bHLH Transcription Factors in Cereal Crops: Diverse Functions in Regulating Growth, Development and Stress Responses
Abstract
1. Introduction
2. Structural Characteristics and Regulatory Mechanisms of bHLH Transcription Factors
2.1. Structural Basis: Sequence Conservation to Functional Specificity
2.2. Core Transcriptional Regulatory Mechanisms
3. Diverse Roles in Growth, Development and Metabolism Regulation
3.1. Grain Development and Yield
3.2. Plant Architecture
Gene Name | Gene Accession | Function | Refs. |
---|---|---|---|
TaPGS1 | TraesCS1A02G102400 | Increases grain size and weight. | [33] |
TabHLH95 | TraesCS6A03G0268600 | Enhances starch accumulation and improves grain size. | [34] |
TabHLH489 | TraesCS2D02G499200 | Negatively regulate grain length and weight. | [35] |
OsbHLH044/OsbHLH096 | Os03g0188400 | Positively regulates grain quality and salt tolerance; negatively regulate brown planthopper defense. | [36,52] |
OsSGI1/OsbHLH111 | Os04g0489600 | Negatively regulate grain size and weight. | [31] |
OsbHLH92 | Os09g0501600 | Positively regulate grain size and leaf angle, and negatively regulate plant height via BR signaling. | [37] |
OsBC1 | Os09g0510500 | [38] | |
ILI1/OsbHLH154 | Os04g0641700 | [23,48] | |
ILI2/ATAC2 | Os11g0603000 | [23] | |
ILI3/OsbHLH153/OsBUL2 | Os03g0171700 | [23,49] | |
ILI4/OsBU1/OsbHLH172 | Os06g0226500 | [45,46] | |
ILI5/PGL2/OsBUL1/OsbHLH170 | Os02g0747900 | [38] | |
ILI6/PGL1 | Os03g0171300 | [23] | |
ILI7/OsbHLH173 | Os10g0404300 | [23,49] | |
ILI8/OsbHLH174 | Os10g0403800 | [23,49] | |
MOG1/qRT9 | Os09g0455300 | Increases both grain number and grain weight, regulates drought avoidance through controls root length and thickness. | [40,53] |
OsbHLH107 | Os02g0805250 | Enhances grain size. | [54] |
OsFIF3 | Os01g0243400 | Increases grain chalkiness and decreases grain weight. | [28] |
ZmBES1/BZR1-4 | Zm00001d019757 | Positively regulate kernel size and weight but negatively regulate drought resistance. | [41] |
ZmBES1/BZR1-5 | Zm00001d053975 | Positively regulate kernel size and weight. | [27] |
OsBLR1/OsbHLH079/OsBCL2 | Os02g0705500 | Positively regulate leaf angle and grain length. | [39,44] |
OsbHLH98 | Os03g0797600 | Negatively regulates leaf angle | [45] |
OsbHLH157 | Os02g0178700 | Negatively regulates leaf angle and grain size through antagonizing ILI proteins. | [23] |
OsbHLH158 | Os06g0653200 | [23] | |
ZmbHLH154 | Zm00001d013357 | Increases plant height | [51] |
ZmIBH1 | Zm00001d001982 | Negatively regulates plant height and leaf angle | [26,51] |
3.3. Anther and Pollen Development
Gene Name | Gene Accession | Function | Refs. |
---|---|---|---|
UDT1/OsbHLH164 | Os07g0549600 | Promote the PCD process of tapetal cells, and regulate tapetum development and pollen formation. | [57,58] |
TIP2/OsbHLH141 | Os01g0293100 | [60,61] | |
TDR/OsbHLH005 | Os02g0120500 | [63,64] | |
EAT1/DTD/OsbHLH141 | Os04g0599300 | [65,66] | |
OsbHLH035 | Os01g0159800 | Regulates anther development | [67] |
MS23 | Zm00001d008174 | Controls tapetum specification and maturation | [68,69] |
MS32 | Zm00001d006565 | [68,71] | |
Ms40/bHLH51 | Zm00001d053895 | Promote the PCD process of tapetal cells and pollen development. | [72] |
bHLH122 | Zm00001d017724 | Regulates tapetal function and pollen development. | [68] |
3.4. Seed Dormancy and Germination
Gene Name | Gene Accession | Function | Refs. |
---|---|---|---|
OsbHLH004 | Os10g0544200 | Represses seed dormancy through inhibiting ABA synthesis and GA degradation. | [76] |
SD6 | Os06g0164400 | Negatively regulate seed dormancy. | [77] |
ICE2 | Os01g0928000 | Positively regulate seed dormancy. | [77] |
OsbHLH048 | Os02g0759000 | Negatively regulate seed dormancy through ABA biosynthesis. | [77] |
OsbHLH035 | Os01g0159800 | Promote seed germination and salt tolerance. | [79] |
3.5. Iron Homeostasis
4. Roles and Regulatory Networks in Stress Responses
4.1. Adaptation to Abiotic Stresses
4.1.1. Drought
4.1.2. Cold Stress
4.1.3. Salt Stress
Pathway | Gene Name | Gene Accession | Function | Refs. |
---|---|---|---|---|
Drought | OsbHLH59 | Os02g0116600 | Generates two functionally differentiated transcripts to balance drought response and growth. | [102] |
OsPIL15 | Os01g0286100 | Promote stomatal closure and enhance drought resistance; negatively regulate grain size and weight. | [103,124] | |
OsWIH2 | Os03g0431100 | Improve drought tolerance by regulating wax biosynthesis and reducing ROS accumulation. | [125] | |
ZmbHLH47 | Zm00001d048901 | Reduces electrolyte leakage and MDA accumulation and improves drought resistance. | [104] | |
ZmPIF3 | Zm00001d008205 | Promote stomatal closure and enhance drought resistance. | [105] | |
ZmbHLH124 | Zm00001d037749 | Enhances the osmotic adjustment capacity and improves drought resistance. | [106] | |
