Genome-Wide Identification and Expression Analysis of Adenylate Kinase Family Members in Pepper Under Abiotic Stress
Abstract
1. Introduction
2. Results
2.1. Genome-Wide Identification and Characterization of CaADK Family Members
2.2. Phylogenetic Analysis and Classification of CaADKs
2.3. Diversity Among CaADK Family Members
2.4. GO Analysis of ADKs in Pepper
2.5. Protein Secondary and Tertiary Structure Analysis of CaADKs
2.6. Cis-Acting Element Analysis of CaADKs
2.7. Tissue-Specific Expression Patterns of CaADKs
2.8. Transcriptome Analysis of CaADKs in Response to Abiotic Stresses and Exogenous Hormone Treatments
2.9. Expression Patterns of CaADKs Under Abiotic Stress
2.10. PPI Network Prediction Analysis of ADK Genes
3. Discussion
4. Materials and Methods
4.1. Identification of ADK Genes in the Pepper Genome and Subcellular Localization Analysis
4.2. Chromosomal Localization, Synteny, and Phylogenetic Analysis
4.3. Motif, Gene Structure, and Conserved Domain Analysis
4.4. Protein Secondary and Tertiary Structure Analysis
4.5. Cis-Acting Element Analysis and Gene Ontology Analysis
4.6. Tissue-Specific Expression
4.7. Transcriptome Data Analysis of ADK Gene Family in Pepper
4.8. RNA Extraction, cDNA Synthesis, and RT-qPCR
4.9. PPI Network Prediction Analysis of ADK Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujisawa, K. Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase Isozymes: Physiological Roles and Diseases. Int. J. Mol. Sci. 2023, 24, 5561. [Google Scholar] [CrossRef]
- Pradet, A.; Raymond, P. Adenine nucleotide Ratios and Adenylate Energy Charge in Energy Metabolism. Annu. Rev. Plant Physiol. 1983, 34, 199–224. [Google Scholar] [CrossRef]
- Park, J.; Gupta, R.S. Adenosine Meta Bolism, Adenosine Kinase, and Evolution; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Dzheia, P.; Kal’venas, A.; Toleĭkis, A.; Prashkiavichius, A. The role of adenylate kinase in the regulation of the rate and effectiveness of energy transfer from mitochondria to hexokinase in vitro. Biokhimiia 1986, 51, 974–979. [Google Scholar]
- Lange, P.R.; Geserick, C.; Tischendorf, G.; Zrenner, R. Functions of chloroplastic adenylate kinases in Arabidopsis. Plant Physiol. 2008, 146, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Regierer, B.; Fernie, A.R.; Springer, F.; Perez-Melis, A.; Leisse, A.; Koehl, K.; Willmitzer, L.; Geigenberger, P.; Kossmann, J. Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat. Biotechnol. 2002, 20, 1256–1260. [Google Scholar] [CrossRef]
- Arora, K.; Brooks, C.L. Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism. Proc. Natl. Acad. Sci. USA 2007, 104, 18496–18501. [Google Scholar] [CrossRef]
- Maragakis, P.; Karplus, M. Large amplitude conformational change in proteins explored with a plastic network model: Adenylate kinase. J. Mol. Biol. 2005, 352, 807–822. [Google Scholar] [CrossRef] [PubMed]
