52, 355–376. [Google Scholar] [CrossRef] [PubMed]
- Baas, T.; Taubenberger, J.K.; Chong, P.Y.; Chui, P.; Katze, M.G. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. J. Interf. Cytokine Res. 2006, 26, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; De Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Favaloro, E.J. D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb. Haemost. 2020, 120, 876–877. [Google Scholar] [CrossRef]
- Kovacs, S.B.; Miao, E.A. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 2017, 27, 673–684. [Google Scholar] [CrossRef]
- Chen, M.; Wang, H.; Chen, W.; Meng, G. Regulation of adaptive immunity by the NLRP3 inflammasome. Int. Immunopharmacol. 2011, 11, 549–554. [Google Scholar] [CrossRef]
- Murphy, K.; Weaver, C. Janeway’s Immunobiology, 9th ed.; Garland Science/Taylor & Francis Group: New York, NY, USA, 2017. [Google Scholar]
- Sagoo, P.; Garcia, Z.; Breart, B.; Lemaître, F.; Michonneau, D.; Albert, M.L.; Levy, Y.; Bousso, P. In vivo imaging of inflammasome activation reveals a subcapsular macrophage burst response that mobilizes innate and adaptive immunity. Nat. Med. 2016, 22, 64–71. [Google Scholar] [CrossRef]
- Sharma, D.; Kanneganti, T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol. 2016, 213, 617–629. [Google Scholar] [CrossRef]
- Hu, J.J.; Liu, X.; Xia, S.; Zhang, Z.; Zhang, Y.; Zhao, J.; Ruan, J.; Luo, X.; Lou, X.; Bai, Y.; et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 2020, 21, 736–745. [Google Scholar] [CrossRef]
- Fillmore, N.; Bell, S.; Shen, C.; Nguyen, V.; La, J.; Dubreuil, M.; Strymish, J.; Brophy, M.; Mehta, G.; Wu, H.; et al. Disulfiram use is associated with lower risk of COVID-19: A retrospective cohort study. PLoS ONE 2021, 16, e0259061. [Google Scholar] [CrossRef]
- Potere, N.; Del Buono, M.G.; Caricchio, R.; Cremer, P.C.; Vecchié, A.; Porreca, E.; Dalla Gasperina, D.; Dentali, F.; Abbate, A.; Bonaventura, A. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications: IL-1 and NLRP3 inflammasome in COVID-19. EBioMedicine 2022, 85, 104299. [Google Scholar] [CrossRef]
- Chanock, S. Candidate genes and single nucleotide polymorphisms (SNPs) in the study of human disease. Dis. Markers 2001, 17, 89–98. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Bernig, T.; Hanisch, M.; Koehl, U.; Behl, M.; Reinhardt, D.; Creutzig, U.; Klingebiel, T.; Chanock, S.J.; Schwabe, D. Common genetic variants in the interleukin-6 and chitotriosidase genes are associated with the risk for serious infection in children undergoing therapy for acute myeloid leukemia. Leukemia 2005, 19, 1745–1750. [Google Scholar] [CrossRef]
- Pertovaara, M.; Antonen, J.; Hurme, M. Th2 cytokine genotypes are associated with a milder form of primary Sjögren’s syndrome. Ann. Rheum. Dis. 2006, 65, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Iftimie, S.; Lopez-Azcona, A.F.; Vallverdu, I.; Hernandez-Flix, S.; De Febrer, G.; Parra, S.; Hernandez-Aguilera, A.; Riu, F.; Joven, J.; Andreychuk, N.; et al. First and second waves of coronavirus disease-19: A comparative study in hospitalized patients in Reus, Spain. PLoS ONE 2021, 16, e0248029. [Google Scholar] [CrossRef] [PubMed]