ZmPTF1 | Zm00001d045046 | Enhances maize drought resistance through regulation of ABA synthesis and root development. | [107] | |
ZmbHLH137 | Zm00001d033848 | Improves drought tolerance by enhancing the antioxidant system | [108] | |
TabHLH27 | TraesCS2A02G271700 | Orchestrates root growth and drought tolerance. | [110] | |
TaAKS1 | TraesCS7A02G435800 | Increases proline content and improves drought tolerance. | [111] | |
TabHLH1 | TraesCS7A02G157700 | Improves drought tolerance by promoting stomatal closure and increasing osmotic substance accumulation. | [112] | |
TabHLH49 | TraesCs7A02G211900 | Enhances drought resistance. | [113] | |
TaPIF1 | TraesCS1A02G083000 | Improves drought tolerance by promoting stomatal closure and enhancing proline synthesis. | [114] | |
Cold | OsbHLH57 | Os07g0543000 | Improves chilling tolerance. | [115] |
OsICE1 | Os11g0523700 | Positively regulate cold tolerance. | [116] | |
OsICE2 | Os01g0928000 | Positively regulate cold tolerance. Enhances cold tolerance. | [116] | |
COOL1/ZmbHLH76 | Zm00001d040148 | [117] | ||
ZmICE1 | Zm00001d042263 | Enhances cold tolerance through repressing mitochondrial ROS bursts. | [118] | |
TaMYC2 | TraesCS1A02G193200, TraesCS1B02G208000 and TraesCS1D02G196900 | Improves freezing tolerance. | [119] | |
Salt | OsbHLH024 | Os01g0575200 | Negatively regulate salt tolerance. | [120] |
OsbHLH068 | Os04g0631600 | Enhances salt tolerance. | [121] | |
ZmbHLH32 | Zm00001d004007 | Enhances salt tolerance. | [126] |
4.2. Biotic Stress Defense
Gene Name | Gene Accession | Function | Reference |
---|---|---|---|
OsbHLH6 | Os04g0301500 | Regulates resistance to Magnaporthe oryzae | [127,128] |
OsHLH46 | Os01g0108600 | Enhances disease resistance to Magnaporthe oryzae | [128] |
OsbHLH5 | Os01g0195801 | Enhances resistance to Xanthomonas oryzae. | [129] |
OsbHLH057 | Os07g0543000 | Enhances resistance to sheath blight, bacterial blight, and drought tolerance | [130] |
OsbHLH034 | Os02g0726700 | Enhances resistance against rice bacterial blight. | [131] |
OsMYC2 | Os10g0575000 | Enhances resistance against rice brown planthoppers, stripe virus, sheath blight, and rice blast. | [132,133,134,135] |
OsHLH61 | Os07g0676600 | Positively regulate defense to brown planthoppers. | [52] |
ZmPIF4.1 | Zm00001d031044 | Negatively regulate immunity to gibberella stalk rot. | [136] |
ZmMYC7 | Zm00001d030028 | Increase resistance to Fusarium graminearum. | [137] |
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bailey, P.C.; Martin, C.; Toledo-Ortiz, G.; Quail, P.H.; Huq, E.; Heim, M.A.; Jakoby, M.; Werber, M.; Weisshaar, B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 2003, 15, 2497–2502. [Google Scholar] [CrossRef]
- Toledo-Ortiz, G.; Huq, E.; Quail, P.H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 2003, 15, 1749–1770. [Google Scholar] [CrossRef]
- Wei, K.; Chen, H. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biol. 2018, 18, 309. [Google Scholar] [CrossRef]
- de Martin, X.; Sodaei, R.; Santpere, G. Mechanisms of Binding Specificity among bHLH Transcription Factors. Int. J. Mol. Sci. 2021, 22, 9150. [Google Scholar] [CrossRef]
- Hao, Y.; Zong, X.; Ren, P.; Qian, Y.; Fu, A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 7152. [Google Scholar] [CrossRef]
- Radani, Y.; Li, R.; Korboe, H.M.; Ma, H.; Yang, L. Transcriptional and Post-Translational Regulation of Plant bHLH Transcription Factors during the Response to Environmental Stresses. Plants 2023, 12, 2113. [Google Scholar] [CrossRef] [PubMed]
- Tarczewska, A.; Greb-Markiewicz, B. The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. Int. J. Mol. Sci. 2019, 20, 5306. [Google Scholar] [CrossRef]
- Gao, F.; Dubos, C. The Arabidopsis bHLH transcription factor family. Trends Plant Sci. 2024, 29, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.-F.; Lee, H.-Y.; Kang, H.-G. Basic Helix-Loop-Helix transcription factors: Regulators for plant growth development and abiotic stress responses. Int. J. Mol. Sci. 2023, 24, 1419. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.L.; Wang, H.Y.; Xia, Z.L. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco. Plant Sci. 2019, 280, 97–109. [Google Scholar] [CrossRef]
- Hultgren, A.; Carleton, T.; Delgado, M.; Gergel, D.R.; Greenstone, M.; Houser, T.; Hsiang, S.; Jina, A.; Kopp, R.E.; Malevich, S.B.; et al. Impacts of climate change on global agriculture accounting for adaptation. Nature 2025, 642, 644–652. [Google Scholar] [CrossRef]
- Kopec, P. Climate Change-The Rise of Climate-Resilient Crops. Plants 2024, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Khare, T.; Zhang, X.; Rahman, M.M.; Hussain, M.; Gill, S.S.; Chen, Z.H.; Zhou, M.; Hu, Z.; Varshney, R.K. Novel Strategies for Designing Climate-Smart Crops to Ensure Sustainable Agriculture and Future Food Security. J. Sustain. Agric. Enrivon 2025, 4, e70048. [Google Scholar] [CrossRef]
