Role of Mast Cells and Their Mediators in Chronic Kidney Diseases
Abstract
1. Introduction
2. Characteristics of Mast Cells in Kidneys
3. Kidney Inflammation and Fibrosis
4. Renal Allograft Rejection
5. Mast Cell Presence in Kidney Diseases
5.1. Diabetic Nephropathy (DN)
5.2. IgA Nephropathy
5.3. Hypertensive Nephropathy
5.4. Other Kidney-Related Diseases
6. Mast Cell Mediators
6.1. Tryptase
6.2. Other MC Mediators
7. Interventions
| Kidney Disease/Model | Animal Model (Species/Induction Method) | Identified Role of Mast Cells | Main Findings | Limitations | References |
|---|---|---|---|---|---|
| Cisplatin-induced acute kidney injury | Mouse (C57BL/6); cisplatin administration | MC-derived TNF-α promotes neutrophil recruitment and tubular necrosis | MC-deficient mice protected from injury; confirms TNF as key MC mediator | Reflects acute toxicity, not chronic fibrosis | [46] |
| Crescentic glomerulonephritis | Male WBB6/F1-KitW/KitWv (W/Wv) mice; Sheep anti-mouse-glomerular besement membrane (GBM) globulin serum injection | MCs amplify intrarenal chemokine production and adhesion molecule expression | MCs exacerbate glomerulonephritis, an association between mast cell numbers and interstitial inflammation was found | Short disease course; not fully representative of human GN | [179] |
| Experimental anti-GBM glomerulonephritis (W/Wv MC-deficient mice) | MC-deficient KitW/KitW-v mice, MC-reconstituted KitW/KitW-v mice, Kit+/+ control mice; immune complex–mediated glomerulonephritis | MCs exert protective effects by their ability to mediate remodeling and repair functions in nephrotoxic nephritis | Absence of MCs leads to dramatically increased glomerular damage | Model lacks full immune cell complexity | [44,180] |
| Ischemia–reperfusion injury (IRI) | Male Sprague Dawley (SD) rats; intraperitoneal injection of 3% pentobarbital sodium solution (30 mg/kg) | MCs activation increases inflammation and apoptosis | MCs stabilizers (luteolin, quercetin) reduce oxidative stress and fibrosis | Short-term model; no chronic progression | [154] |
| Lupus nephritis | Female mast cell-deficient WBB6F1/J-KitW/KitW-v (W/Wv) and control congenic WBB6F1/J (WT) mice, intraperitoneal administration of 0.5 mL of pristane or phosphate-buffered saline (PBS) | MCs contribute to organ-specific autoimmune inflammation | MCs are dispensable in the development of humoral autoimmunity | Complex systemic autoimmunity; multifactorial effects | [74] |
| CKD intervention models (MC inhibition) | Rat or mouse models treated with MC stabilizers | MC inhibition reduces fibrosis and improves renal function | MC stabilizers and flavonoids suppress MC degranulation and TGF-β signaling | Preclinical; dosage and bioavailability differ across models | [138,139] |
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| a1M | Alpha-1 Macroglobulin |
| ACEi | Angiotensin-converting enzyme inhibitors |
| ACR | Albumin–creatinine ratio |
| ARB | Angiotensin II Receptor Blockers |
| ATN | Acute tubular necrosis |
| CKD | Chronic kidney disease |
| CSF | Stem cell factor |
| EGCG | Εpigallocatechin Galate |
| EGF | Epidermal growth factor |
| eGFR | Estimated glomerular filtration rate |
| ESRD | End-stage renal disease |
| HαT | Hereditary alpha tryptasemia |
| HO-1 | Heme-oxygenase 1 |
| HPT | Hyperparathyroidism |
| IgAN | IgA nephropathy |
| IgE | Immunoglobulin E |
| IL-1 | Interleukin 1 |
| IL-1beta | Interleukin 1 beta |
| IL-6 | Interleukin 6 |
| IL-18 | Interleukin 18 |
| IL-33 | Interleukin 33 |
| KIM-1 | Kidney injury molecule 1 |
| LCN2 | Lipocalin 2 |
| MCs | Mast cells |
| MCADs | MC activation disorders |
| MCAS | Mast cell activation syndrome |
| MCP-1 | Monocyte chemoattractant protein 1 |
| MMP-9 | Metalloproteinase-9 |
| MRGPRX2 | Mass-related G-protein Coupled Receptor Member X2 |
| Nrf2 | Nuclear factor erythroid 2-related factor 2 |
| OPN | Osteopontin |
| PAR-2 | Protease-activated receptor 2 |
| SM | Systemic mastocytosis |
| SP | substance P |
| STAT3 | Signal transducer and activator of transcription 3 |
| TGF-β | Transforming growth factor beta |
| TH1 | T helper 1 |
| TLRs | Toll-like receptors |
| TNFalpha | Tumor necrosis factor alpha |
| TPSAB1 | Tryptase alpha/beta 1 |
| UUO | Unilateral ureteral obstruction |
| VEGF | Vascular endothelial growth factor |
References
- Hall, P.E.D.; Card, E.B. Uses of Complementary and Alternative Medicine for Perioperative and Other Patients. Nurs. Clin. N. Am. 2020, 55, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic Kidney Disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Tziastoudi, M.; Theoharides, T.C.; Nikolaou, E.; Efthymiadi, M.; Eleftheriadis, T.; Stefanidis, I. Key Genetic Components of Fibrosis in Diabetic Nephropathy: An Updated Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 15331. [Google Scholar] [CrossRef]
- Tziastoudi, M.; Pissas, G.; Raptis, G.; Cholevas, C.; Eleftheriadis, T.; Dounousi, E.; Stefanidis, I.; Theoharides, T.C. A Systematic Review and Meta-Analysis of Pharmacogenetic Studies in Patients with Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 4480. [Google Scholar] [CrossRef]
- Akin, C.; Arock, M.; Carter, M.C.; George, T.I.; Valent, P. Mastocytosis. Nat. Rev. Dis. Primers 2025, 11, 30. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Valent, P.; Akin, C. Mast Cells, Mastocytosis, and Related Disorders. N. Engl. J. Med. 2015, 373, 163–172. [Google Scholar] [CrossRef]
- Castells, M.; Giannetti, M.P.; Hamilton, M.J.; Novak, P.; Pozdnyakova, O.; Nicoloro-SantaBarbara, J.; Jennings, S.V.; Francomano, C.; Kim, B.; Glover, S.C.; et al. Mast Cell Activation Syndrome: Current Understanding and Research Needs. J. Allergy Clin. Immunol. 2024, 154, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, S.J. Letter to the Editor. The Benefit of Antibiotic Prophylaxis in the Pediatric Skull Fracture Population. J. Neurosurg. Pediatr. 2025, 36, 393. [Google Scholar] [CrossRef] [PubMed]
- Aitella, E.; Romano, C.; Ginaldi, L.; Cozzolino, D. Mast Cells at the Crossroads of Hypersensitivity Reactions and Neurogenic Inflammation. Int. J. Mol. Sci. 2025, 26, 927. [Google Scholar] [CrossRef]
- Sismanopoulos, N.; Delivanis, D.-A.; Alysandratos, K.-D.; Angelidou, A.; Therianou, A.; Kalogeromitros, D.; Theoharides, T.C. Mast Cells in Allergic and Inflammatory Diseases. Curr. Pharm. Des. 2012, 18, 2261–2277. [Google Scholar] [CrossRef]