- Ciarambino, T.; Crispino, P.; Minervini, G.; Giordano, M. COVID-19 and Frailty. Vaccines 2023, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- Veiga, V.C.; Cavalcanti, A.B. Age, host response, and mortality in COVID-19. Eur. Respir. J. 2023, 62, 2300796. [Google Scholar] [CrossRef]
- Moura, E.C.; Cortez-Escalante, J.; Cavalcante, F.V.; Barreto, I.C.H.C.; Sanchez, M.N.; Santos, L.M.P. Covid-19: Evolução temporal e imunização nas três ondas epidemiológicas, Brasil, 2020–2022. Rev. Saude Publica 2022, 56, 105. [Google Scholar] [CrossRef]
- Miggiolaro, A.F.R.S.; Motta, J.S., Jr.; de Paula, C.B.V.; Nagashima, S.; Malaquias, M.A.S.; Carstens, L.B.; Moreno-Amaral, A.N.; Baena, C.P.; de Noronha, L. Covid-19 cytokine storm in pulmonary tissue: Anatomopathological and immunohistochemical findings. Respir. Med. Case Reports 2020, 31, 101292. [Google Scholar] [CrossRef]
- Nagashima, S.; Mendes, M.C.; Martins, A.P.C.; Borges, N.H.; Godoy, T.M.; Dos Santos Miggiolaro, A.F.R.S.; Dos Santos Dezidério, F.; Machado-Souza, C.; De Noronha, L. Endothelial Dysfunction and Thrombosis in Patients With COVID-19—Brief Report. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2404–2407. [Google Scholar] [CrossRef]
- Paula, C.B.V.; Azevedo, M.L.V.; Nagashima, S.; Martins, A.P.C.; Malaquias, M.A.S.; Miggiolaro, A.F.R.S.; Motta, J.S., Jr.; Avelino, G.; Carmo, L.A.P.; Carstens, L.B.; et al. IL-4/IL-13 remodeling pathway of COVID-19 lung injury. Sci. Rep. 2020, 10, 18689. [Google Scholar] [CrossRef]
- Nagashima, S.; Dutra, A.A.; Arantes, M.P.; Zeni, R.C.; Klein, C.K.; de Oliveira, F.C.; Piper, G.W.; Brenny, I.D.; Pereira, M.R.C.; Stocco, R.B.; et al. COVID-19 and Lung Mast Cells: The Kallikrein–Kinin Activation Pathway. Int. J. Mol. Sci. 2022, 23, 1714. [Google Scholar] [CrossRef] [PubMed]
- Malaquias, M.A.S.; Gadotti, A.C.; Motta, J.S., Jr.; Martins, A.P.C.; Azevedo, M.L.V.; Benevides, A.P.K.; Cézar-Neto, P.; Carmo, L.A.P.; Zeni, R.C.; Raboni, S.M.; et al. The role of the lectin pathway of the complement system in SARS-CoV-2 lung injury. Transl. Res. 2021, 231, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Carstens, L.B.; Campos D’amico, R.; Fernandes de Moura, K.; Morais de Castro, E.; Centenaro, F.; Silva Barbosa, G.; Silva, G.V.C.; Brenny, I.; D’Agostini, J.C.H.; Hlatchuk, E.C.; et al. Lung Inflammasome Activation in SARS-CoV-2 Post-Mortem Biopsies. Int. J. Mol. Sci. 2022, 23, 13033. [Google Scholar] [CrossRef]
- Barbosa, L.V.; Prá, D.M.M.; Nagashima, S.; Pereira, M.R.C.; Stocco, R.B.; Silva, F.L.F.; Cruz, M.R.; Dallagassa, D.; Stupak, T.J.; Götz, G.W.X.R.; et al. Immune Response Gaps Linked to SARS-CoV-2 Infection: Cellular Exhaustion, Senescence, or Both? Int. J. Mol. Sci. 2022, 23, 13734. [Google Scholar] [CrossRef]
