Transcription Factors in Plant Gene Expression Regulation
Funding
Conflicts of Interest
References
- Casamassimi, A.; Ciccodicola, A. Transcriptional Regulation: Molecules, Involved Mechanisms, and Misregulation. Int. J. Mol. Sci. 2019, 20, 1281. [Google Scholar] [CrossRef]
- Halbeisen, R.E.; Galgano, A.; Scherrer, T.; Gerber, A.P. Post-transcriptional gene regulation: From genome-wide studies to principles. Cell Mol. Life Sci. 2008, 65, 798–813. [Google Scholar] [CrossRef]
- Elgin, S.C. DNAase I-hypersensitive sites of chromatin. Cell 1981, 27, 413–415. [Google Scholar] [CrossRef]
- Kodama, Y.; Nagaya, S.; Shinmyo, A.; Kato, K. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin. Plant Cell Physiol. 2007, 48, 459–470. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, T.; Wu, Y.; Jiang, J. Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 2012, 24, 2719–2731. [Google Scholar] [CrossRef]
- Beernink, B.M.; Vogel, J.P.; Lei, L. Enhancers in Plant Development, Adaptation and Evolution. Plant Cell Physiol. 2025, 66, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Li, B.; Zhou, X.; Bolt, T.; Li, J.J.; Cruz, N.; Gaudinier, A.; Ngo, R.; Clark-Wiest, C.; Kliebenstein, D.J.; et al. A genome-scale TF-DNA interaction network of transcriptional regulation of Arabidopsis primary and specialized metabolism. Mol. Syst. Biol. 2021, 17, e10625. [Google Scholar] [CrossRef] [PubMed]
- Keilwagen, J.; Grau, J.; Paponov, I.A.; Posch, S.; Strickert, M.; Grosse, I. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference. PLoSComput. Biol. 2011, 7, e1001070. [Google Scholar]
- Fontana, M.; Roosjen, M.; Crespo García, I.; van den Berg, W.; Malfois, M.; Boer, R.; Weijers, D.; Hohlbein, J. Cooperative action of separate interaction domains promotes high-affinity DNA binding of Arabidopsis thaliana ARF transcription factors. Proc. Natl. Acad. Sci. USA 2023, 120, e2219916120. [Google Scholar] [CrossRef]
- Lim, F.; Solvason, J.J.; Ryan, G.E.; Le, S.H.; Jindal, G.A.; Steffen, P.; Jandu, S.K.; Farley, E.K. Affinity-optimizing enhancer variants disrupt development. Nature 2024, 626, 151–159. [Google Scholar] [CrossRef]
- Rodriguez, K.; Do, A.; Senay-Aras, B.; Perales, M.; Alber, M.; Chen, W.; Reddy, G.V. Concentration-dependent transcriptional switching through a collective action of cis-elements. Sci. Adv. 2022, 8, eabo6157. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Neuwald, A.F.; Hilakivi-Clarke, L.; Clarke, R.; Xuan, J. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements. PLoS Comput. Biol. 2021, 17, e1009203. [Google Scholar]
- Chen, J.; Yang, S.; Fan, B.; Zhu, C.; Chen, Z. The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. Int. J. Mol. Sci. 2022, 23, 6170. [Google Scholar] [CrossRef]
- Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar] [CrossRef]
- Gray, J.; Grotewold, E. Decoding complexity: Tackling the challenge of how many transcription factors regulate a plant gene. Transcription 2025, 16, 261–283. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, D.; Schmittling, S.; Williams, C.; Long, T.A. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 64–74. [Google Scholar] [CrossRef]
- Méndez, T.; Guajardo, J.; Cruz, N.; Gutiérrez, R.A.; Norambuena, L.; Vega, A.; Moya-León, M.A.; Herrera, R. The Characterization of a Novel PrMADS11 Transcription Factor from Pinus radiata Induced Early in Bent Pine Stem. Int. J. Mol. Sci. 2024, 25, 7245. [Google Scholar] [CrossRef]