- Galli, S.J.; Gaudenzio, N.; Tsai, M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu. Rev. Immunol. 2020, 38, 49–77. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Twahir, A.; Kempuraj, D. Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation. Ann. Allergy Asthma Immunol. 2024, 132, 440–454. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Tsilioni, I.; Ren, H. Recent Advances in Our Understanding of Mast Cell Activation-or Should It Be Mast Cell Mediator Disorders? Expert Rev. Clin. Immunol. 2019, 15, 639–656. [Google Scholar] [CrossRef] [PubMed]
- Molderings, G.J.; Afrin, L.B. A Survey of the Currently Known Mast Cell Mediators with Potential Relevance for Therapy of Mast Cell-Induced Symptoms. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 2881–2891. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Perlman, A.I.; Twahir, A.; Kempuraj, D. Mast Cell Activation: Beyond Histamine and Tryptase. Expert Rev. Clin. Immunol. 2023, 19, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.N.; St John, A.L. Mast Cell-Orchestrated Immunity to Pathogens. Nat. Rev. Immunol. 2010, 10, 440–452. [Google Scholar] [CrossRef]
- Sandig, H.; Bulfone-Paus, S. TLR Signaling in Mast Cells: Common and Unique Features. Front. Immunol. 2012, 3, 185. [Google Scholar] [CrossRef]
- Kolkhir, P.; Elieh-Ali-Komi, D.; Metz, M.; Siebenhaar, F.; Maurer, M. Understanding Human Mast Cells: Lesson from Therapies for Allergic and Non-Allergic Diseases. Nat. Rev. Immunol. 2022, 22, 294–308. [Google Scholar] [CrossRef]
- Bacci, S. The Evolution of Mast Cells across All Vertebrate Classes: The Mystery Continues. Histol. Histopathol. 2025, 18926. [Google Scholar] [CrossRef]
- Bischoff, S.C. Role of Mast Cells in Allergic and Non-Allergic Immune Responses: Comparison of Human and Murine Data. Nat. Rev. Immunol. 2007, 7, 93–104. [Google Scholar] [CrossRef]
- Olivera, A.; Beaven, M.A.; Metcalfe, D.D. Mast Cells Signal Their Importance in Health and Disease. J. Allergy Clin. Immunol. 2018, 142, 381–393. [Google Scholar] [CrossRef]
- Beghdadi, W.; Madjene, L.C.; Benhamou, M.; Charles, N.; Gautier, G.; Launay, P.; Blank, U. Mast Cells as Cellular Sensors in Inflammation and Immunity. Front. Immunol. 2011, 2, 37. [Google Scholar] [CrossRef]
- Basso, P.J.; Andrade-Oliveira, V.; Câmara, N.O.S. Targeting Immune Cell Metabolism in Kidney Diseases. Nat. Rev. Nephrol. 2021, 17, 465–480. [Google Scholar] [CrossRef]
- Deer, E.; Herrock, O.; Campbell, N.; Cornelius, D.; Fitzgerald, S.; Amaral, L.M.; LaMarca, B. The Role of Immune Cells and Mediators in Preeclampsia. Nat. Rev. Nephrol. 2023, 19, 257–270. [Google Scholar] [CrossRef]
- Peng, Z.; Dong, X.; Long, Y.; Li, Z.; Wang, Y.; Zhu, W.; Ding, B. Causality between Allergic Diseases and Kidney Diseases: A Two-Sample Mendelian Randomization Study. Front. Med. 2024, 11, 1347152. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hafez, M.; Shimada, M.; Lee, P.Y.; Johnson, R.J.; Garin, E.H. Idiopathic Nephrotic Syndrome and Atopy: Is There a Common Link? Am. J. Kidney Dis. 2009, 54, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.E.B.; Costa, R.S.; Ravinal, R.C.; dos Reis, M.A.; Dantas, M.; Coimbra, T.M. Mast Cells, TGF-β1 and α-SMA Expression in IgA Nephropathy. Dis. Markers 2008, 24, 181–190. [Google Scholar] [CrossRef]
- Kondo, S.; Kagami, S.; Kido, H.; Strutz, F.; Müller, G.A.; Kuroda, Y. Role of Mast Cell Tryptase in Renal Interstitial Fibrosis. J. Am. Soc. Nephrol. 2001, 12, 1668–1676. [Google Scholar] [CrossRef]
- Kurusu, A.; Suzuki, Y.; Horikoshi, S.; Shirato, I.; Tomino, Y. Relationship between Mast Cells in the Tubulointerstitium and Prognosis of Patients with IgA Nephropathy. Nephron 2001, 89, 391–397. [Google Scholar] [CrossRef] [PubMed]
- McPherson, E.A.; Luo, Z.; Brown, R.A.; LeBard, L.S.; Corless, C.C.; Speth, R.C.; Bagby, S.P. Chymase-like Angiotensin II-Generating Activity in End-Stage Human Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2004, 15, 493–500. [Google Scholar] [CrossRef]
- Pardo, J.; Diaz, L.; Errasti, P.; Idoate, M.; de Alava, E.; Sola, I.; Lozano, L.; Panizo, A. Mast Cells in Chronic Rejection of Human Renal Allografts. Virchows Arch. 2000, 437, 167–172. [Google Scholar] [CrossRef]
- Rüger, B.M.; Hasan, Q.; Greenhill, N.S.; Davis, P.F.; Dunbar, P.R.; Neale, T.J. Mast Cells and Type VIII Collagen in Human Diabetic Nephropathy. Diabetologia 1996, 39, 1215–1222. [Google Scholar] [CrossRef]
- Blank, U.; Essig, M.; Scandiuzzi, L.; Benhamou, M.; Kanamaru, Y. Mast Cells and Inflammatory Kidney Disease. Immunol. Rev. 2007, 217, 79–95. [Google Scholar] [CrossRef]
- Roberts, I.S.D.; Brenchley, P.E.C. Mast Cells: The Forgotten Cells of Renal Fibrosis. J. Clin. Pathol. 2000, 53, 858–862. [Google Scholar] [CrossRef]
- Wasse, H.; Naqvi, N.; Husain, A. Impact of Mast Cell Chymase on Renal Disease Progression. Curr. Hypertens. Rev. 2012, 8, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.E.; Kelly, D.J.; Cox, A.J.; Zhang, Y.; Gow, R.M.; Gilbert, R.E. Mast Cell Infiltration and Chemokine Expression in Progressive Renal Disease. Kidney Int. 2003, 64, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Ehara, T.; Shigematsu, H. Mast Cells in the Kidney. Nephrology 2003, 8, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Ueda, M.; Naruko, T.; Tanabe, S.; Han, Y.-S.; Ikura, Y.; Ogami, M.; Takai, S.; Miyazaki, M. Mast Cell Chymase Expression and Mast Cell Phenotypes in Human Rejected Kidneys. Kidney Int. 2001, 59, 1374–1381. [Google Scholar] [CrossRef]
- van der Elst, G.; Varol, H.; Hermans, M.; Baan, C.C.; Duong-van Huyen, J.P.; Hesselink, D.A.; Kramann, R.; Rabant, M.; Reinders, M.E.J.; von der Thüsen, J.H.; et al. The Mast Cell: A Janus in Kidney Transplants. Front. Immunol. 2023, 14, 1122409, Erratum in Front. Immunol. 2023, 14, 1183969. [Google Scholar] [CrossRef]
- Ishida, T.; Hyodo, Y.; Ishimura, T.; Takeda, M.; Hara, I.; Fujisawa, M. Mast Cell Numbers and Protease Expression Patterns in Biopsy Specimens Following Renal Transplantation from Living-Related Donors Predict Long-Term Graft Function. Clin. Transplant. 2005, 19, 817–824. [Google Scholar] [CrossRef]