- Collete, M.; dos Santos, T.R.; de Araújo, N.; Martins, A.P.C.; Nagashima, S.; de Paula, C.B.V.; Machado-Souza, C.; de Noronha, L. Neutrophil Extracellular Trap Markers in Post Mortem Lung Biopsies from COVID-19 Patients. Int. J. Mol. Sci. 2025, 26, 8059. [Google Scholar] [CrossRef]
- Hartmann, C.; Miggiolaro, A.F.R.S.; Motta, J.S., Jr.; Carstens, L.B.; Paula, C.B.V.; Grobe, S.F.; Nunes, L.H.S.; Marques, G.L.; Libby, P.; Moura, L.Z.; et al. The Pathogenesis of COVID-19 Myocardial Injury: An Immunohistochemical Study of Postmortem Biopsies. Front. Immunol. 2021, 12, 748417. [Google Scholar] [CrossRef]
- Miggiolaro, A.F.R.S.; da Silva, F.P.G.; Wiedmer, D.B.; Godoy, T.M.; Borges, N.H.; Piper, G.W.; Oricil, A.G.G.; Klein, C.K.; Hlatchuk, E.C.; Dagostini, J.C.H.; et al. COVID-19 and Pulmonary Angiogenesis: The Possible Role of Hypoxia and Hyperinflammation in the Overexpression of Proteins Involved in Alveolar Vascular Dysfunction. Viruses 2023, 15, 706. [Google Scholar] [CrossRef]
- Tanaka, H.; Miyazaki, N.; Oashi, K.; Teramoto, S.; Shiratori, M.; Hashimoto, M.; Ohmichi, M.; Abe, S. IL-18 might reflect disease activity in mild and moderate asthma exacerbation. J. Allergy Clin. Immunol. 2001, 107, 331–336. [Google Scholar] [CrossRef]
- Hoshino, T.; Kato, S.; Oka, N.; Imaoka, H.; Kinoshita, T.; Takei, S.; Kitasato, Y.; Kawayama, T.; Imaizumi, T.; Yamada, K.; et al. Pulmonary inflammation and emphysema: Role of the cytokines IL-18 and IL-13. Am. J. Respir. Crit. Care Med. 2007, 176, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Birra, D.; Benucci, M.; Landolfi, L.; Merchionda, A.; Loi, G.; Amato, P.; Licata, G.; Quartuccio, L.; Triggiani, M.; Moscato, P. COVID 19: A clue from innate immunity. Immunol. Res. 2020, 68, 161. [Google Scholar] [CrossRef] [PubMed]
- Debnath, M.; Banerjee, M.; Berk, M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J. 2020, 34, 8787–8795. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, M.; Netea, M.G.; Rezaei, N. Targeting of Toll-like receptors: A decade of progress in combating infectious diseases. Lancet Infect. Dis. 2011, 11, 702–712. [Google Scholar] [CrossRef]
- Florindo, H.F.; Kleiner, R.; Vaskovich-Koubi, D.; Acúrcio, R.C.; Carreira, B.; Yeini, E.; Tiram, G.; Liubomirski, Y.; Satchi-Fainaro, R. Immune-mediated approaches against COVID-19. Nat. Nanotechnol. 2020, 15, 630–645. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; de Sá, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Gonçalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; et al. Inflammasomes are activated in response to SARS-cov-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2020, 218, e20201707. [Google Scholar] [CrossRef]
- Sefik, E.; Qu, R.; Junqueira, C.; Kaffe, E.; Mirza, H.; Zhao, J.; Brewer, J.R.; Han, A.; Steach, H.R.; Israelow, B.; et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606, 585–593. [Google Scholar] [CrossRef]