- Birkenhead, K.; Walker, D.; Foyer, C. The intracellular distribution of adenylate kinase in the leaves of spinach, wheat and barley. Planta 1982, 156, 171–175. [Google Scholar] [CrossRef]
- Boonrueng, C.; Tangpranomkorn, S.; Yazhisai, U.; Sirikantaramas, S. Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50. J. Plant Physiol. 2016, 204, 66–73. [Google Scholar] [CrossRef]
- Kawai, M.; Kidou, S.I.; Kato, A.; Uchimiya, H. Molecular characterization of cDNA encoding for adenylate kinase of rice (Oryza sativa L.). Plant J. 1992, 2, 845–854. [Google Scholar] [CrossRef]
- Carrari, F.; Coll-Garcia, D.; Schauer, N.; Lytovchenko, A.; Palacios-Rojas, N.; Balbo, I.; Rosso, M.; Fernie, A.R. Deficiency of a Plastidial Adenylate Kinase in Arabidopsis Results in Elevated Photosynthetic Amino Acid Biosynthesis and Enhanced Growth. Plant Physiol. 2005, 137, 70–82. [Google Scholar] [CrossRef]
- Weretigk, E.A.; Alexander, K.J.; Drebensteat, M.; Ssnider, J.D.; Summers, P.S.; Mofratt, B.A. Maitaning Mtlyation Actvties Durng Salt Stess, the Ivovement of Adenosine Kinase 1. Plant Physiol. 2001, 125, 856–865. [Google Scholar] [CrossRef]
- Gai, J.T.; Zhao, T.J.; Li, Y.; Gai, J.Y. Cloning and Expression Analysis of an Adenylate Kinase Gene GmADK in Soybean. Acta Agron. Sin. 2013, 39, 1739. [Google Scholar] [CrossRef]
- Gong, P.; Zhang, J.; Li, H.; Yang, C.; Zhang, C.; Zhang, X.; Khurram, Z.; Zhang, Y.; Wang, T.; Fei, Z. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J. Exp. Bot. 2010, 61, 3563–3575. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, S.; Boone, B.; Levy, S. Microarray analysis of genes affected by salt stress in tomato. Afr. J. Environ. Sci. Technol. 2007, 1, 14–26. [Google Scholar]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef]
- Jarret, R.L.; Barboza, G.E.; Costa Batista, F.R.; Berke, T.; Chou, Y.; Hulse-Kemp, A.; Ochoa-Alejo, N.; Pasquale, T.; Veres, A.; Carrizo Garcia, C.; et al. Capsicum—An Abbreviated Compendium. J. Amer. Soc. Hort. Sci. 2019, 144, 3–22. [Google Scholar] [CrossRef]
- Bae, Y.; Lim, C.W.; Lee, S.C. Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. Front. Plant Sci. 2021, 12, 756068. [Google Scholar] [CrossRef]
- Särkinen, T.; Huang, S.; Li, X.; Wang, X.; Soltis, D.E.; Soltis, P.S.; Zhang, C. The evolutionary history of Solanaceae inferred from nuclear transcriptomes and genomes. Nature 2015, 528, 302–307. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, L.; Chen, S.; Zhang, X.; Zhu, N.; Wei, P.; Zhou, C. Adk1 Overexpression and Sodium Citrate Feeding Enhanced S-adenosylmethionine Synthesis in Yeast. J. Agri. Sci. Technol. 2020, 22, 69–76. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Kleczkowski, L.A. Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. J. Exp. Bot. 2006, 57, 2133–2141. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Z.; Liu, C.; Li, L.; Xu, D. Bioinformatics analysis of rice ADK gene family. Mol. Plant Breed. 2023, 1–10. Available online: https://www.cnki.com.cn/Article/CJFDTotal-FZZW20230523008.htm (accessed on 27 July 2025).