- Vibhushan, S.; Bratti, M.; Montero-Hernández, J.E.; El Ghoneimi, A.; Benhamou, M.; Charles, N.; Daugas, E.; Blank, U. Mast Cell Chymase and Kidney Disease. Int. J. Mol. Sci. 2020, 22, 302. [Google Scholar] [CrossRef]
- Holdsworth, S.R.; Summers, S.A. Role of Mast Cells in Progressive Renal Diseases. J. Am. Soc. Nephrol. 2008, 19, 2254–2261. [Google Scholar] [CrossRef] [PubMed]
- Eller, K.; Wolf, D.; Huber, J.M.; Metz, M.; Mayer, G.; McKenzie, A.N.J.; Maurer, M.; Rosenkranz, A.R.; Wolf, A.M. IL-9 Production by Regulatory T Cells Recruits Mast Cells That Are Essential for Regulatory T Cell-Induced Immune Suppression. J. Immunol. 2011, 186, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Hochegger, K.; Siebenhaar, F.; Vielhauer, V.; Heininger, D.; Mayadas, T.N.; Mayer, G.; Maurer, M.; Rosenkranz, A.R. Role of Mast Cells in Experimental Anti-Glomerular Basement Membrane Glomerulonephritis. Eur. J. Immunol. 2005, 35, 3074–3082. [Google Scholar] [CrossRef] [PubMed]
- Beil, W.J.; Füreder, W.; Wiener, H.; Grossschmidt, K.; Maier, U.; Schedle, A.; Bankl, H.C.; Lechner, K.; Valent, P. Phenotypic and Functional Characterization of Mast Cells Derived from Renal Tumor Tissues. Exp. Hematol. 1998, 26, 158–169. [Google Scholar]
- Summers, S.A.; Chan, J.; Gan, P.-Y.; Dewage, L.; Nozaki, Y.; Steinmetz, O.M.; Nikolic-Paterson, D.J.; Kitching, A.R.; Holdsworth, S.R. Mast Cells Mediate Acute Kidney Injury through the Production of TNF. J. Am. Soc. Nephrol. 2011, 22, 2226–2236. [Google Scholar] [CrossRef]
- Grandaliano, G.; Pontrelli, P.; Cerullo, G.; Monno, R.; Ranieri, E.; Ursi, M.; Loverre, A.; Gesualdo, L.; Schena, F.P. Protease-Activated Receptor-2 Expression in IgA Nephropathy: A Potential Role in the Pathogenesis of Interstitial Fibrosis. J. Am. Soc. Nephrol. 2003, 14, 2072–2083. [Google Scholar] [CrossRef]
- Jesky, M.D.; Stringer, S.J.; Fenton, A.; Ng, K.P.; Yadav, P.; Ndumbo, M.; McCann, K.; Plant, T.; Dasgupta, I.; Harding, S.J.; et al. Serum Tryptase Concentration and Progression to End-Stage Renal Disease. Eur. J. Clin. Investig. 2016, 46, 460–474. [Google Scholar] [CrossRef]
- Welker, P.; Krämer, S.; Groneberg, D.A.; Neumayer, H.H.; Bachmann, S.; Amann, K.; Peters, H. Increased Mast Cell Number in Human Hypertensive Nephropathy. Am. J. Physiol. Renal. Physiol. 2008, 295, F1103–F1109. [Google Scholar] [CrossRef]
- Hiromura, K.; Kurosawa, M.; Yano, S.; Naruse, T. Tubulointerstitial Mast Cell Infiltration in Glomerulonephritis. Am. J. Kidney Dis. 1998, 32, 593–599. [Google Scholar] [CrossRef]
- Danilewicz, M.; Wagrowska-Danilewicz, M. Quantitative Analysis of the Interstitial Mast Cells in Idiopathic Mesangiocapillary Glomerulonephritis Type I. Nefrologia 2001, 21, 253–259. [Google Scholar] [PubMed]
- El-Koraie, A.F.; Baddour, N.M.; Adam, A.G.; El Kashef, E.H.; El Nahas, A.M. Role of Stem Cell Factor and Mast Cells in the Progression of Chronic Glomerulonephritides. Kidney Int. 2001, 60, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.M.; Yao, G.H.; Cheng, Z.; Wang, R.; Liu, Z.H. Pathogenic Role of Mast Cells in the Development of Diabetic Nephropathy: A Study of Patients at Different Stages of the Disease. Diabetologia 2012, 55, 801–811. [Google Scholar] [CrossRef]
- Meng, X.-M.; Wang, L.; Nikolic-Paterson, D.J.; Lan, H.-Y. Innate Immune Cells in Acute and Chronic Kidney Disease. Nat. Rev. Nephrol. 2025, 21, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Trautmann, A.; Krohne, G.; Bröcker, E.B.; Klein, C.E. Human Mast Cells Augment Fibroblast Proliferation by Heterotypic Cell-Cell Adhesion and Action of IL-4. J. Immunol. 1998, 160, 5053–5057. [Google Scholar] [CrossRef]
- Oellerich, M.; Sherwood, K.; Keown, P.; Schütz, E.; Beck, J.; Stegbauer, J.; Rump, L.C.; Walson, P.D. Liquid Biopsies: Donor-Derived Cell-Free DNA for the Detection of Kidney Allograft Injury. Nat. Rev. Nephrol. 2021, 17, 591–603. [Google Scholar] [CrossRef]
- Lajoie, G.; Nadasdy, T.; Laszik, Z.; Blick, K.E.; Silva, F.G. Mast Cells in Acute Cellular Rejection of Human Renal Allografts. Mod. Pathol. 1996, 9, 1118–1125. [Google Scholar]
- Colvin, R.B.; Dvorak, H.F. Letter: Basophils and Mast Cells in Renal Allograft Rejection. Lancet 1974, 1, 212–214. [Google Scholar] [CrossRef]
- Colvin, R.B.; Dvorak, A.M.; Dvorak, H.F. Mast Cells in the Cortical Tubular Epithelium and Interstitium in Human Renal Disease. Hum. Pathol. 1974, 5, 315–326. [Google Scholar] [CrossRef]
- Goto, E.; Honjo, S.; Yamashita, H.; Shomori, K.; Adachi, H.; Ito, H. Mast Cells in Human Allografted Kidney: Correlation with Interstitial Fibrosis. Clin. Transplant. 2002, 16 (Suppl. S8), 7–11. [Google Scholar] [CrossRef]
- Allison, S.J. Consequence of Microvascular Inflammation in Transplantation. Nat. Rev. Nephrol. 2025, 21, 7. [Google Scholar] [CrossRef]
- Mengel, M.; Reeve, J.; Bunnag, S.; Einecke, G.; Sis, B.; Mueller, T.; Kaplan, B.; Halloran, P.F. Molecular Correlates of Scarring in Kidney Transplants: The Emergence of Mast Cell Transcripts. Am. J. Transplant. 2009, 9, 169–178. [Google Scholar] [CrossRef]
- Rascio, F.; Pontrelli, P.; Netti, G.S.; Manno, E.; Infante, B.; Simone, S.; Castellano, G.; Ranieri, E.; Seveso, M.; Cozzi, E.; et al. IgE-Mediated Immune Response and Antibody-Mediated Rejection. Clin. J. Am. Soc. Nephrol. 2020, 15, 1474–1483. [Google Scholar] [CrossRef]
- Wang, S.; Hu, D.; Li, Y.-Q.; Lei, Q.; Liu, L.; He, X.; Han, M.; Pei, G.; Zeng, R.; Xu, G. High Renal Mast Cell Density Is Associated with Poor Prognosis in Patients with Immunoglobulin A Nephropathy. Am. J. Nephrol. 2023, 54, 106–116. [Google Scholar] [CrossRef]
- Ferrario, C.M.; Groban, L.; Wang, H.; Cheng, C.P.; VonCannon, J.L.; Wright, K.N.; Sun, X.; Ahmad, S. The Angiotensin-(1-12)/Chymase Axis as an Alternate Component of the Tissue Renin Angiotensin System. Mol. Cell. Endocrinol. 2021, 529, 111119. [Google Scholar] [CrossRef]
- Swarna, S.S.; Aziz, K.; Zubair, T.; Qadir, N.; Khan, M. Pruritus Associated with Chronic Kidney Disease: A Comprehensive Literature Review. Cureus 2019, 11, e5256. [Google Scholar] [CrossRef]
- Matsumoto, M.; Ichimaru, K.; Horie, A. Pruritus and Mast Cell Proliferation of the Skin in End Stage Renal Failure. Clin. Nephrol. 1985, 23, 285–288. [Google Scholar]
- Leong, S.O.; Tan, C.C.; Lye, W.C.; Lee, E.J.; Chan, H.L. Dermal Mast Cell Density and Pruritus in End-Stage Renal Failure. Ann. Acad. Med. Singap. 1994, 23, 327–329. [Google Scholar]