- Zhu, P.-K.; Lin, M.-X.; Zeng, M.-Y.; Tang, Y.; Li, X.-R.; He, T.-Y.; Zheng, Y.-S.; Chen, L.-Y. Expression of Iron Metabolism Genes Is Potentially Regulated by DOF Transcription Factors in Dendrocalamus latiflorus Leaves. Int. J. Mol. Sci. 2024, 25, 8114. [Google Scholar] [CrossRef]
- Xu, X.; Su, H.; Sun, S.; Sun, J.; Zhang, X.; Yu, J. Genome-Wide Identification and Expression Profiles of Nuclear Factor Y A Transcription Factors in Blueberry Under Abiotic Stress. Int. J. Mol. Sci. 2024, 25, 12832. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.Y.; Zhu, P.-K.; Tang, Y.; Lin, Y.-H.; He, T.-Y.; Rong, J.-D.; Zheng, Y.-S.; Chen, L.-Y. Genome-Wide Identification and Role of the bHLH Gene Family in Dendrocalamus latiflorus Flowering Regulation. Int. J. Mol. Sci. 2024, 25, 10837. [Google Scholar] [CrossRef] [PubMed]
- Tiika, R.J.; Yang, H.; Cui, G.; Ma, Y.; Boamah, S.; Li, Y.; Duan, H. Identification and Analysis of Cuticular Wax Biosynthesis Related Genes in Salicornia europaea Under NaCl Treatment. Int. J. Mol. Sci. 2025, 26, 2632. [Google Scholar] [CrossRef]
- Yan, H.; Du, M.; Ding, J.; Song, D.; Ma, W.; Li, Y. Pan-Genome-Wide Investigation and Co-Expression Network Analysis of HSP20 Gene Family in Maize. Int. J. Mol. Sci. 2024, 25, 11550. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Peng, L.; Chen, M.; Ye, X.; Li, Y.; Li, Z.; Wen, Q.; Zhu, H. Genome-Wide Identification of the Cyclic Nucleotide-Gated Ion Channel Gene Family and Expression Profiles Under Low-Temperature Stress in Luffa cylindrica L. Int. J. Mol. Sci. 2024, 25, 11330. [Google Scholar] [CrossRef]
- Peng, X.; Li, H.; Xu, W.; Yang, Q.; Li, D.; Fan, T.; Li, B.; Ding, J.; Ku, W.; Deng, D.; et al. The AtMINPP Gene, Encoding a Multiple Inositol Polyphosphate Phosphatase, Coordinates a Novel Crosstalk between Phytic Acid Metabolism and Ethylene Signal Transduction in Leaf Senescence. Int. J. Mol. Sci. 2024, 25, 8969. [Google Scholar] [CrossRef]
- Jun, S.E.; Cho, K.-H.; Schaffrath, R.; Kim, G.-T. Evolutionary Conservation in Protein–Protein Interactions and Structures of the Elongator Sub-Complex ELP456 from Arabidopsis and Yeast. Int. J. Mol. Sci. 2024, 25, 4370. [Google Scholar] [CrossRef] [PubMed]
- Siriwardana, C.L. Plant Nuclear Factor Y (NF-Y) Transcription Factors: Evolving Insights into Biological Functions and Gene Expansion. Int. J. Mol. Sci. 2025, 26, 38. [Google Scholar] [CrossRef]
- Zeng, J.K.; Li, X.; Xu, Q.; Chen, J.Y.; Yin, X.R.; Ferguson, I.B.; Chen, K.S. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnol. J. 2015, 13, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Tiika, R.J.; Tian, F.; Lu, Y.; Zhang, Q.; Hu, Y.; Cui, G.; Yang, H. Metabolomics analysis unveils important changes involved in the salt tolerance of Salicornia europaea. Front. Plant Sci. 2023, 13, 1097076. [Google Scholar] [CrossRef]
- Trejo-Téllez, L.I. Salinity Stress Tolerance in Plants. Plants 2023, 12, 3520. [Google Scholar] [CrossRef]
- Bernard, A.; Joubès, J. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Prog. Lipid Res. 2013, 52, 110–129. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Dong, K.; Liu, S.; Li, Y.; Xu, G.; Sun, H. Genome-Wide Identification of the WRKY Gene Family in Blueberry (Vaccinium spp.) and Expression Analysis under Abiotic Stress. Front. Plant Sci. 2024, 15, 1447749. [Google Scholar] [CrossRef]