- Sytar, O. Prospect of Underutilized (Minor) Crops for Climate-Resilient Agriculture. In Climate-Resilient Agriculture; Hasanuzzaman, M., Ed.; Springer International Publishing: Cham, Switzerland, 2023; Volume 1, pp. 329–348. [Google Scholar]
- Xiong, W.; Reynolds, M.; Xu, Y. Climate change challenges plant breeding. Curr. Opin. Plant Biol. 2022, 70, 102308. [Google Scholar] [CrossRef] [PubMed]
- Atchley, W.R.; Fitch, W.M. A natural classification of the basic helix-loop-helix class of transcription factors. Proc. Natl. Acad. Sci. USA 1997, 94, 5172–5176. [Google Scholar] [CrossRef]
- Ferre-D’Amare, A.R.; Prendergast, G.C.; Ziff, E.B.; Burley, S.K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993, 363, 38–45. [Google Scholar] [CrossRef]
- Ferre-D’Amare, A.R.; Pognonec, P.; Roeder, R.G.; Burley, S.K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 1994, 13, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Pires, N.; Dolan, L. Origin and diversification of basic-helix-loop-helix proteins in plants. Mol. Biol. Evol. 2010, 27, 862–874. [Google Scholar] [CrossRef]
- Guo, J.; Sun, B.; He, H.; Zhang, Y.; Tian, H.; Wang, B. Current Understanding of bHLH Transcription Factors in Plant Abiotic Stress Tolerance. Int. J. Mol. Sci. 2021, 22, 4921. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, T.; Yu, Y.; Gou, L.; Yang, J.; Xu, J.; Pi, E. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses. Front. Plant Sci. 2021, 12, 677611. [Google Scholar] [CrossRef]
- Michael, A.K.; Stoos, L.; Crosby, P.; Eggers, N.; Nie, X.Y.; Makasheva, K.; Minnich, M.; Healy, K.L.; Weiss, J.; Kempf, G.; et al. Cooperation between bHLH transcription factors and histones for DNA access. Nature 2023, 619, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lu, M.; Zhao, Z.; Luo, Q.; Liu, F.; Zhao, J.; He, Y.; Tian, Y.; Zhan, H. Rice ILI atypical bHLH transcription factors antagonize OsbHLH157/OsbHLH158 during brassinosteroid signaling. Plant Physiol. 2024, 194, 1545–1562. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Bai, M.-Y.; Wu, J.; Zhu, J.-Y.; Wang, H.; Zhang, Z.; Wang, W.; Sun, Y.; Zhao, J.; Sun, X.; et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 2009, 21, 3767–3780. [Google Scholar] [CrossRef]
- Lei, P.; Jiang, Y.; Zhao, Y.; Jiang, M.; Ji, X.; Ma, L.; Jin, G.; Li, J.; Zhang, S.; Kong, D.; et al. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. J. Agric. Food Chem. 2024, 72, 10692–10709. [Google Scholar] [CrossRef]
- Cao, Y.; Zeng, H.; Ku, L.; Ren, Z.; Han, Y.; Su, H.; Dou, D.; Liu, H.; Dong, Y.; Zhu, F.; et al. ZmIBH1-1 regulates plant architecture in maize. J. Exp. Bot. 2020, 71, 2943–2955. [Google Scholar] [CrossRef]
- Sun, F.; Ding, L.; Feng, W.; Cao, Y.; Lu, F.; Yang, Q.; Li, W.; Lu, Y.; Shabek, N.; Fu, F.; et al. Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. J. Exp. Bot. 2021, 72, 1714–1726. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhong, W.; Wang, K.; Gong, X.; Xia, Y.; Nong, J.; Xiao, L.; Xia, S. Regulation of grain chalkiness and starch metabolism by FLO2 Interaction Factor 3, a bHLH transcription factor in Oryza sativa. Int. J. Mol. Sci. 2023, 24, 12778. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Mair, A.; Matos, J.L.; Vollbrecht, M.; Xu, S.L.; Bergmann, D.C. bHLH transcription factors cooperate with chromatin remodelers to regulate cell fate decisions during Arabidopsis stomatal development. PLoS Biol. 2024, 22, e3002770. [Google Scholar] [CrossRef]
- Akmakjian, G.Z.; Riaz, N.; Guerinot, M.L. Photoprotection during iron deficiency is mediated by the bHLH transcription factors PYE and ILR3. Proc. Natl. Acad. Sci. USA 2021, 118, e20224918118. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Zhang, B.; Chang, Y.; An, S.; Zhao, W. Sugar starvation activates the OsSnRK1a-OsbHLH111/OsSGI1-OsTPP7 module to mediate growth inhibition of rice. Plant Biotechnol. J. 2023, 21, 2033–2046. [Google Scholar] [CrossRef]
- Lorrain, S.; Allen, T.; Duek, P.D.; Whitelam, G.C.; Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 2007, 53, 312–323. [Google Scholar] [CrossRef]
- Guo, X.; Fu, Y.; Lee, Y.J.; Chern, M.; Li, M.; Cheng, M.; Dong, H.; Yuan, Z.; Gui, L.; Yin, J.; et al. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnol. J. 2022, 20, 1311–1326. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xi, W.; Wang, X.; Li, H.; Liu, H.; Li, T.; Hou, J.; Liu, X.; Hao, C.; Zhang, X. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat. J. Genet. Genom. 2023, 50, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Wang, D.; Sun, N.; Yang, F.; Li, X.; Mu, J.; Zhou, R.; Zheng, G.; Yang, X.; Zhang, C.; et al. The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat. Plant Biotechnol. J. 2024, 22, 1989–2006. [Google Scholar] [CrossRef]