- Turner, R.T.; Iwaniec, U.T.; Marley, K.; Sibonga, J.D. The Role of Mast Cells in Parathyroid Bone Disease. J. Bone Miner. Res. 2010, 25, 1637–1649. [Google Scholar] [CrossRef]
- Tsakalos, N.D.; Theoharides, T.C.; Kops, S.K.; Askenase, P.W. Induction of Mast Cell Secretion by Parathormone. Biochem. Pharmacol. 1983, 32, 355–360. [Google Scholar] [CrossRef]
- Simpson, K.M.; Dileepan, K.N.; Stechschulte, D.J. Potentiation of Antigen-Induced Mast Cell Activation by 1-34 Bovine Parathyroid Hormone. Proc. Soc. Exp. Biol. Med. 1991, 197, 44–48. [Google Scholar] [CrossRef]
- Blair, H.C.; Julian, B.A.; Cao, X.; Jordan, S.E.; Dong, S.S. Parathyroid Hormone-Regulated Production of Stem Cell Factor in Human Osteoblasts and Osteoblast-like Cells. Biochem. Biophys. Res. Commun. 1999, 255, 778–784. [Google Scholar] [CrossRef]
- Tóth, T.; Tóth-Jakatics, R.; Jimi, S.; Takebayashi, S. Increased Density of Interstitial Mast Cells in Amyloid A Renal Amyloidosis. Mod. Pathol. 2000, 13, 1020–1028. [Google Scholar] [CrossRef]
- Lin, L.; Gerth, A.J.; Peng, S.L. Susceptibility of Mast Cell-Deficient W/Wv Mice to Pristane-Induced Experimental Lupus Nephritis. Immunol. Lett. 2004, 91, 93–97. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Musiał, J.; Soja, J.; Kuźniewski, M.; Gala-Błądzińska, A.; Białas, M.; Okoń, K. Renal Interstitial Mast Cell Count Is Significantly Higher in Membranoproliferative Glomerulonephritis than in Class IV Lupus Nephritis. Pol. J. Pathol. 2015, 66, 149–153. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Kosalka, J.; Soja, J.; Kuzniewski, M.; Musial, J.; Okon, K. Renal Interstitial Mast Cell Counts Differ across Classes of Proliferative Lupus Nephritis. Folia Histochem. Cytobiol. 2014, 52, 218–224. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; He, J.; Li, Y.; Feng, Y. Advances in the Diagnosis of Early Biomarkers for Acute Kidney Injury: A Literature Review. BMC Nephrol. 2025, 26, 115. [Google Scholar] [CrossRef]
- Owens, E.; Tan, K.-S.; Ellis, R.; Del Vecchio, S.; Humphries, T.; Lennan, E.; Vesey, D.; Healy, H.; Hoy, W.; Gobe, G. Development of a Biomarker Panel to Distinguish Risk of Progressive Chronic Kidney Disease. Biomedicines 2020, 8, 606. [Google Scholar] [CrossRef]
- Schwartz, L.B. Diagnostic Value of Tryptase in Anaphylaxis and Mastocytosis. Immunol. Allergy Clin. N. Am. 2006, 26, 451–463. [Google Scholar] [CrossRef]
- Summers, S.A.; Gan, P.-Y.; Dewage, L.; Ma, F.T.; Ooi, J.D.; O’Sullivan, K.M.; Nikolic-Paterson, D.J.; Kitching, A.R.; Holdsworth, S.R. Mast Cell Activation and Degranulation Promotes Renal Fibrosis in Experimental Unilateral Ureteric Obstruction. Kidney Int. 2012, 82, 676–685. [Google Scholar] [CrossRef]
- Harvima, I.T.; Karkola, K.; Harvima, R.J.; Naukkarinen, A.; Neittaanmäki, H.; Horsmanheimo, M.; Fräki, J.E. Biochemical and Histochemical Evaluation of Tryptase in Various Human Tissues. Arch. Dermatol. Res. 1989, 281, 231–237. [Google Scholar] [CrossRef]
- Schwartz, L.B.; Sakai, K.; Bradford, T.R.; Ren, S.; Zweiman, B.; Worobec, A.S.; Metcalfe, D.D. The Alpha Form of Human Tryptase Is the Predominant Type Present in Blood at Baseline in Normal Subjects and Is Elevated in Those with Systemic Mastocytosis. J. Clin. Investig. 1995, 96, 2702–2710. [Google Scholar] [CrossRef]
- Vitte, J. Human Mast Cell Tryptase in Biology and Medicine. Mol. Immunol. 2015, 63, 18–24. [Google Scholar] [CrossRef]
- Schwartz, L.B.; Min, H.-K.; Ren, S.; Xia, H.-Z.; Hu, J.; Zhao, W.; Moxley, G.; Fukuoka, Y. Tryptase Precursors Are Preferentially and Spontaneously Released, Whereas Mature Tryptase Is Retained by HMC-1 Cells, Mono-Mac-6 Cells, and Human Skin-Derived Mast Cells. J. Immunol. 2003, 170, 5667–5673. [Google Scholar] [CrossRef]
- Déry, O.; Corvera, C.U.; Steinhoff, M.; Bunnett, N.W. Proteinase-Activated Receptors: Novel Mechanisms of Signaling by Serine Proteases. Am. J. Physiol. 1998, 274, C1429–C1452. [Google Scholar] [CrossRef]
- Xiong, J.; Zhu, Z.; Liu, J.; Wang, Y.; Li, Z. Role of Protease Activated Receptor-2 Expression in Renal Interstitial Fibrosis Model in Mice. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2005, 25, 523–526. [Google Scholar] [CrossRef]
- Bertog, M.; Letz, B.; Kong, W.; Steinhoff, M.; Higgins, M.A.; Bielfeld-Ackermann, A.; Frömter, E.; Bunnett, N.W.; Korbmacher, C. Basolateral Proteinase-Activated Receptor (PAR-2) Induces Chloride Secretion in M-1 Mouse Renal Cortical Collecting Duct Cells. J. Physiol. 1999, 521 Pt 1, 3–17. [Google Scholar] [CrossRef]
- Borensztajn, K.; Stiekema, J.; Nijmeijer, S.; Reitsma, P.H.; Peppelenbosch, M.P.; Spek, C.A. Factor Xa Stimulates Proinflammatory and Profibrotic Responses in Fibroblasts via Protease-Activated Receptor-2 Activation. Am. J. Pathol. 2008, 172, 309–320. [Google Scholar] [CrossRef]
- D’Andrea, M.R.; Derian, C.K.; Santulli, R.J.; Andrade-Gordon, P. Differential Expression of Protease-Activated Receptors-1 and -2 in Stromal Fibroblasts of Normal, Benign, and Malignant Human Tissues. Am. J. Pathol. 2001, 158, 2031–2041. [Google Scholar] [CrossRef]
- Tanaka, M.; Arai, H.; Liu, N.; Nogaki, F.; Nomura, K.; Kasuno, K.; Oida, E.; Kita, T.; Ono, T. Role of Coagulation Factor Xa and Protease-Activated Receptor 2 in Human Mesangial Cell Proliferation. Kidney Int. 2005, 67, 2123–2133. [Google Scholar] [CrossRef]
- Vesey, D.A.; Suen, J.Y.; Seow, V.; Lohman, R.-J.; Liu, L.; Gobe, G.C.; Johnson, D.W.; Fairlie, D.P. PAR2-Induced Inflammatory Responses in Human Kidney Tubular Epithelial Cells. Am. J. Physiol. Renal. Physiol. 2013, 304, F737–F750. [Google Scholar] [CrossRef]
- Owens, E.P.; Vesey, D.A.; Kassianos, A.J.; Healy, H.; Hoy, W.E.; Gobe, G.C. Biomarkers and the Role of Mast Cells as Facilitators of Inflammation and Fibrosis in Chronic Kidney Disease. Transl. Androl. Urol. 2019, 8, S175–S183. [Google Scholar] [CrossRef]
- Meng, X.-M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Cairns, J.A.; Walls, A.F. Mast Cell Tryptase Stimulates the Synthesis of Type I Collagen in Human Lung Fibroblasts. J. Clin. Investig. 1997, 99, 1313–1321. [Google Scholar] [CrossRef]