- Marshall, R. The Pulmonary Renin-Angiotensin System. Curr. Pharm. Des. 2003, 9, 715–722. [Google Scholar] [CrossRef]
- Tan, W.S.D.; Liao, W.; Zhou, S.; Mei, D.; Wong, W.S.F. Targeting the renin–angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr. Opin. Pharmacol. 2018, 40, 9–17. [Google Scholar] [CrossRef]
- Oakes, J.M.; Fuchs, R.M.; Gardner, J.D.; Lazartigues, E.; Yue, X. Nicotine and the renin-angiotensin system. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2018, 315, R895–R906. [Google Scholar] [CrossRef]
- Singh, H.O.; Choudhari, R.; Nema, V.; Khan, A.A. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb. Pathog. 2021, 150, 104621. [Google Scholar] [CrossRef] [PubMed]
- Li YDer Chi, W.Y.; Su, J.H.; Ferrall, L.; Hung, C.F.; Wu, T.C. Coronavirus vaccine development: From SARS and MERS to COVID-19. J. Biomed. Sci. 2020, 27, 104. [Google Scholar] [CrossRef] [PubMed]
- Gintoni, I.; Adamopoulou, M.; Yapijakis, C. The Impact of ACE and ACE2 Gene Polymorphisms in Pulmonary Diseases including COVID-19. In Vivo 2022, 36, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pei, J.; Lai, Y.; Guan, T.; Zeyaweiding, A.; Maimaiti, T.; Zhao, H.; Shen, Y. Association of ACE2 variant rs4646188 with the risks of atrial fibrillation and cardioembolic stroke in Uygur patients with type 2 diabetes. BMC Cardiovasc. Disord. 2021, 21, 103. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, C.; Guan, T.; Li, Y.; Lai, Y.; Li, F.; Zhao, H.; Maimaiti, T.; Zeyaweiding, A. Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang. Hypertens. Res. 2019, 42, 681–689. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Ruan, J.; Pan, Y.; Magupalli, V.G.; Wu, H.; Lieberman, J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016, 535, 153–158. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Santoro, M.G.; Rossi, A.; Amici, C. NF-κB and virus infection: Who controls whom. EMBO J. 2003, 22, 2552–2560. [Google Scholar] [CrossRef]
- Silva, M.J.A.; Ribeiro, L.R.; Gouveia, M.I.M.; Marcelino, B.R.; Santos, C.S.; Lima, K.V.B.; Lima, L.N.G.C. Hyperinflammatory Response in COVID-19: A Systematic Review. Viruses 2023, 15, 553. [Google Scholar] [CrossRef]
- Koh, H.M.; Jang, B.G.; Hyun, C.L.; Kim, D.C. Prognostic value of Musashi 2 (MSI2) in cancer patients: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 969632. [Google Scholar] [CrossRef]
- Chen, F.; Haigh, S.; Barman, S.; Fulton, D.J.R. From form to function: The role of Nox4 in the cardiovascular system. Front. Physiol. 2012, 3, 412. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Cao, Z.; Xu, X.; Meir, E.G.V.; Lambeth, J.D. Homologs of gp91 phox: Cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 2001, 269, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mao, X.; Liu, Q.; Song, H.; He, B.; Shi, P.; Zhang, Q.; Li, X.; Wang, J. Functional variations of the TLR4 gene in association with chronic obstructive pulmonary disease and pulmonary tuberculosis. BMC Pulm. Med. 2019, 19, 184. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.H.M.; Costa, E.L.V.; Zimmermann, N.A.; Gois, L.S.O.; Anjos, M.V.A.; Lima, F.G.; Andrade, P.S.; Joelsons, D.; Ho, Y.L.; Sales, F.C.S.; et al. Temporal trends of severity and outcomes of critically ill patients with COVID-19 after the emergence of variants of concern: A comparison of two waves. PLoS ONE 2024, 19, e0299607. [Google Scholar] [CrossRef]
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef]
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef]
- Corrêa, T.D.; Midega, T.D.; Cordioli, R.L.; Barbas, C.S.V.; Rabello Filho, R.; da Silva, B.C.; Silva Júnior, M.; Nawa, R.K.; de Carvalho, F.R.T.; de Matos, G.F.J.; et al. Clinical characteristics and outcomes of patients with COVID-19 admitted to the intensive care unit during the first and second waves of the pandemic in Brazil: A single-center retrospective cohort study. Einstein 2023, 21, eAO0233. [Google Scholar] [CrossRef]
- Wlodek, E.; Kirkpatrick, R.B.; Andrews, S.; Noble, R.; Schroyer, R.; Scott, J.; Watson, C.J.E.; Clatworthy, M.; Harrison, E.M.; Wigmore, S.J.; et al. A pilot study evaluating GSK1070806 inhibition of interleukin-18 in renal transplant delayed graft function. PLoS ONE 2021, 16, e0247972. [Google Scholar] [CrossRef]
Characteristics | COVID 1st WAVE (n = 24) | COVID 2nd WAVE (n = 18) | p-Value |
---|---|---|---|
Age a | 72.5 (46.0–93.0) | 55.5 (30.0–83.0) | 0.000 ** |
Female b | 9 (37.5) | 3 (16.6) | 0.180 * |
Male b | 15 (62.5) | 15 (83.3) | |
Mechanical Ventilation c | 9.5 (0.0–36.0) | 14.5 (5.0–28.0) | 0.040 *** |
Time from admission to death c | 13.0 (1.0–39.0) | 14.5 (5.0–28.0) | 0.430 *** |
Markers | COVID 1st WAVE (n = 24) | COVID 2nd WAVE (n = 18) | p-Value * |
---|---|---|---|
ACE-2 | 1.3 (0.1–24.2) | 1.8 (0.2–6.5) | 0.865 |
TLR-4 | 12.1 (0.6–49.1) | 26.3 (8.9–42.3) | 0.011 |
NF-κB | 10.2 (1.6–16.1) | 3.9 (1.8–9.3) | 0.000 |
TNF-α | 11.4 (2.2–26.0) | 7.2 (1.2–13.5) | 0.010 |
NOX4 | 20.1 (10.7–43.7) | 6.8 (0.5–17.8) | 0.000 |
NLRP3 | 6.4 (2.3–20.6) | 13.9 (0.4–25.4) | 0.025 |
ASC | 14.7 (0.1–29.7) | 4.0 (0.6–21.3) | 0.002 |
Caspase-1 | 20.6 (12.2–32.9) | 7.5 (0.1–40.9) | 0.001 |
IL-1β | 18.6 (6.1–39.8) | 13.5 (1.7–30.7) | 0.409 |
IL-18 | 3.8 (0.1–9.5) | 25.6 (5.2–43.8) | 0.000 |
GSDMD | 11.7 (5.1–61.6) | 17.1 (5.0–24.5) | 0.365 |
Caspase-9 | 15.1 (1.3–34.1) | 0.5 (0.1–2.4) | 0.000 |
Gene—Tag SNPs dbSNP ID * [Allele Variation] ** | COVID Groups | Homozygous 1/1 † | Heterozygous 1/2 † | Homozygous 2/2 † | p-Value ‡ |
---|---|---|---|---|---|
ACE2 | AA | AG | GG | ||
rs4646188 [A/G] | 1st wave | 0 (0.0) | 20 (83.3) | 4 (16.7) | 0.000 |
2nd wave | 16 (88.9) | 1 (5.6) | 1 (5.6) | ||
ACE2 | CC | CG | GG | ||
rs879922 [C/G] | 1st wave | 5 (20.8) | 2 (8.3) | 17 (70.8) | 0.436 |