- Alam, M.S.; Yang, Z.K.; Li, C.; Yan, Y.; Liu, Z.; Nazir, M.M.; Xu, J.H. Loss-of-function mutations of OsbHLH044 transcription factor lead to salinity sensitivity and a greater chalkiness in rice (Oryza sativa L.). Plant Physiol. Biochem. 2022, 193, 110–123. [Google Scholar] [CrossRef]
- Teng, S.; Liu, Q.; Chen, G.; Chang, Y.; Cui, X.; Wu, J.; Ai, P.; Sun, X.; Zhang, Z.; Lu, T. OsbHLH92, in the noncanonical brassinosteroid signaling pathway, positively regulates leaf angle and grain weight in rice. New Phytol. 2023, 240, 1066–1081. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; An, G.; Li, H.Y. Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol. 2017, 173, 688–702. [Google Scholar] [CrossRef]
- Seo, H.; Kim, S.H.; Lee, B.D.; Lim, J.H.; Lee, S.J.; An, G.; Paek, N.C. The rice basic Helix-Loop-Helix 79 (OsbHLH079) determines leaf angle and grain shape. Int. J. Mol. Sci. 2020, 21, 2090. [Google Scholar] [CrossRef]
- Han, Y.; Hu, Q.; Gong, N.; Yan, H.; Khan, N.U.; Du, Y.; Sun, H.; Zhao, Q.; Peng, W.; Li, Z.; et al. Natural variation in MORE GRAINS 1 regulates grain number and grain weight in rice. J. Integr. Plant Biol. 2024, 66, 1440–1458. [Google Scholar] [CrossRef]
- Feng, W.; Zhou, Y.; Duan, H.; Zhou, W.; Zhang, X.; Liu, Y.; Zhang, H.; Wei, J.; Wan, T.; Liu, Y.; et al. Maize ZmBES1/BZR1-4 recruits ZmTLP5 to regulate drought tolerance and seed development by regulating ZmPum6 and ZmMBP1. Plant J. 2025, 122, e70162. [Google Scholar] [CrossRef]
- Jafari, F.; Wang, B.; Wang, H.; Zou, J. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. J. Integr. Plant Biol. 2024, 66, 849–864. [Google Scholar] [CrossRef]
- Tong, H.; Chu, C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. 2018, 23, 1016–1028. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.Q.; Chang, Y.P.; Zhang, B.; Zhao, Q.Z.; Zhao, W.L. The basic helix-loop-helix transcription factor OsBLR1 regulates leaf angle in rice via brassinosteroid signalling. Plant Mol. Biol. 2020, 102, 589–602. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Shang, L.; Wang, Y.; Yan, P.; Bai, Y.; Da, X.; Wang, K.; Guo, Q.; Jiang, R.; et al. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. New Phytol. 2021, 230, 1953–1966. [Google Scholar] [CrossRef]
- Tanaka, A.; Nakagawa, H.; Tomita, C.; Shimatani, Z.; Ohtake, M.; Nomura, T.; Jiang, C.-J.; Dubouzet, J.G.; Kikuchi, S.; Sekimoto, H.; et al. BRASSINOSTEROID UPREGULATED1, encoding a Helix-Loop-Helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol. 2009, 151, 669–680. [Google Scholar] [CrossRef]
- Ruan, W.; Guo, M.; Xu, L.; Wang, X.; Zhao, H.; Wang, J.; Yi, K. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. Plant Cell 2018, 30, 853–870. [Google Scholar] [CrossRef]
- Tian, Q.; Luan, J.; Guo, C.; Shi, X.; Deng, P.; Zhou, Z.; Zhang, W.; Shen, L. A bHLH protein, OsBIM1, positively regulates rice leaf angle by promoting brassinosteroid signaling. Biochem. Biophys. Res. Commun. 2021, 578, 129–135. [Google Scholar] [CrossRef]
- Dong, H.; Zhao, H.; Li, S.; Han, Z.; Hu, G.; Liu, C.; Yang, G.; Wang, G.; Xie, W.; Xing, Y. Genome-wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice (Oryza sativa). PLoS Genet. 2018, 14, e1007323. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Fujiwara, S.; Mitsuda, N.; Ohme-Takagi, M. A triantagonistic Basic Helix-Loop-helix system regulates cell elongation in Arabidopsis. Plant Cell 2012, 24, 4483–4497. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, Z.; Xie, S.; Li, Z.; Zhou, Y.; Duan, L. Jasmonate mimic modulates cell elongation by regulating antagonistic bHLH transcription factors via brassinosteroid signaling. Plant Physiol. 2024, 195, 2712–2726. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, D.; Ma, F.; Zhu, M.; Shi, Z.; Miao, X. OsHLH61-OsbHLH96 influences rice defense to brown planthopper through regulating the pathogen-related genes. Rice 2019, 12, 9. [Google Scholar] [CrossRef]
- Li, J.; Han, Y.; Liu, L.; Chen, Y.; Du, Y.; Zhang, J.; Sun, H.; Zhao, Q. qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. J. Exp. Bot. 2015, 66, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ren, Y.; Cai, Y.; Niu, M.; Feng, Z.; Jing, R.; Mou, C.; Liu, X.; Xiao, L.; Zhang, X.; et al. Overexpression of OsbHLH107, a member of the basic helix-loop-helix transcription factor family, enhances grain size in rice (Oryza sativa L.). Rice 2018, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.F.; Talle, B.; Wilson, Z.A. Anther and pollen development: A conserved developmental pathway. J. Integr. Plant Biol. 2015, 57, 876–891. [Google Scholar] [CrossRef]
- Ortolan, F.; Trenz, T.S.; Delaix, C.L.; Lazzarotto, F.; Margis-Pinheiro, M. bHLH-regulated routes in anther development in rice and Arabidopsis. Genet. Mol. Biol. 2024, 46, e20230171. [Google Scholar] [CrossRef]
- Jung, K.H.; Han, M.J.; Lee, Y.S.; Kim, Y.W.; Hwang, I.; Kim, M.J.; Kim, Y.K.; Nahm, B.H.; An, G. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 2005, 17, 2705–2722. [Google Scholar] [CrossRef]