- Gruber, B.L.; Kew, R.R.; Jelaska, A.; Marchese, M.J.; Garlick, J.; Ren, S.; Schwartz, L.B.; Korn, J.H. Human Mast Cells Activate Fibroblasts: Tryptase Is a Fibrogenic Factor Stimulating Collagen Messenger Ribonucleic Acid Synthesis and Fibroblast Chemotaxis. J. Immunol. 1997, 158, 2310–2317. [Google Scholar] [CrossRef]
- Blair, R.J.; Meng, H.; Marchese, M.J.; Ren, S.; Schwartz, L.B.; Tonnesen, M.G.; Gruber, B.L. Human Mast Cells Stimulate Vascular Tube Formation. Tryptase Is a Novel, Potent Angiogenic Factor. J. Clin. Investig. 1997, 99, 2691–2700. [Google Scholar] [CrossRef]
- Cairns, J.A.; Walls, A.F. Mast Cell Tryptase Is a Mitogen for Epithelial Cells. Stimulation of IL-8 Production and Intercellular Adhesion Molecule-1 Expression. J. Immunol. 1996, 156, 275–283. [Google Scholar] [CrossRef]
- Beyens, M.; Toscano, A.; Ebo, D.; Gülen, T.; Sabato, V. Diagnostic Significance of Tryptase for Suspected Mast Cell Disorders. Diagnostics 2023, 13, 3662. [Google Scholar] [CrossRef]
- Valent, P.; Bonadonna, P.; Hartmann, K.; Broesby-Olsen, S.; Brockow, K.; Butterfield, J.H.; Triggiani, M.; Lyons, J.J.; Oude Elberink, J.N.G.; Arock, M.; et al. Why the 20% + 2 Tryptase Formula Is a Diagnostic Gold Standard for Severe Systemic Mast Cell Activation and Mast Cell Activation Syndrome. Int. Arch. Allergy Immunol. 2019, 180, 44–51. [Google Scholar] [CrossRef]
- Crupi, F.; Caroprese, J.; Mannelli, F. Defining “Normal” Basal Serum Tryptase Levels: A Context-Dependent Approach to Improve Diagnostics in Systemic Mastocytosis. Front. Allergy 2025, 6, 1592001. [Google Scholar] [CrossRef]
- Valent, P.; Hoermann, G.; Bonadonna, P.; Hartmann, K.; Sperr, W.R.; Broesby-Olsen, S.; Brockow, K.; Niedoszytko, M.; Hermine, O.; Chantran, Y.; et al. The Normal Range of Baseline Tryptase Should Be 1 to 15 Ng/mL and Covers Healthy Individuals With HαT. J. Allergy Clin. Immunol. Pract. 2023, 11, 3010–3020. [Google Scholar] [CrossRef]
- Simon, M.R.; Jan, M.; Yee, J.; Nori, U.S.; Hu, J.; Akin, C.; Schwartz, L.B. Tryptase Is Not Cleared by the Kidneys into the Urine. Int. Arch. Allergy Immunol. 2010, 152, 28–31. [Google Scholar] [CrossRef]
- Caughey, G.H. Mast Cell Tryptases and Chymases in Inflammation and Host Defense. Immunol. Rev. 2007, 217, 141–154. [Google Scholar] [CrossRef]
- Lyons, J.J. Inherited and Acquired Determinants of Serum Tryptase Levels in Humans. Ann. Allergy Asthma Immunol. 2021, 127, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Pongdee, T.; Castells, M. Elevated Tryptase: Conditions and Pitfalls. J. Allergy Clin. Immunol. Pract. 2022, 10, 2436–2437. [Google Scholar] [CrossRef] [PubMed]
- Waters, A.M.; Park, H.J.; Weskamp, A.L.; Mateja, A.; Kachur, M.E.; Lyons, J.J.; Rosen, B.J.; Boggs, N.A. Elevated Basal Serum Tryptase: Disease Distribution and Variability in a Regional Health System. J. Allergy Clin. Immunol. Pract. 2022, 10, 2424–2435.e5. [Google Scholar] [CrossRef]
- Dugas-Breit, S.; Schöpf, P.; Dugas, M.; Schiffl, H.; Ruëff, F.; Przybilla, B. Baseline Serum Levels of Mast Cell Tryptase Are Raised in Hemodialysis Patients and Associated with Severity of Pruritus. J. Dtsch. Dermatol. Ges. 2005, 3, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Sirvent, A.E.; González, C.; Enríquez, R.; Fernández, J.; Millán, I.; Barber, X.; Amorós, F. Serum Tryptase Levels and Markers of Renal Dysfunction in a Population with Chronic Kidney Disease. J. Nephrol. 2010, 23, 282–290. [Google Scholar]
- Scandiuzzi, L.; Beghdadi, W.; Daugas, E.; Abrink, M.; Tiwari, N.; Brochetta, C.; Claver, J.; Arouche, N.; Zang, X.; Pretolani, M.; et al. Mouse Mast Cell Protease-4 Deteriorates Renal Function by Contributing to Inflammation and Fibrosis in Immune Complex-Mediated Glomerulonephritis. J. Immunol. 2010, 185, 624–633. [Google Scholar] [CrossRef]
- Moledina, D.G.; Wilson, F.P.; Pober, J.S.; Perazella, M.A.; Singh, N.; Luciano, R.L.; Obeid, W.; Lin, H.; Kuperman, M.; Moeckel, G.W.; et al. Urine TNF-α and IL-9 for Clinical Diagnosis of Acute Interstitial Nephritis. JCI Insight 2019, 4, e127456. [Google Scholar] [CrossRef]
- Su, H.; Lei, C.-T.; Zhang, C. Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front. Immunol. 2017, 8, 405. [Google Scholar] [CrossRef]
- Desai, A.; Jung, M.-Y.; Olivera, A.; Gilfillan, A.M.; Prussin, C.; Kirshenbaum, A.S.; Beaven, M.A.; Metcalfe, D.D. IL-6 Promotes an Increase in Human Mast Cell Numbers and Reactivity through Suppression of Suppressor of Cytokine Signaling 3. J. Allergy Clin. Immunol. 2016, 137, 1863–1871.e6. [Google Scholar] [CrossRef]
- Hirooka, Y.; Nozaki, Y. Interleukin-18 in Inflammatory Kidney Disease. Front. Med. 2021, 8, 639103. [Google Scholar] [CrossRef] [PubMed]
- Matsui, F.; Rhee, A.; Hile, K.L.; Zhang, H.; Meldrum, K.K. IL-18 Induces Profibrotic Renal Tubular Cell Injury via STAT3 Activation. Am. J. Physiol. Renal. Physiol. 2013, 305, F1014–F1021. [Google Scholar] [CrossRef] [PubMed]
- Petra, A.I.; Tsilioni, I.; Taracanova, A.; Katsarou-Katsari, A.; Theoharides, T.C. Interleukin 33 and Interleukin 4 Regulate Interleukin 31 Gene Expression and Secretion from Human Laboratory of Allergic Diseases 2 Mast Cells Stimulated by Substance P and/or Immunoglobulin E. Allergy Asthma Proc. 2018, 39, 153–160. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Li, J. Effect of the Combination of Hemodialysis and Hemoperfusion on Clearing Interleukin-31: A Prospective, Randomized Crossover Trial in Patients under Maintenance Hemodialysis. Iran. J. Kidney Dis. 2025, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oweis, A.O.; Al-Qarqaz, F.; Bodoor, K.; Heis, L.; Alfaqih, M.A.; Almomani, R.; Obeidat, M.A.; Alshelleh, S.A. Elevated Interleukin 31 Serum Levels in Hemodialysis Patients Are Associated with Uremic Pruritus. Cytokine 2021, 138, 155369. [Google Scholar] [CrossRef]
- Świerczyńska, K.; Krajewski, P.K.; Nowicka-Suszko, D.; Białynicki-Birula, R.; Krajewska, M.; Szepietowski, J.C. The Serum Level of IL-31 in Patients with Chronic Kidney Disease-Associated Pruritus: What Can We Expect? Toxins 2022, 14, 197. [Google Scholar] [CrossRef]
- Saluja, R.; Khan, M.; Church, M.K.; Maurer, M. The Role of IL-33 and Mast Cells in Allergy and Inflammation. Clin. Transl. Allergy 2015, 5, 33. [Google Scholar] [CrossRef]
- Saluja, R.; Ketelaar, M.E.; Hawro, T.; Church, M.K.; Maurer, M.; Nawijn, M.C. The Role of the IL-33/IL-1RL1 Axis in Mast Cell and Basophil Activation in Allergic Disorders. Mol. Immunol. 2015, 63, 80–85. [Google Scholar] [CrossRef]