2nd wave | 7 (38.9) | 1 (5.6) | 10 (55.6) | ||
ACE2 | AA | AT | TT | ||
rs4646156 [A/T] | 1st wave | 3 (12.5) | 4 (16.7) | 17 (70.8) | 0.028 |
2nd wave | 9 (50.0) | 2 (11.1) | 7 (38.9) | ||
ACE2 | TT | TG | GG | ||
rs2048683 [T/G] | 1st wave | 17 (70.8) | 4 (16.7) | 3 (12.5) | 0.028 |
2nd wave | 7 (38.9) | 2 (11.1) | 9 (50.0) | ||
TLR4 | AA | AG | GG | ||
rs4986790 [A/G] | 1st wave | 17 (85.0) | 3 (15.0) | 0 (0.0) | 0.232 |
2nd wave | 18 (100.0) | 0 (0.0) | 0 (0.0) | ||
TLR4 | CC | CT | TT | ||
rs4986791 [C/T] | 1st wave | 17 (85.0) | 3 (15.0) | 0 (0.0) | 0.232 |
2nd wave | 18 (100.0) | 0 (0.0) | 0 (0.0) | ||
TLR4 | CC | CT | TT | ||
rs10759932 [C/T] | 1st wave | 12 (66.7) | 6 (33.3) | 0 (0.0) | 0.000 |
2nd wave | 0 (0.0) | 18 (100.0) | 0 (0.0) | ||
TLR4 | CC | CG | GG | ||
rs11536889 [C/G] | 1st wave | 1 (4.2) | 12 (50.0) | 11 (45.8) | 0.196 |
2nd wave | 0 (0.0) | 5 (27.8) | 13 (72.2) | ||
NFKB1 | AA | AT | TT | ||
rs3821958 [A/T] | 1st wave | 9 (37.5) | 14 (58.3) | 1 (4.2) | 0.509 |
2nd wave | 5 (27.8) | 13 (72.2) | 0 (0.0) | ||
NFKB1 | GG | GA | AA | ||
rs4648090 [G/A] | 1st wave | 0 (0.0) | 7 (30.4) | 16 (69.6) | 0.340 |
2nd wave | 1 (5.6) | 3 (16.7) | 14 (77.8) | ||
NFKB1 | CC | CT | TT | ||
rs4648022 [C/T] | 1st wave | 21 (87.5) | 3 (12.5) | 0 (0.0) | 1.000 |
2nd wave | 15 (83.3) | 3 (16.7) | 0 (0.0) | ||
TNFA | GG | GA | AA | ||
rs3093661 [G/A] | 1st wave | 21 (87.5) | 3 (12.5) | 0 (0.0) | 1.000 |
2nd wave | 16 (88.9) | 2 (11.1) | 0 (0.0) | ||
TNFA | AA | AG | GG | ||
rs3093662 [A/G] | 1st wave | 18 (75.0) | 6 (25.0) | 0 (0.0) | 0.481 |
2nd wave | 12 (66.7) | 5 (27.8) | 1 (5.6) | ||
NOX4 | GG | GA | AA | ||
rs9299894 [G/A] | 1st wave | 20 (87.0) | 3 (13.0) | 0 (0.0) | 1.000 |
2nd wave | 16 (88.9) | 2 (11.1) | 0 (0.0) | ||
NOX4 | TT | TA | AA | ||
rs7939071 [T/A] | 1st wave | 3 (12.5) | 10 (41.7) | 11 (45.8) | 0.819 |
2nd wave | 2 (11.1) | 6 (33.3) | 10 (55.6) | ||
NOX4 | TT | TC | CC | ||
rs317155 [T/C] | 1st wave | 8 (34.8) | 13 (56.5) | 2 (8.7) | 0.184 |
2nd wave | 3 (16.7) | 10 (55.6) | 5 (27.8) | ||
NOX4 | CC | CG | GG | ||
rs7925520 [C/G] | 1st wave | 10 (41.7) | 10 (41.7) | 4 (16.7) | 0.841 |
2nd wave | 6 (33.3) | 9 (50.0) | 3 (16.7) | ||
NLRP3 | TT | TC | CC | ||
rs4612666 [T/C] | 1st wave | 15 (65.2) | 7 (30.4) | 1 (4.3) | 0.537 |
2nd wave | 9 (50.0) | 7 (38.9) | 2 (11.1) | ||
NLRP3 | GG | GC | CC | ||
rs10754558 [G/C] | 1st wave | 11 (45.8) | 11 (45.8) | 2 (8.3) | 0.596 |
2nd wave | 6 (33.3) | 9 (50.0) | 3 (16.7) | ||
NLRP3 | AA | AG | GG | ||
rs2027432 [A/G] | 1st wave | 2 (8.7) | 8 (34.8) | 13 (56.5) | 0.419 |
2nd wave | 0 (0.0) | 6 (33.3) | 12 (66.7) | ||
ASC | CC | CT | TT | ||
rs8056505 [C/T] | 1st wave | 15 (62.5) | 6 (25.0) | 3 (12.5) | 0.705 |
2nd wave | 13 (72.2) | 4 (22.2) | 1 (5.6) | ||
CASP1 | TT | TC | CC | ||
rs530537 [T/C] | 1st wave | 4 (16.7) | 9 (37.5) | 11 (45.8) | 0.792 |
2nd wave | 2 (11.1) | 6 (33.3) | 10 (55.6) | ||
CASP1 | GG | GA | AA | ||