- Liu, Z.; Bao, W.; Liang, W.; Yin, J.; Zhang, D. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J. Integr. Plant Biol. 2010, 52, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Hong, W.-J.; Kim, Y.-J.; Chandran, A.K.N.; Gho, Y.-S.; Yoo, Y.-H.; Nguyen, V.N.T.; An, G.; Park, S.K.; Jung, K.-H. Comparative Transcriptome Analysis Reveals Gene Regulatory Mechanism of UDT1 on Anther Development. J. Plant Biol. 2020, 63, 289–296. [Google Scholar] [CrossRef]
- Fu, Z.; Yu, J.; Cheng, X.; Zong, X.; Xu, J.; Chen, M.; Li, Z.; Zhang, D.; Liang, W. The rice basic Helix-Loop-Helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 2014, 26, 1512–1524. [Google Scholar] [CrossRef]
- Ko, S.S.; Li, M.J.; Sun-Ben Ku, M.; Ho, Y.C.; Lin, Y.J.; Chuang, M.H.; Hsing, H.X.; Lien, Y.C.; Yang, H.T.; Chang, H.C.; et al. The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice. Plant Cell 2014, 26, 2486–2504. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Wei, G.; Lei, T.; Wu, J.; Zheng, L.; Ma, H.; He, G.; Wang, N. POLLEN WALL ABORTION 1 is essential for pollen wall development in rice. Plant Physiol. 2022, 190, 2229–2245. [Google Scholar] [CrossRef]
- Li, N.; Zhang, D.S.; Liu, H.S.; Yin, C.S.; Li, X.X.; Liang, W.Q.; Yuan, Z.; Xu, B.; Chu, H.W.; Wang, J.; et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 2006, 18, 2999–3014. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Song, S.; Deng, H.; Li, N.; Fu, X.; Chen, G.; Yuan, L. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta 2015, 241, 157–166. [Google Scholar] [CrossRef]
- Niu, N.; Liang, W.; Yang, X.; Jin, W.; Wilson, Z.A.; Hu, J.; Zhang, D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat. Commun. 2013, 4, 1445. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Li, H.; Chen, L.; Xie, M.; Wang, F.; Chen, Y.; Liu, Y.G. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol. Plant 2013, 6, 1715–1718. [Google Scholar] [CrossRef]
- Ortolan, F.; Fonini, L.S.; Pastori, T.; Mariath, J.E.A.; Saibo, N.J.M.; Margis-Pinheiro, M.; Lazzarotto, F. Tightly controlled expression of OsbHLH35 is critical for anther development in rice. Plant Sci. 2021, 302, 110716. [Google Scholar] [CrossRef]
- Nan, G.L.; Teng, C.; Fernandes, J.; O’Connor, L.; Meyers, B.C.; Walbot, V. A cascade of bHLH-regulated pathways programs maize anther development. Plant Cell 2022, 34, 1207–1225. [Google Scholar] [CrossRef]
- Nan, G.L.; Zhai, J.; Arikit, S.; Morrow, D.; Fernandes, J.; Mai, L.; Nguyen, N.; Meyers, B.C.; Walbot, V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 2017, 144, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Duncan, D.; Morrow, D.J.; Fernandes, J.; Walbot, V. Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types. Plant J. 2007, 50, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Skibbe, D.; Timofejeva, L.; Wang, C.J.; Kelliher, T.; Kremling, K.; Walbot, V.; Cande, W.Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J. 2013, 76, 592–602. [Google Scholar] [CrossRef]
- Liu, X.; Yue, Y.; Gu, Z.; Huang, Q.; Pan, Z.; Zhao, Z.; Zheng, M.; Zhang, Z.; Li, C.; Yi, H.; et al. The characterization and candidate gene isolation for a novel male-sterile mutant ms40 in maize. Plant Cell Rep. 2021, 40, 1957–1970. [Google Scholar] [CrossRef]
- Matilla, A.J. Current insights into weak seed dormancy and pre-harvest sprouting in crop species. Plants 2024, 13, 2559. [Google Scholar] [CrossRef] [PubMed]
- Shu, K.; Liu, X.-d.; Xie, Q.; He, Z.-h. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef]
- Rabissi, A.; Vilela, B.; Lumbreras, V.; Ludevid, D.; Culianez-Macia, F.A.; Pages, M. Molecular characterization of maize bHLH transcription factor (ZmKS), a new ZmOST1 kinase substrate. Plant Sci. 2016, 253, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, L.; Wang, H.; Guo, J.; Li, Y.; Tan, Y.; Shu, Q.; Qian, Q.; Yu, H.; Chen, Y.; et al. The phosphatidylethanolamine-binding proteins OsMFT1 and OsMFT2 regulate seed dormancy in rice. Plant Cell 2024, 36, 3857–3874. [Google Scholar] [CrossRef]
- Xu, F.; Tang, J.; Wang, S.; Cheng, X.; Wang, H.; Ou, S.; Gao, S.; Li, B.; Qian, Y.; Gao, C.; et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat. Genet. 2022, 54, 1972–1982. [Google Scholar] [CrossRef]
- Han, Z.P.; Wang, B.; Tian, L.; Wang, S.X.; Zhang, J.; Guo, S.L.; Zhang, H.C.; Xu, L.R.; Chen, Y.H. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.). Physiol. Plant 2020, 168, 205–217. [Google Scholar] [CrossRef]
- Chen, H.C.; Cheng, W.H.; Hong, C.Y.; Chang, Y.S.; Chang, M.C. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice 2018, 11, 50. [Google Scholar] [CrossRef]
- Briat, J.F.; Dubos, C.; Gaymard, F. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 2015, 20, 33–40. [Google Scholar] [CrossRef]