- Ma, Z.; Li, D.; Zhan, S.; Sun, F.; Xu, C.; Wang, Y.; Yang, X. Analysis of Risk Factors of Metabolic Syndrome Using a Structural Equation Model: A Cohort Study. Endocrine 2019, 63, 52–61. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Petra, A.I.; Taracanova, A.; Panagiotidou, S.; Conti, P. Targeting IL-33 in Autoimmunity and Inflammation. J. Pharmacol. Exp. Ther. 2015, 354, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Taracanova, A.; Alevizos, M.; Karagkouni, A.; Weng, Z.; Norwitz, E.; Conti, P.; Leeman, S.E.; Theoharides, T.C. SP and IL-33 Together Markedly Enhance TNF Synthesis and Secretion from Human Mast Cells Mediated by the Interaction of Their Receptors. Proc. Natl. Acad. Sci. USA 2017, 114, E4002–E4009. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Huang, A.; Huang, X.; Jin, Q.; Gu, H.; Liu, L.; Yu, B.; Zheng, L.; Chen, W.; Guo, Z. IL-33, a Neutrophil Extracellular Trap-Related Gene Involved in the Progression of Diabetic Kidney Disease. Inflamm. Res. 2025, 74, 15. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, P.; Duan, L.; Yang, L.; Wang, J. IL-33 and Kidney Disease (Review). Mol. Med. Rep. 2016, 13, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Gungor, O.; Unal, H.U.; Guclu, A.; Gezer, M.; Eyileten, T.; Guzel, F.B.; Altunoren, O.; Erken, E.; Oguz, Y.; Kocyigit, I.; et al. IL-33 and ST2 Levels in Chronic Kidney Disease: Associations with Inflammation, Vascular Abnormalities, Cardiovascular Events, and Survival. PLoS ONE 2017, 12, e0178939. [Google Scholar] [CrossRef]
- Sinha, S.K.; Mellody, M.; Carpio, M.B.; Damoiseaux, R.; Nicholas, S.B. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023, 11, 1356. [Google Scholar] [CrossRef]
- Wang, L.; Niu, X. Immunoregulatory Roles of Osteopontin in Diseases. Nutrients 2024, 16, 312. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, A.; Matsue, H.; Matsushima, H.; Aoki, R.; Nakamura, Y.; Kambe, N.; Kon, S.; Uede, T.; Shimada, S. Osteopontin Is Produced by Mast Cells and Affects IgE-Mediated Degranulation and Migration of Mast Cells. Eur. J. Immunol. 2008, 38, 489–499. [Google Scholar] [CrossRef]
- Bulfone-Paus, S.; Paus, R. Osteopontin as a New Player in Mast Cell Biology. Eur. J. Immunol. 2008, 38, 338–341. [Google Scholar] [CrossRef]
- Jia, Q.; Huang, Z.; Wang, G.; Sun, X.; Wu, Y.; Yang, B.; Yang, T.; Liu, J.; Li, P.; Li, J. Osteopontin: An Important Protein in the Formation of Kidney Stones. Front. Pharmacol. 2022, 13, 1036423. [Google Scholar] [CrossRef]
- Duque, E.J.; Giachelli, C.; Moysés, R.M.A. The Role of Osteopontin in Chronic Kidney Disease-Mineral Bone Disorder. Curr. Opin. Nephrol. Hypertens. 2025, 34, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-Y.; Hsu, B.-G.; Wang, C.-H.; Tsai, J.-P. Serum Osteopontin Level Is Independently Associated with Arterial Stiffness in Patients on Hemodialysis. Tzu Chi Med. J. 2025, 37, 204–210. [Google Scholar] [CrossRef]
- Conti, P.; Boucher, W.; Letourneau, R.; Feliciani, C.; Reale, M.; Barbacane, R.C.; Vlagopoulos, P.; Bruneau, G.; Thibault, J.; Theoharides, T.C. Monocyte Chemotactic Protein-1 Provokes Mast Cell Aggregation and [3H]5HT Release. Immunology 1995, 86, 434–440. [Google Scholar] [PubMed]
- Castellani, M.L.; De Lutiis, M.A.; Toniato, E.; Conti, F.; Felaco, P.; Fulcheri, M.; Theoharides, T.C.; Caraffa, A.; Antinolfi, P.; Conti, P.; et al. Impact of RANTES, MCP-1 and IL-8 in Mast Cells. J. Biol. Regul. Homeost. Agents 2010, 24, 1–6. [Google Scholar]
- Baker, M.; Perazella, M.A. NSAIDs in CKD: Are They Safe? Am. J. Kidney Dis. 2020, 76, 546–557. [Google Scholar] [CrossRef]
- Drożdżal, S.; Lechowicz, K.; Szostak, B.; Rosik, J.; Kotfis, K.; Machoy-Mokrzyńska, A.; Białecka, M.; Ciechanowski, K.; Gawrońska-Szklarz, B. Kidney Damage from Nonsteroidal Anti-Inflammatory Drugs-Myth or Truth? Review of Selected Literature. Pharmacol. Res. Perspect. 2021, 9, e00817. [Google Scholar] [CrossRef]
- Kazama, I. Suppressing Exocytosis of Mast Cells and Its Therapeutic Efficacy for Peritoneal Fibrosis in Rats with Chronic Kidney Failure: SA-PO1202. J. Am. Soc. Nephrol. 2024, 35. [Google Scholar] [CrossRef]
- Kure, S.; Toba, H.; Jin, D.; Mima, A.; Takai, S. Chymase Inhibition Attenuates Kidney Fibrosis in a Chronic Mouse Model of Renal Ischemia-Reperfusion Injury. Int. J. Mol. Sci. 2025, 26, 3913. [Google Scholar] [CrossRef]
- Middleton, E.J.; Kandaswami, C.; Theoharides, T.C. The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, S.R.; Gan, P.-Y.; Kitching, A.R. Biologics for the Treatment of Autoimmune Renal Diseases. Nat. Rev. Nephrol. 2016, 12, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Moraes Carlesso, R.; Cappellari, Y.L.R.; Boeff, D.D.; da Costa Pereira, A.; Schmitt Rusch, E.; de Souza Claudino, T.; Ritter, M.R.; Konrath, E.L. Nephroprotective Plant Species Used in Brazilian Traditional Medicine for Renal Diseases: Ethnomedical, Pharmacological, and Chemical Insights. Plants 2025, 14, 648. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Valko, R.; Liska, J.; Nepovimova, E.; Kuca, K.; Valko, M. Flavonoids and Their Role in Oxidative Stress, Inflammation, and Human Diseases. Chem. Biol. Interact. 2025, 413, 111489. [Google Scholar] [CrossRef]
- Zhao, Q.; Jin, M.; Zhao, Q.; Wang, Z.; Zhao, C.; Xue, X.; Qiao, X.; Qu, P.; Han, D.; Tao, R. Natural Products in Traditional Chinese Medicine for Renal Fibrosis: A Comprehensive Review. Front. Pharmacol. 2025, 16, 1560567. [Google Scholar] [CrossRef]
- Bawazeer, M.A.; Theoharides, T.C. IL-33 Stimulates Human Mast Cell Release of CCL5 and CCL2 via MAPK and NF-κB, Inhibited by Methoxyluteolin. Eur. J. Pharmacol. 2019, 865, 172760. [Google Scholar] [CrossRef]
- Weng, Z.; Patel, A.B.; Panagiotidou, S.; Theoharides, T.C. The Novel Flavone Tetramethoxyluteolin Is a Potent Inhibitor of Human Mast Cells. J. Allergy Clin. Immunol. 2015, 135, 1044–1052.e5. [Google Scholar] [CrossRef]
- Patel, A.B.; Theoharides, T.C. Methoxyluteolin Inhibits Neuropeptide-Stimulated Proinflammatory Mediator Release via mTOR Activation from Human Mast Cells. J. Pharmacol. Exp. Ther. 2017, 361, 462–471. [Google Scholar] [CrossRef]