rs572687 [G/A] | 1st wave | 0 (0.0) | 5 (20.8) | 19 (79.2) | 0.060 |
2nd wave | 0 (0.0) | 0 (0.0) | 18 (100.0) | ||
CASP1 | GG | GA | AA | ||
rs571593 [G/A] | 1st wave | 0 (0.0) | 5 (20.8) | 19 (79.2) | 0.060 |
2nd wave | 0 (0.0) | 0 (0.0) | 18 (100.0) | ||
CASP1 | AA | AG | GG | ||
rs2282659 [A/G] | 1st wave | 15 (62.5) | 6 (25.0) | 3 (12.5) | 0.679 |
2nd wave | 11 (61.1) | 6 (33.3) | 1 (5.6) | ||
CASP1 | CC | CT | TT | ||
rs501192 [C/T] | 1st wave | 19 (79.2) | 5 (20.8) | 0 (0.0) | 0.060 |
2nd wave | 18 (100.0) | 0 (0.0) | 0 (0.0) | ||
IL1B | CC | CT | TT | ||
rs1143633 [C/T] | 1st wave | 11 (45.8) | 8 (33.3) | 5 (20.8) | 0.225 |
2nd wave | 7 (38.9) | 10 (55.6) | 1 (5.6) | ||
IL1B | AA | AG | GG | ||
rs3136558 [A/G] | 1st wave | 17 (70.8) | 5 (20.8) | 2 (8.3) | 0.343 |
2nd wave | 12 (66.7) | 6 (33.3) | 0 (0.0) | ||
IL1B | GG | GA | AA | ||
rs1143634 [G/A] | 1st wave | 18 (75.0) | 4 (16.7) | 2 (8.3) | 0.088 |
2nd wave | 10 (55.6) | 8 (44.4) | 0 (0.0) | ||
IL18 | GG | GT | TT | ||
rs1946518 [G/T] | 1st wave | 8 (33.3) | 15 (62.5) | 1 (4.2) | 0.180 |
2nd wave | 6 (33.3) | 8 (44.4) | 4 (22.2) | ||
IL18 | CC | CG | GG | ||
rs187238 [C/G] | 1st wave | 15 (65.2) | 8 (34.8) | 0 (0.0) | 0.126 |
2nd wave | 10 (55.6) | 5 (27.8) | 3 (16.7) | ||
GDSMD | CC | CT | TT | ||
rs1545536 [C/T] | 1st wave | 18 (75.0) | 6 (25.0) | 0 (0.0) | 0.481 |
2nd wave | 12 (66.7) | 5 (27.8) | 1 (5.6) | ||
GDSMD | AA | AG | GG | ||
rs2305492 [A/G] | 1st wave | 13 (54.2) | 11 (45.8) | 0 (0.0) | 0.052 |
2nd wave | 8 (44.4) | 6 (33.3) | 4 (22.2) | ||
CASP9 | CC | CT | TT | ||
rs4646012 [C/T] | 1st wave | 7 (36.8) | 9 (47.4) | 3 (15.8) | 0.057 |
2nd wave | 6 (40.0) | 2 (13.3) | 7 (46.7) | ||
CASP9 | GG | GA | AA | ||
rs4646063 [G/A] | 1st wave | 0 (0.0) | 8 (33.3) | 16 (66.7) | 0.501 |
2nd wave | 1 (5.6) | 6 (33.3) | 11 (61.1) |
Gene—Tag SNPs dbSNP ID * [Allele Variation] † | Dominant Model | Tissue Expression | p-Value ‡ |
---|---|---|---|
ACE2 | AA + AG | 1.6 (0.2–6.5) | 0.838 |
rs4646188 A/G | GG | 1.9 (1.9–1.9) | |
ACE2 | CC + CG | 1.8 (0.4–6.5) | 0.853 |
rs879922 C/G | GG | 1.5 (0.2–6.1) | |
ACE2 | AA + AT | 1.9 (0.2–6.1) | 0.807 |
rs4646156 A/T | TT | 1.6 (0.4–6.5) | |
ACE2 | TT + TG | 1.6 (0.4–6.5) | 0.788 |
rs2048683 T/G | GG | 1.9 (0.2–6.1) | |
TLR4 | CC + CT | 26.3 (8.9–42.3) | N/A |
rs10759932 C/T | TT | 0.0 (0.0–0.0) | |
TLR4 | CC + CG | 24.9 (11.0–34.0) | 0.346 |
rs11536889 C/G | GG | 26.4 (8.9–42.3) | |
NFKB1 | AA + AT | 3.9 (1.8–9.2) | N/A |
rs3821958 A/T | TT | 0.0 (0.0–0.0) | |
NFKB1 | GG + GA | 2.1 (1.8–3.6) | 0.022 |
rs4648090 G/A | AA | 5.1 (2.5–9.2) | |
TNFA | AA + AG | 7.1 (1.2–13.5) | 0.625 |
rs3093662 A/G | GG | 8.4 (8.4–8.4) | |
NOX4 | TT + TA | 6.8 (0.5–14.3) | 0.810 |
rs7939071 T/A | AA | 7.1 (0.6–17.8) | |
NOX4 | TT + TC | 8.9 (4.0–17.8) | 0.008 |
rs317155 T/C | CC | 2.5 (0.5–4.6) | |
NOX4 | CC + CG | 7.2 (0.5–17.8) | 0.613 |
rs7925520 C/G | GG | 5.7 (0.6–13.5) | |