- Murgia, I.; Marzorati, F.; Vigani, G.; Morandini, P. Plant iron nutrition: The long road from soil to seeds. J. Exp. Bot. 2022, 73, 1809–1824. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, L.; Yang, A. The Molecular Mechanisms Underlying Iron Deficiency Responses in Rice. Int. J. Mol. Sci. 2019, 21, 43. [Google Scholar] [CrossRef] [PubMed]
- Mori, S. Iron acquisition by plants. Curr. Opin. Plant Biol. 1999, 2, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Nishizawa, N.K. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef]
- Santi, S.; Schmidt, W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 2009, 183, 1072–1084. [Google Scholar] [CrossRef]
- Romheld, V.; Marschner, H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 1986, 80, 175–180. [Google Scholar] [CrossRef]
- Ogo, Y.; Itai, R.N.; Nakanishi, H.; Kobayashi, T.; Takahashi, M.; Mori, S.; Nishizawa, N.K. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J. 2007, 51, 366–377. [Google Scholar] [CrossRef]
- Ogo, Y.; Itai, R.N.; Kobayashi, T.; Aung, M.S.; Nakanishi, H.; Nishizawa, N.K. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol. Biol. 2011, 75, 593–605. [Google Scholar] [CrossRef]
- Liang, G.; Zhang, H.; Li, Y.; Pu, M.; Yang, Y.; Li, C.; Lu, C.; Xu, P.; Yu, D. Oryza sativa FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (OsFIT/OsbHLH156) interacts with OsIRO2 to regulate iron homeostasis. J. Integr. Plant Biol. 2020, 62, 668–689. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Ying, Y.; Wang, J.; Shao, J.F.; Yamaji, N.; Whelan, J.; Ma, J.F.; Shou, H. A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localising IRO2 to the nucleus in rice. New Phytol. 2020, 225, 1247–1260. [Google Scholar] [CrossRef]
- Carey-Fung, O.; O’Brien, M.; Beasley, J.T.; Johnson, A.A.T. A model to incorporate the bHLH transcription factor OsIRO3 within the rice iron homeostasis regulatory network. Int. J. Mol. Sci. 2022, 23, 1635. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Y.; Xu, P.; Liang, G. OsIRO3 negatively regulates Fe homeostasis by repressing the expression of OsIRO2. Plant J. 2022, 111, 966–978. [Google Scholar] [CrossRef]
- Wang, W.; Ye, J.; Ma, Y.; Wang, T.; Shou, H.; Zheng, L. OsIRO3 plays an essential role in iron deficiency responses and regulates iron homeostasis in rice. Plants 2020, 9, 1095. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Pu, M.; Xu, P.; Liang, G.; Yu, D. Oryza sativa POSITIVE REGULATOR OF IRON DEFICIENCY RESPONSE 2 (OsPRI2) and OsPRI3 are involved in the maintenance of Fe homeostasis. Plant Cell Environ. 2020, 43, 261–274. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ozu, A.; Kobayashi, S.; An, G.; Jeon, J.S.; Nishizawa, N.K. OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. Plant Mol. Biol. 2019, 101, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Yao, X.; Liang, G.; Yu, D. POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1,facilitates iron homeostasis. Plant Physiol. 2017, 175, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ye, J.; Xu, H.; Liu, X.; Fu, Y.; Zhang, H.; Rouached, H.; Whelan, J.; Shen, Z.; Zheng, L. OsbHLH061 links TOPLESS/TOPLESS-RELATED repressor proteins with POSITIVE REGULATOR OF IRON HOMEOSTASIS 1 to maintain iron homeostasis in rice. New Phytol. 2022, 234, 1753–1769. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ying, Y.; Narsai, R.; Ye, L.; Zheng, L.; Tian, J.; Whelan, J.; Shou, H. Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa. Plant Cell Environ. 2013, 36, 224–236. [Google Scholar] [CrossRef]
- Li, S.; Ma, S.; Song, Z.; Li, Y.; Liu, X.; Yang, W.; Wang, T.; Zhou, X.; Chen, R. Regulatory mechanisms of iron homeostasis in maize mediated by ZmFIT. Crop J. 2024, 12, 1426–1436. [Google Scholar] [CrossRef]
- Wang, M.; Gong, J.; Bhullar, N.K. Iron deficiency triggered transcriptome changes in bread wheat. Comput. Struct. Biotechnol. J. 2020, 18, 2709–2722. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Usman, M.; Farooq, S.; Alghamdi, S.S.; Siddique, K.H.M. Impact of abiotic stresses on grain composition and quality in food legumes. J. Agric. Food Chem. 2018, 66, 8887–8897. [Google Scholar] [CrossRef]
- Ning, M.; Li, Q.; Wang, Y.; Li, Q.; Tao, Y.; Zhang, F.; Hu, F.; Huang, L. Alternative splicing drives the functional diversification of a bHLH transcription factor in the control of growth and drought tolerance in rice. Sci. Bull. 2025, 70, 153–156. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, L.; Chen, Y.; Xiao, N.; Zhang, D.; Zhang, M.; Wang, W.; Zhang, C.; Zhang, A.; Li, H.; et al. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. Plant Cell 2022, 34, 4293–4312. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, F.; Mu, C.; Ma, C.; Yao, G.; Sun, Y.; Hou, J.; Leng, B.; Liu, X. The ZmbHLH47-ZmSnRK2.9 module promotes drought tolerance in maize. Int. J. Mol. Sci. 2024, 25, 4957. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M.; Zhang, M.; Jiang, W.; Liang, E.; Zhang, D.; Zhang, C.; Xiao, N.; Chen, J. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol. Biol. 2018, 97, 311–323. [Google Scholar] [CrossRef]