- Taracanova, A.; Tsilioni, I.; Conti, P.; Norwitz, E.R.; Leeman, S.E.; Theoharides, T.C. Substance P and IL-33 Administered Together Stimulate a Marked Secretion of IL-1β from Human Mast Cells, Inhibited by Methoxyluteolin. Proc. Natl. Acad. Sci. USA 2018, 115, E9381–E9390. [Google Scholar] [CrossRef]
- Theoharides, T.C.; Tsilioni, I. Tetramethoxyluteolin for the Treatment of Neurodegenerative Diseases. Curr. Top. Med. Chem. 2018, 18, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Stewart, J.M.; Tsilioni, I. Tolerability and Benefit of a Tetramethoxyluteolin-Containing Skin Lotion. Int. J. Immunopathol. Pharmacol. 2017, 30, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C. Luteolin Supplements: All That Glitters Is Not Gold. Biofactors 2021, 47, 242–244. [Google Scholar] [CrossRef]
- Tsilioni, I.; Theoharides, T. Luteolin Is More Potent than Cromolyn in Their Ability to Inhibit Mediator Release from Cultured Human Mast Cells. Int. Arch. Allergy Immunol. 2024, 185, 803–809. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, Z. Dietary Intake of Luteolin Is Negatively Associated with All-Cause and Cardiovascular Mortality in Chronic Kidney Disease Patients. BMC Public Health 2024, 24, 2044. [Google Scholar] [CrossRef]
- Wei, J.-P.; Zhao, B.; Jiang, Z.-J.; Wang, P.-Y.; Xu, Y.; Ding, N.; Hu, Y.-Y.; Wang, W.; Jiang, B.-T. Luteolin Mitigates Renal Ischemia-Reperfusion Injury via Anti-Inflammatory, Anti-Apoptotic, and Nrf2/HO-1-Mediated Antioxidant Effects. Eur. J. Pharmacol. 2025, 999, 177676. [Google Scholar] [CrossRef]
- Josa, E.; Barril, G.; Ruperto, M. Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review. Nutrients 2024, 16, 4321. [Google Scholar] [CrossRef]
- Cao, Y.-L.; Lin, J.-H.; Hammes, H.-P.; Zhang, C. Flavonoids in Treatment of Chronic Kidney Disease. Molecules 2022, 27, 2365. [Google Scholar] [CrossRef]
- Chen, Y.-Q.; Chen, H.-Y.; Tang, Q.-Q.; Li, Y.-F.; Liu, X.-S.; Lu, F.-H.; Gu, Y.-Y. Protective Effect of Quercetin on Kidney Diseases: From Chemistry to Herbal Medicines. Front. Pharmacol. 2022, 13, 968226. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, J.; Sui, J.; Jiang, L.; Cong, Y.; Ren, G. Quercetin Is Able to Alleviate TGF-β-Induced Fibrosis in Renal Tubular Epithelial Cells by Suppressing miR-21. Exp. Ther. Med. 2018, 16, 2442–2448. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, E.; Yang, J. Quercetin Suppresses Glomerulosclerosis and TGF-β Signaling in a Rat Model. Mol. Med. Rep. 2019, 19, 4589–4596. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.; Althagafy, H.S.; El-Maksoud, M.S.A.; Ibrahim, I.M.; Hassanein, E.H.M. Flavonoids in Combating Renal Fibrosis: Targeting NF-κB Signal and In Silico Support. Chem. Biodivers 2025, 22, e202403022. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wei, R.; Huang, M.; Chen, J.; Li, P.; Ma, Y.; Chen, X. Luteolin Can Ameliorate Renal Interstitial Fibrosis-Induced Renal Anaemia through the SIRT1/FOXO3 Pathway. Food Funct. 2022, 13, 11896–11914. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Suzuki, Y.; Ra, C. Epigallocatechin-3-Gallate Inhibits Mast Cell Degranulation, Leukotriene C4 Secretion, and Calcium Influx via Mitochondrial Calcium Dysfunction. Free Radic. Biol. Med. 2010, 49, 632–640. [Google Scholar] [CrossRef]
- Li, X.; Xu, R.; Zhang, D.; Cai, J.; Zhou, H.; Song, T.; Wang, X.; Kong, Q.; Li, L.; Liu, Z.; et al. Baicalin: A Potential Therapeutic Agent for Acute Kidney Injury and Renal Fibrosis. Front. Pharmacol. 2025, 16, 1511083. [Google Scholar] [CrossRef]
- Vagopoulou, A.; Theofilis, P.; Karasavvidou, D.; Haddad, N.; Makridis, D.; Tzimikas, S.; Kalaitzidis, R. Pilot Study on the Effect of Flavonoids on Arterial Stiffness and Oxidative Stress in Chronic Kidney Disease. World J. Nephrol. 2024, 13, 95262. [Google Scholar] [CrossRef] [PubMed]
- Taliou, A.; Zintzaras, E.; Lykouras, L.; Francis, K. An Open-Label Pilot Study of a Formulation Containing the Anti-Inflammatory Flavonoid Luteolin and Its Effects on Behavior in Children with Autism Spectrum Disorders. Clin. Ther. 2013, 35, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef]
- Hussain, M.S.; Gupta, G.; Goyal, A.; Thapa, R.; Almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Fuloria, S.; Meenakshi, D.U.; Jakhmola, V.; et al. From Nature to Therapy: Luteolin’s Potential as an Immune System Modulator in Inflammatory Disorders. J. Biochem. Mol. Toxicol. 2023, 37, e23482. [Google Scholar] [CrossRef]
- Devi, V.; Deswal, G.; Dass, R.; Chopra, B.; Kriplani, P.; Grewal, A.S.; Guarve, K.; Dhingra, A.K. Therapeutic Potential and Clinical Effectiveness of Quercetin: A Dietary Supplement. Recent Adv. Food. Nutr. Agric. 2024, 15, 13–32. [Google Scholar] [CrossRef]
- Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.F.; Flamm, G.W.; Williams, G.M.; Lines, T.C. A Critical Review of the Data Related to the Safety of Quercetin and Lack of Evidence of in Vivo Toxicity, Including Lack of Genotoxic/Carcinogenic Properties. Food Chem. Toxicol. 2007, 45, 2179–2205. [Google Scholar] [CrossRef]
- Tsilioni, I.; Taliou, A.; Francis, K.; Theoharides, T.C. Children with Autism Spectrum Disorders, Who Improved with a Luteolin-Containing Dietary Formulation, Show Reduced Serum Levels of TNF and IL-6. Transl. Psychiatry 2015, 5, e647. [Google Scholar] [CrossRef]
- Zhou, Z.; Yao, X. Dietary Niacin Intake and Mortality among Chronic Kidney Disease Patients. Front. Nutr. 2024, 11, 1435297. [Google Scholar] [CrossRef]
- Chen, H.; He, X.; Fan, J.; Mi, Y.; Li, F. The Relationship between Dietary Niacin Intake and the Incidence of All-Cause and Cardiovascular Mortality among Chronic Kidney Disease Patients. Am. J. Med. Sci. 2025, 369, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Peng, J.; Gui, Z.; Jin, J.; Meng, J. Association of Dietary Niacin Intake with All-Cause Mortality in Chronic Kidney Disease: A Retrospective Cohort Study of NHANES. PLoS ONE 2025, 20, e0313398. [Google Scholar] [CrossRef]
- Hu, C.; Tang, T. Association between Niacin Intake and Chronic Kidney Disease in Male Participants-a Cross-Sectional Study from the NHANES (2005–2018). Front. Nutr. 2025, 12, 1578118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wu, H.; Gong, S.; Zhou, G.; Liu, Y.; Li, Y.; Yang, X. The Generalized Association Between Niacin Intake and Cardiovascular Events in US Adults Living with Chronic Kidney Disease. Int. J. Vitam. Nutr. Res. 2025, 95, 37256. [Google Scholar] [CrossRef] [PubMed]