- Chen, W.; Shao, J.; Ye, M.; Yu, K.; Bednarek, S.Y.; Duan, X.; Guo, W. Blueberry VcLON 2, a Peroxisomal LON Protease, Is Involved in Abiotic Stress Tolerance. Environ. Exp. Bot. 2017, 134, 1–11. [Google Scholar] [CrossRef]
- Yocca, A.E.; Platts, A.; Alger, E.; Teresi, S.; Mengist, M.F.; Benevenuto, J.; Ferrão, L.F.V.; Jacobs, M.; Babinski, M.; Magallanes-Lundback, M.; et al. Blueberry and Cranberry Pangenomes as a Resource for Future Genetic Studies and Breeding Efforts. Hortic. Res. 2023, 10, 202. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A Paramount Staple Crop in the Context of Global Nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Kaur, G.; Sethi, M.; Devi, V.; Kaur, A.; Kaur, H.; Chaudhary, D.P. Investigating maize as a sustainable energy crop for bioethanol production: Delineating cultivation, utilization, biotechnological and environmental perspectives. Biomass Bioenergy 2025, 198, 107867. [Google Scholar] [CrossRef]
- Denton, A.K.; Simon, R.; Weber, A.P. C4 photosynthesis: From evolutionary analyses to strategies for synthetic reconstruction of the trait. Curr. Opin. Plant Biol. 2013, 16, 315–321. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wen, Y.; Yuan, L.; Zhang, Y.; Liu, J.; Zhou, F.; Wang, Q.; Hu, X. Genome-Wide Identification, Characterization, and Expression Analysis Related to Low-Temperature Stress of the CmGLP Gene Family in Cucumis melo L. Int. J. Mol. Sci. 2022, 23, 8190. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Xu, S.; Zhang, Z.; Xu, Y.; Zhang, J.; Chong, K. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol. 2018, 218, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Duszyn, M.; Świeżawska, B.; Szmidt-Jaworska, A.; Jaworski, K. Cyclic nucleotide gated channels (CNGCs) in plant signalling—Current knowledge and perspectives. J. Plant Physiol. 2019, 241, 153035. [Google Scholar] [CrossRef]
- Liu, J.; Peng, L.; Cao, C.; Bai, C.; Wang, Y.; Li, Z.; Zhu, H.; Wen, Q.; He, S. Identification of WRKY Family Members and Characterization of the Low-Temperature-Stress-Responsive WRKY Genes in Luffa (Luffa cylindrica L.). Plants 2024, 13, 676. [Google Scholar] [CrossRef]
- Meng, D.; Li, S.; Feng, X.; Di, Q.; Zhou, M.; Yu, X.; He, C.; Yan, Y.; Wang, J.; Sun, M.; et al. CsBPC2 is essential for cucumber survival under cold stress. BMC Plant Biol. 2023, 23, 566. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, G.; Gong, H.; Li, J.; Luo, C.; He, X.; Luo, S.; Zheng, X.; Liu, X.; Guo, J.; et al. A high-quality sponge gourd (Luffa cylindrica) genome. Hortic. Res. 2020, 7, 128. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Z.; Cai, C.; Zhang, J.; Bian, F.; Sun, S.; Wang, Q. Practices and Roles of Bamboo Industry Development for Alleviating Poverty in China. Clean Technol. Environ. Policy 2021, 23, 1687–1699. [Google Scholar] [CrossRef]
- Xiang, M.; Ding, W.; Wu, C.; Wang, W.; Ye, S.; Cai, C.; Hu, X.; Wang, N.; Bai, W.; Tang, X.; et al. Production of Purple Ma Bamboo (Dendrocalamus latiflorus Munro) with Enhanced Drought and Cold Stress Tolerance by Engineering Anthocyanin Biosynthesis. Planta 2021, 254, 50. [Google Scholar] [CrossRef]