- Wei, S.; Xia, R.; Chen, C.; Shang, X.; Ge, F.; Wei, H.; Chen, H.; Wu, Y.; Xie, Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnol. J. 2021, 19, 2069–2081. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Zhang, Y.; Wang, B.; Ran, Q.; Zhang, J. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J. Exp. Bot. 2019, 70, 5471–5486. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, D.; Fahim, A.M.; Liu, H.; Zhang, Z.; Hu, D.; Ye, F.; Ma, C.; Abou-Elwaf, S.F.; Aboud, N.M.A.; et al. Comprehensive transcriptome analysis provides molecular insights into the heterosis-associated drought tolerance and reveals ZmbHLH137 that promotes drought tolerance in maize seedlings. Front. Plant Sci. 2025, 16, 1565650. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, H.; Cao, Y.; Liu, Y.; Zhao, Y.; Sun, F.; Yang, Q.; Zhang, X.; Zhang, Y.; Wang, Y.; et al. Maize ZmBES1/BZR1-1 transcription factor negatively regulates drought tolerance. Plant Physiol. Biochem. 2023, 205, 108188. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Cao, Y.; Batool, A.; Xu, Y.; Qiao, Y.; Li, Y.; Wang, H.; Lin, X.; Bie, X.; et al. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat. J. Integr. Plant Biol. 2024, 66, 1295–1312. [Google Scholar] [CrossRef]
- Du, L.; Huang, X.; Ding, L.; Wang, Z.; Tang, D.; Chen, B.; Ao, L.; Liu, Y.; Kang, Z.; Mao, H. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytol. 2023, 237, 232–250. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yao, S.; Hao, L.; Zhao, Y.; Lu, W.; Xiao, K. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep. 2016, 35, 2309–2323. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, Y.; Liu, D.; Wang, X.; Zhang, L. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat. BMC Plant Biol. 2020, 20, 259. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wang, Q.; Ding, L.; Li, F.; Fang, C.; Qu, H.; Wang, C.; Jiang, P.; Chen, B.; Qin, Z.; et al. TaDTGIP1-TaDTG6-B(Del574)-TaPIF1 module regulates drought stress response in wheat. New Phytol. 2025, 246, 2118–2136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiang, Z.; Li, J.; Wang, S.; Chen, Y.; Liu, Y.; Mao, D.; Luan, S.; Chen, L. bHLH57 confers chilling tolerance and grain yield improvement in rice. Plant Cell Environ. 2023, 46, 1402–1418. [Google Scholar] [CrossRef]
- Deng, C.; Ye, H.; Fan, M.; Pu, T.; Yan, J. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Plant Signal Behav. 2017, 12, e1316442. [Google Scholar] [CrossRef]
- Zeng, R.; Shi, Y.; Guo, L.; Fu, D.; Li, M.; Zhang, X.; Li, Z.; Zhuang, J.; Yang, X.; Zuo, J.; et al. A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize. Cell 2025, 188, 1315–1329.e13. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, Y.; Liu, J.; Li, Z.; Fu, D.; Wu, S.; Li, M.; Yang, Z.; Shi, Y.; Lai, J.; et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat. Plants 2022, 8, 1176–1190. [Google Scholar] [CrossRef]
- Wang, R.; Yu, M.; Xia, J.; Xing, J.; Fan, X.; Xu, Q.; Cang, J.; Zhang, D. Overexpression of TaMYC2 confers freeze tolerance by ICE-CBF-COR module in Arabidopsis thaliana. Front. Plant Sci. 2022, 13, 1042889. [Google Scholar] [CrossRef]
- Alam, M.S.; Kong, J.; Tao, R.; Ahmed, T.; Alamin, M.; Alotaibi, S.S.; Abdelsalam, N.R.; Xu, J.H. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants 2022, 11, 1184. [Google Scholar] [CrossRef]
- Chen, H.C.; Hsieh-Feng, V.; Liao, P.C.; Cheng, W.H.; Liu, L.Y.; Yang, Y.W.; Lai, M.H.; Chang, M.C. The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Mol. Biol. 2017, 94, 531–548. [Google Scholar] [CrossRef]
- Yu, C.; Yan, M.; Dong, H.; Luo, J.; Ke, Y.; Guo, A.; Chen, Y.; Zhang, J.; Huang, X. Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. Plant Sci. 2021, 302, 110676. [Google Scholar] [CrossRef]
- Xin, Z.; Huang, H.; Li, T.; Liu, L.; Du, X.; Li, G.; Zhang, K.; Wang, D.; Yang, Y. Comprehensive analysis of bHLH genes in wheat and functional characterization of TabHLH319 in salt tolerance. Plant Cell Rep. 2025, 44, 199. [Google Scholar] [CrossRef]
- Ji, X.; Du, Y.; Li, F.; Sun, H.; Zhang, J.; Li, J.; Peng, T.; Xin, Z.; Zhao, Q. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnol. J. 2019, 17, 1527–1537. [Google Scholar] [CrossRef]
- Gu, X.; Gao, S.; Li, J.; Song, P.; Zhang, Q.; Guo, J.; Wang, X.; Han, X.; Wang, X.; Zhu, Y.; et al. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice. Plant Physiol. Biochem. 2021, 169, 269–279. [Google Scholar] [CrossRef]