- Papaliodis, D.; Boucher, W.; Kempuraj, D.; Theoharides, T.C. The Flavonoid Luteolin Inhibits Niacin-Induced Flush. Br. J. Pharmacol. 2008, 153, 1382–1387. [Google Scholar] [CrossRef]
- Papaliodis, D.; Boucher, W.; Kempuraj, D.; Michaelian, M.; Wolfberg, A.; House, M.; Theoharides, T.C. Niacin-Induced “Flush” Involves Release of Prostaglandin D2 from Mast Cells and Serotonin from Platelets: Evidence from Human Cells in Vitro and an Animal Model. J. Pharmacol. Exp. Ther. 2008, 327, 665–672. [Google Scholar] [CrossRef]
- Kalogeromitros, D.; Makris, M.; Chliva, C.; Aggelides, X.; Kempuraj, D.; Theoharides, T.C. A Quercetin Containing Supplement Reduces Niacin-Induced Flush in Humans. Int. J. Immunopathol. Pharmacol. 2008, 21, 509–514. [Google Scholar] [CrossRef]
- Timoshanko, J.R.; Kitching, A.R.; Semple, T.J.; Tipping, P.G.; Holdsworth, S.R. A Pathogenetic Role for Mast Cells in Experimental Crescentic Glomerulonephritis. J. Am. Soc. Nephrol. 2006, 17, 150–159. [Google Scholar] [CrossRef]
- Kanamaru, Y.; Scandiuzzi, L.; Essig, M.; Brochetta, C.; Guérin-Marchand, C.; Tomino, Y.; Monteiro, R.C.; Peuchmaur, M.; Blank, U. Mast Cell-Mediated Remodeling and Fibrinolytic Activity Protect against Fatal Glomerulonephritis. J. Immunol. 2006, 176, 5607–5615. [Google Scholar] [CrossRef]
- Madjene, L.C.; Pons, M.; Danelli, L.; Claver, J.; Ali, L.; Madera-Salcedo, I.K.; Kassas, A.; Pellefigues, C.; Marquet, F.; Dadah, A.; et al. Mast Cells in Renal Inflammation and Fibrosis: Lessons Learnt from Animal Studies. Mol. Immunol. 2015, 63, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Madjene, L.C.; Danelli, L.; Dahdah, A.; Vibhushan, S.; Bex-Coudrat, J.; Pacreau, E.; Vaugier, C.; Claver, J.; Rolas, L.; Pons, M.; et al. Mast Cell Chymase Protects against Acute Ischemic Kidney Injury by Limiting Neutrophil Hyperactivation and Recruitment. Kidney Int. 2020, 97, 516–527. [Google Scholar] [CrossRef]
- Beghdadi, W.; Madjene, L.C.; Claver, J.; Pejler, G.; Beaudoin, L.; Lehuen, A.; Daugas, E.; Blank, U. Mast Cell Chymase Protects against Renal Fibrosis in Murine Unilateral Ureteral Obstruction. Kidney Int. 2013, 84, 317–326. [Google Scholar] [CrossRef]
- Müller, G.A.; Müller, C.A.; Markovic-Lipkovski, J. Adhesion Molecules in Renal Diseases. Ren. Fail. 1996, 18, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Edwards, J.R. Cell Adhesion Molecules in Chemically-Induced Renal Injury. Pharmacol. Ther. 2007, 114, 74–93. [Google Scholar] [CrossRef]
- Dahlin, J.S. Cutting down the Hematopoietic Tree: E-Cadherin Reveals a Landscape of Differentiating Basophils and Mast Cells. Sci. Immunol. 2021, 6, eabf7901. [Google Scholar] [CrossRef] [PubMed]
- Klewer, T.; Bakic, L.; Müller-Reichert, T.; Kiewisz, R.; Jessberger, G.; Kiessling, N.; Roers, A.; Jessberger, R. E-Cadherin Restricts Mast Cell Degranulation in Mice. Eur. J. Immunol. 2022, 52, 44–53. [Google Scholar] [CrossRef]
- Ruetten, H.; Ritts, R.; Namugosa, M.; Li, W.; Evans, R.; Badlani, G.; Walker, S.J. Mast Cells and Interstitial Cystitis/Bladder Pain Syndrome Revisited. Int. Urogynecol. J. 2025, 1–8. [Google Scholar] [CrossRef]
- Theoharides, T.C. Mast Cells in Irritable Bowel Syndrome and Ulcerative Colitis: Function Not Numbers Is What Makes All the Difference. Dig. Dis. Sci. 2014, 59, 897–898. [Google Scholar] [CrossRef]

| Mediator | Action |
|---|---|
| Histamine | Angiogenenic, vasodilatory, pruritogenic |
| IL-1β, IL-6, IL-8, IL-33 | Pro-inflammatory |
| MMP-9 | Tissue disrupting |
| TNF-α | Pro-inflammatory |
| TGFβ | Profibrotic |
| Tryptase | Pro-inflammatory |
| Feature | Kidney (Healthy) Nos/Levels/Site | Kidney (Diseased) Nos/Levels/Site |
|---|---|---|
| Mast Cell Density | Very low (<10 MC/HPF) | Substantially increased with fibrosis/injury |
| Localization | Interstitium/capsule; rare in glomeruli | Interstitium, perivascular, peri-tubular regions |
| Subtype Composition | Mostly MCT, some MCTC | Mixed MCT, MCTC, sometimes MCC |
| Functional Mediators | Tryptase (some), chymase (rare) | Increased Tryptase, chymase, TGF-β1, TNF |
| Role in Pathology | Sparse involvement | Significant in fibrosis, scarring, acute injury |
| Mediator | Pathologic Effect |
|---|---|
| Alpha-1 Macroglobulin (a1M) | Proximal tubule damage |
| Chymase | Angiotensin II production-vasocontriction |
| Cystatin C | Proximal tubule damage |
| Epidermal growth factor (EGF) | Kidney function |
| Histamine | TGFbeta production, inflammation, pruritus |
| IL-1beta | Inflammation |
| IL-1 soluble receptor | Inflammation |
| IL-6 | Inflammation, MC proliferation |
| IL-8 (CXCL8) | Glucocyte chemotaxis |
| IL-9 | Acute tubular necrosis |
| IL-18 | Chronic inflammation |
| IL-31 | Pruritus |
| IL-33 | Inflammation |
| IL-33 soluble receptor | Inflammation |
| Kidney injury molecule 1 (KIM-1) | Tubular damage |
| Lipocalin 2 (LCN2) | Tubular damage |
| Monocyte chemoattractant peotein-1 (MCP-1) | Monocyte and mast cell recruitment |
| Metalloproteinase-9 (MMP-9) | Inflammation, tissue damage |
| Osteopontin | Fibrosis |
| TGFbeta | Fibrosis |
| TNFalpha | Inflammation, acute tubular necrosis |
| Tryptase | PAR2 activation, inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziastoudi, M.; Cholevas, C.; Eleftheriadis, T.; Stefanidis, I.; Theoharides, T.C. Role of Mast Cells and Their Mediators in Chronic Kidney Diseases. Int. J. Mol. Sci. 2025, 26, 9981. https://doi.org/10.3390/ijms26209981
Tziastoudi M, Cholevas C, Eleftheriadis T, Stefanidis I, Theoharides TC. Role of Mast Cells and Their Mediators in Chronic Kidney Diseases. International Journal of Molecular Sciences. 2025; 26(20):9981. https://doi.org/10.3390/ijms26209981
Chicago/Turabian StyleTziastoudi, Maria, Christos Cholevas, Theodoros Eleftheriadis, Ioannis Stefanidis, and Theoharis C. Theoharides. 2025. "Role of Mast Cells and Their Mediators in Chronic Kidney Diseases" International Journal of Molecular Sciences 26, no. 20: 9981. https://doi.org/10.3390/ijms26209981
APA StyleTziastoudi, M., Cholevas, C., Eleftheriadis, T., Stefanidis, I., & Theoharides, T. C. (2025). Role of Mast Cells and Their Mediators in Chronic Kidney Diseases. International Journal of Molecular Sciences, 26(20), 9981. https://doi.org/10.3390/ijms26209981