NLRP3 | TT + TC | 14.1 (5.6–25.4) | 0.260 |
rs4612666 T/C | CC | 7.8 (0.4–15.1) | |
NLRP3 | GG + CC | 12.7 (0.4–25.4) | 0.742 |
rs10754558 G/C | CC | 16.5 (6.7–21.6) | |
NLRP3 | AA + AG | 13.9 (6.0–23.4) | 0.920 |
rs2027432 A/G | GG | 14.4 (0.4–25.4) | |
ASC | CC + CT | 4.1 (0.6–21.3) | 0.585 |
rs8056505 C/T | TT | 3.8 (3.8–3.8) | |
CASP1 | TT + TC | 5.7 (0.1–32.2) | 0.565 |
rs530537 T/C | CC | 8.0 (0.1–40.9) | |
CASP1 | AA + AG | 8.2 (0.1–40.9) | 0.355 |
rs2282659 A/G | GG | 0.1 (0.1–0.1) | |
IL1B | CC + CT | 13.2 (1.7–30.7) | 0.167 |
rs1143633 C/T | TT | 29.9 (29.9–29.9) | |
IL1B | AA + AG | 13.5 (1.7–30.7) | N/A |
rs3136558 A/G | GG | 0.0 (0.0–0.0) | |
IL1B | GG + GA | 13.5 (1.7–30.7) | N/A |
rs1143634 G/A | AA | 0.0 (0.0–0.0) | |
IL18 | GG + GT | 28.2 (12.2–43.8) | 0.157 |
rs1946518 G/T | TT | 16.3 (5.2–35.8) | |
IL18 | CC + CG | 27.2 (9.0–43.8) | 0.506 |
rs187238 C/G | GG | 23.6 (5.2–35.8) | |
GDSMD | CC + CT | 17.2 (5.0–24.5) | 0.524 |
rs1545536 C/T | TT | 14.3 (14.3–14.3) | |
GDSMD | AA + AG | 17.1 (5.0–24.5) | 0.834 |
rs2305492 A/G | GG | 18.0 (12.4–23.9) | |
CASP9 | CC + CT | 0.6 (0.2–2.4) | 0.801 |
rs4646012 C/T | TT | 0.7 (0.1–2.3) | |
CASP9 | GG + GA | 0.5 (0.1–0.9) | 0.198 |
rs4646063 G/A | AA | 0.7 (0.1–2.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, T.R.; Carstens, L.B.; Barbosa, L.V.; Collete, M.; de Araujo, N.; de Paula, C.B.V.; Azevedo, M.L.V.; de Almeida, A.C.; Nagashima, S.; de Noronha, L.; et al. Role of the Inflammasome Pathway According to the Expression of Proteins and Genetic Polymorphisms in COVID-19 Patients. Int. J. Mol. Sci. 2025, 26, 9993. https://doi.org/10.3390/ijms26209993
dos Santos TR, Carstens LB, Barbosa LV, Collete M, de Araujo N, de Paula CBV, Azevedo MLV, de Almeida AC, Nagashima S, de Noronha L, et al. Role of the Inflammasome Pathway According to the Expression of Proteins and Genetic Polymorphisms in COVID-19 Patients. International Journal of Molecular Sciences. 2025; 26(20):9993. https://doi.org/10.3390/ijms26209993
Chicago/Turabian Styledos Santos, Thiago Rodrigues, Lucas Baena Carstens, Leonardo Vinícius Barbosa, Mariana Collete, Natan de Araujo, Caroline Busatta Vaz de Paula, Marina Luise Viola Azevedo, Ana Clara de Almeida, Seigo Nagashima, Lucia de Noronha, and et al. 2025. "Role of the Inflammasome Pathway According to the Expression of Proteins and Genetic Polymorphisms in COVID-19 Patients" International Journal of Molecular Sciences 26, no. 20: 9993. https://doi.org/10.3390/ijms26209993
APA Styledos Santos, T. R., Carstens, L. B., Barbosa, L. V., Collete, M., de Araujo, N., de Paula, C. B. V., Azevedo, M. L. V., de Almeida, A. C., Nagashima, S., de Noronha, L., & Machado-Souza, C. (2025). Role of the Inflammasome Pathway According to the Expression of Proteins and Genetic Polymorphisms in COVID-19 Patients. International Journal of Molecular Sciences, 26(20), 9993. https://doi.org/10.3390/ijms26209993