- Taylor, A.H.; Zisheng, Q. Regeneration from seed of Sinarundinaria fangiana, a bamboo, in the wolong giant panda reserve, Sichuan, China. Am. J. Bot. 1988, 75, 1065–1073. [Google Scholar] [CrossRef]
- Dauden, M.I.; Jaciuk, M.; Weis, F.; Lin, T.-Y.; Kleindienst, C.; Abbassi, N.E.H.; Khatter, H.; Krutyhołowa, R.; Breunig, K.D.; Kosinski, J.; et al. Molecular Basis of tRNA Recognition by the Elongator Complex. Sci. Adv. 2019, 5, eaaw2326. [Google Scholar] [CrossRef]
- Glatt, S.; Zabel, R.; Kolaj-Robin, O.; Onuma, O.F.; Baudin, F.; Graziadei, A.; Taverniti, V.; Lin, T.-Y.; Baymann, F.; Séraphin, B.; et al. Structural Basis for tRNA Modification by Elp3 from Dehalococcoides mccartyi. Nat. Struct. Mol. Biol. 2016, 23, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Abbassi, N.E.H.; Zakrzewski, K.; Chramiec-Głąbik, A.; Jemioła-Rzemińska, M.; Różycki, J.; Glatt, S. The Elongator Subunit Elp3 is a non-Canonical tRNA Acetyltransferase. Nat. Commun. 2019, 10, 625. [Google Scholar] [CrossRef]
- Wittschieben, B.Ø.; Otero, G.; de Bizemont, T.; Fellows, J.; Erdjument-Bromage, H.; Ohba, R.; Li, Y.; Allis, C.D.; Tempst, P.; Svejstrup, J.Q. A Novel Histone Acetyltransferase Is an Integral Subunit of Elongating RNA Polymerase II Holoenzyme. Mol. Cell 1999, 4, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Deng, J.M.; Zhang, Z.; Behringer, R.; de Crombrugghe, B.; Maity, S.N. The B Subunit of the CCAAT Box Binding Transcription Factor Complex (CBF/NF-Y) Is Essential for Early Mouse Development and Cell Proliferation. Cancer Res. 2003, 63, 8167–8172. [Google Scholar] [PubMed]
- Myers, Z.A.; Holt, B.F., 3rd. NUCLEAR FACTOR-Y: Still complex after all these years? Curr. Opin. Plant Biol. 2018, 45, 96–102. [Google Scholar] [CrossRef]
- Chaves-Sanjuan, A.; Gnesutta, N.; Gobbini, A.; Martignago, D.; Bernardini, A.; Fornara, F.; Mantovani, R.; Nardini, M. Structural determinants for NF-Y subunit organization and NF-Y/DNA association in plants. Plant J. 2021, 105, 49–61. [Google Scholar] [CrossRef]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.H. Evolution of Gene Duplication in Plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef]
- Nowak, M.A.; Boerlijst, M.C.; Cooke, J.; Smith, J.M. Evolution of genetic redundancy. Nature 1997, 388, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Orgel, L.E. Gene-duplication and the origin of proteins with novel functions. J. Theor. Biol. 1977, 67, 773. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.-S.; Zhao, J.; He, C. Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridana. Planta 2015, 241, 387–402. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymczyk, P. Transcription Factors in Plant Gene Expression Regulation. Int. J. Mol. Sci. 2025, 26, 9955. https://doi.org/10.3390/ijms26209955
Szymczyk P. Transcription Factors in Plant Gene Expression Regulation. International Journal of Molecular Sciences. 2025; 26(20):9955. https://doi.org/10.3390/ijms26209955
Chicago/Turabian StyleSzymczyk, Piotr. 2025. "Transcription Factors in Plant Gene Expression Regulation" International Journal of Molecular Sciences 26, no. 20: 9955. https://doi.org/10.3390/ijms26209955
APA StyleSzymczyk, P. (2025). Transcription Factors in Plant Gene Expression Regulation. International Journal of Molecular Sciences, 26(20), 9955. https://doi.org/10.3390/ijms26209955