- Yan, Z.; Li, K.; Li, Y.; Wang, W.; Leng, B.; Yao, G.; Zhang, F.; Mu, C.; Liu, X. The ZmbHLH32-ZmIAA9-ZmARF1 module regulates salt tolerance in maize. Int. J. Biol. Macromol. 2023, 253, 126978. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Yang, C.; Cao, J.; Chen, H.; Pang, J.; Zhao, Q.; Wang, Z.; Qing Fu, Z.; Liu, J. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. J. Integr. Plant Biol. 2020, 62, 1552–1573. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Diao, Z.; Cao, C.; Liu, Y.; Xia, N.; Zhang, Y.; Lu, L.; Kong, F.; Zhou, H.; Chen, L.; et al. The receptor-like cytoplasmic kinase OsBSK1-2 regulates immunity via an HLH/bHLH complex. J. Integr. Plant Biol. 2024, 66, 2754–2771. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, R.; Wang, Q.; Zhu, J.; Zhou, J.; Sun, Y.; Shen, S.; Luo, J. OsbHLH5 synergically regulates phenolamide and diterpenoid phytoalexins involved in the defense of rice againstpathogens. Int. J. Mol. Sci. 2024, 25, 12152. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Y.; Cao, H.; He, K.; Chu, Z.; Li, N. OsbHLH057 targets the AATCA cis-element to regulate disease resistance and drought tolerance in rice. Plant Cell Rep. 2022, 41, 1285–1299. [Google Scholar] [CrossRef]
- Onohata, T.; Gomi, K. Overexpression of jasmonate-responsive OsbHLH034 in rice results in the induction of bacterial blight resistance via an increase in lignin biosynthesis. Plant Cell Rep. 2020, 39, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Huang, J.; Xu, H.; Wang, Y.; Li, C.; Wen, P.; You, X.; Zhang, X.; Pan, G.; Li, Q.; et al. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathog. 2020, 16, e1008801. [Google Scholar] [CrossRef]
- Zu, H.; Jin, G.; Kong, Y.; Li, Z.; Lou, Y.; Li, R. The N-terminal alpha2 helix element is critical for the activity of the rice transcription factor MYC2. Plant Mol. Biol. 2024, 114, 2. [Google Scholar] [CrossRef]
- Uji, Y.; Taniguchi, S.; Tamaoki, D.; Shishido, H.; Akimitsu, K.; Gomi, K. Overexpression of OsMYC2 results in the up-regulation of early JA-rresponsive genes and bacterial blightresistance in rice. Plant Cell Physiol. 2016, 57, 1814–1827. [Google Scholar] [CrossRef]
- Qiu, J.; Xie, J.; Chen, Y.; Shen, Z.; Shi, H.; Naqvi, N.I.; Qian, Q.; Liang, Y.; Kou, Y. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Mol. Plant 2022, 15, 723–739. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ma, L.; Zhang, H.; Okello, O.J.; Cui, J.; Wang, Q.; Gao, X. The ZmPIF4.1-ZmPTI1c-ZmMYB31 module regulates maize immunity to Gibberella stalk rot caused by Fusarium graminearum. Crop J. 2025, 13, 1054–1067. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, K.; Li, W.; Pang, X.; Liu, P.; Si, H.; Zang, J.; Xing, J.; Dong, J. ZmMYC7 directly regulates ZmERF147 to increase maize resistance to Fusarium graminearum. Crop J. 2023, 11, 79–88. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Unver, T.; Zhang, B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J. Adv. Res. 2021, 29, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Liu, J.; Zhai, Z.; Dai, M.; Tian, F.; Wu, Y.; Tang, J.; Lu, Y.; Wang, H.; Jackson, D.; et al. Maize2035: A decadal vision for intelligent maize breeding. Mol. Plant 2025, 18, 313–332. [Google Scholar] [CrossRef]
Gene Name | Gene Accession | Function | Refs. |
---|---|---|---|
OsIRO2/OsbHLH056 | Os01g0952800 | Essential for iron acquisition | [87] |
OsFIT/OsbHLH156 | Os04g0381700 | Promotes iron uptake | [89,90] |
OsIRO3 | Os03g0379300 | Negatively regulate iron deficiency responses. | [92,93] |
OsbHLH060/OsPRI1 | Os08g0138500 | Positively regulate iron deficiency responses. | [96] |
OsbHLH058/OsPRI2 | Os05g0455400 | [94,95] | |
OsbHLH059/OsPRI3 | Os02g0116600 | [94,95] | |
OsbHLH061 | Os11g0601700 | Negatively regulates the long-distance transport of iron. | [97] |
OsbHLH133 | Os12g0508500 | Regulate the distribution of iron between roots and shoots. | [98] |
ZmFIT | Zm00001d025205 | Promotes iron uptake | [99] |
ZmIRO2 | Zm00001d011847 | Promotes iron uptake | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Zhang, N.; Fan, X.; Wang, G. bHLH Transcription Factors in Cereal Crops: Diverse Functions in Regulating Growth, Development and Stress Responses. Int. J. Mol. Sci. 2025, 26, 9915. https://doi.org/10.3390/ijms26209915
Song S, Zhang N, Fan X, Wang G. bHLH Transcription Factors in Cereal Crops: Diverse Functions in Regulating Growth, Development and Stress Responses. International Journal of Molecular Sciences. 2025; 26(20):9915. https://doi.org/10.3390/ijms26209915
Chicago/Turabian StyleSong, Song, Nannan Zhang, Xiaowei Fan, and Guanfeng Wang. 2025. "bHLH Transcription Factors in Cereal Crops: Diverse Functions in Regulating Growth, Development and Stress Responses" International Journal of Molecular Sciences 26, no. 20: 9915. https://doi.org/10.3390/ijms26209915
APA StyleSong, S., Zhang, N., Fan, X., & Wang, G. (2025). bHLH Transcription Factors in Cereal Crops: Diverse Functions in Regulating Growth, Development and Stress Responses. International Journal of Molecular Sciences, 26(20), 9915. https://doi.org/10.3390/ijms26209915