- Yang, L.; Cao, H.; Zhang, X.; Gui, L.; Chen, Q.; Qian, G.; Xiao, J.; Li, Z. Genome-Wide Identification and Expression Analysis of Tomato ADK Gene Family during Development and Stress. Int. J. Mol. Sci. 2021, 22, 7708. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, Y.; Xu, J.; Wei, Z.; Wei, J.; Min, X. Identification and analysis of ADK gene family members in alfalfa (Medicago sativa). Caoye Kexue 2022, 39, 1803–1814. [Google Scholar]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon–intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef]
- Peters, S.A.; Bargsten, J.W.; Szinay, D.; van de Belt, J.; Visser, R.G.; Bai, Y.; de Jong, H. Structural homology in the Solanaceae: Analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J. 2012, 71, 602–614. [Google Scholar] [CrossRef]
- Li, X.; Lyu, C.; Song, J.; Lu, Y.; Zeng, F.; Lu, L.; Li, L. Identification and Expression Analysis of Adenylate Kinase Gene Family in Potato. Horticulturae 2023, 9, 1025. [Google Scholar] [CrossRef]
- Lee, S.C.; Luan, S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 2012, 35, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Seah, S.W.; Xu, J. The root of ABA action in environmental stress response. Plant Cell Rep. 2013, 32, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jia, W.; Yang, J.; Ismail, M. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 2006, 97, 111–119. [Google Scholar] [CrossRef]
- Peterson, T.A.; Nieman, R.H.; Clark, R.A. Nucleotide Metabolism in Salt-Stressed Zea mays L. Root Tips: I. Adenine and Uridine Nucleotides. Plant Physiol. 1987, 85, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Lantzouni, O.; Alkofer, A.; Falter-Braun, P.; Schwechheimer, C. GROWTH-REGULATING FACTORS Interact with DELLAs and Regulate Growth in Cold Stress. Plant Cell 2020, 32, 1018–1034. [Google Scholar] [CrossRef]
- Saleem, M.; Fariduddin, Q.; Janda, T. Multifaceted Role of Salicylic Acid in Combating Cold Stress in Plants: A Review. J. Plant Growth Regul. 2021, 40, 464–485. [Google Scholar] [CrossRef]
- Wan, S.-B.; Tian, L.; Tian, R.-R.; Pan, Q.-H.; Zhan, J.-C.; Wen, P.-F.; Chen, J.-Y.; Zhang, P.; Wang, W.; Huang, W.-D. Involvement of phospholipase D in the low temperature acclimation-induced thermotolerance in grape berry. Plant Physio. Biochem. 2009, 47, 504–510. [Google Scholar] [CrossRef]
- Ding, F.; Wang, X.; Li, Z.; Wang, M. Jasmonate Positively Regulates Cold Tolerance by Promoting ABA Biosynthesis in Tomato. Plants 2022, 12, 60. [Google Scholar] [CrossRef]
- Nie, G.; Zhou, J.; Jiang, Y.; He, J.; Wang, Y.; Liao, Z.; Appiah, C.; Li, D.; Feng, G.; Huang, L.; et al. Transcriptome characterization of candidate genes for heat tolerance in perennial ryegrass after exogenous methyl Jasmonate application. BMC Plant Biol. 2022, 22, 68. [Google Scholar] [CrossRef]
- Hampp, R.; Goller, M.; Ziegler, H. Adenylate levels, energy charge, and phosphorylation potential during dark-light and light-dark transition in chloroplasts, mitochondria, and cytosol of mesophyll protoplasts from Avena sativa L. Plant Physiol. 1982, 69, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Stitt, M.; Lilley, R.M.; Heldt, H.W. Adenine Nucleotide Levels in the Cytosol, Chloroplasts, and Mitochondria of Wheat Leaf Protoplasts 1. Plant Physiol. 1982, 70, 971–977. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Xu, Q.; Dunbrack, R.L., Jr. Assignment of protein sequences to existing domain and family classification systems: Pfam and the PDB. Bioinformatics. 2012, 28, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Qin, C.; Yu, C.; Shen, Y.; Fang, X.; Chen, L.; Min, J.; Cheng, J.; Zhao, S.; Xu, M.; Luo, Y.; et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. USA 2014, 111, 5135–5140. [Google Scholar] [CrossRef]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34, W369–W373. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, R60. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]











| Gene ID | Name | Chr | Start | End | Subcellular | AA | II | GRAVY | MW (Da) | PI |
|---|---|---|---|---|---|---|---|---|---|---|
| Capana01g000752 | CaADK1 | 1 | 15523773 | 15526802 | Nuclear | 226 | 36.23 | −0.464 | 25,452.25 | 7.59 |
| Capana01g001211 | CaADK2 | 1 | 36924721 | 36925447 | Cytoplasmic | 125 | 61.98 | −0.431 | 14,101.31 | 6.09 |
| Capana01g003380 | CaADK3 | 1 | 225341827 | 225345336 | Cytoplasmic | 209 | 35.56 | −0.291 | 22,892.08 | 5.3 |
| Capana02g003629 | CaADK4 | 2 | 163094406 | 163095880 | Chloroplast | 264 | 38.06 | −0.215 | 29,387.73 | 6.96 |
| Capana03g001368 | CaADK5 | 3 | 24852841 | 24856942 | Cytoskeletal | 233 | 41.79 | −0.29 | 25,466.41 | 6.91 |
| Capana03g002276 | CaADK6 | 3 | 57187892 | 57188440 | Nuclear | 119 | 40.43 | −0.355 | 13,409.26 | 4.97 |
| Capana03g002509 | CaADK7 | 3 | 78776948 | 78779833 | Mitochondrial | 248 | 46.15 | −0.466 | 28,238.46 | 7.63 |
| Capana04g001180 | CaADK8 | 4 | 36386958 | 36387557 | Cytoplasmic | 152 | 43.75 | 0.025 | 17,260.02 | 5.91 |
| Capana04g002894 | CaADK9 | 4 | 215636406 | 215639140 | Nuclear | 251 | 52.09 | −0.33 | 28,302.5 | 6.26 |
| Capana05g001537 | CaADK10 | 5 | 147669252 | 147669866 | Cytoplasmic | 127 | 31.04 | −0.012 | 14,598.09 | 5.92 |
| Capana06g001357 | CaADK11 | 6 | 29729067 | 29732546 | Chloroplast | 237 | 54.74 | −0.278 | 25,989.66 | 6.84 |
| Capana09g000061 | CaADK12 | 9 | 1398616 | 1404683 | Cytoplasmic | 536 | 36.79 | −0.318 | 59,842.7 | 5.79 |
| Capana09g001871 | CaADK13 | 9 | 213514351 | 213519615 | Chloroplast | 333 | 40.22 | −0.152 | 36,395.87 | 8.13 |
| Capana11g001398 | CaADK14 | 11 | 166349615 | 166351052 | Cytoplasmic | 112 | 30.56 | 0.302 | 12,137.1 | 4.67 |
| Capana12g001687 | CaADK15 | 12 | 145918582 | 145930123 | Mitochondrial | 280 | 45.31 | −0.272 | 31,145.88 | 6.54 |
| Average | \ | \ | \ | \ | \ | 245.23 | 43.11 | −0.30 | 27,324.78 | 6.53 |
| Motif | Motif Consensus |
|---|---|
| Motif 1 | GGPGSGKGTQCERJAKLFGLPHISTGDLLRQEJKSGSELGKKIAEIMNZG |
| Motif 2 | GEKGFJLDGFPRSKIQAEILE |
| Motif 3 | GVDPDLVLNLKCPEEILVKRVLGRRLYP |
| Motif 4 | DDNEDTVRERLKVYMESSLPVEEYYRKKGKLLEFDAAGGIPEVWZKLLAA |
| Motif 5 | KLVPEEVIFGLLSKRLEEGYC |
| Motif 6 | SFADDGKRVKVCVQGSLGEGALAGMPLQLAESRKILEFMDWGDYGALGTF |
| Motif 7 | KGRGVQWVIM |
| Motif 8 | EFLCRGTYEINTSRQAEGDHFRPSSIMDDVSRKNLQVH |
| Motif 9 | QDDLFILVAFQNAVENCIIDVIHRE |
| Motif 10 | TGKIYHLKYSPPETEEI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Sun, K.; Zhou, J.; Xu, J.; Feng, A.; Zhao, X. Genome-Wide Identification and Expression Analysis of Adenylate Kinase Family Members in Pepper Under Abiotic Stress. Int. J. Mol. Sci. 2025, 26, 10213. https://doi.org/10.3390/ijms262010213
Han B, Sun K, Zhou J, Xu J, Feng A, Zhao X. Genome-Wide Identification and Expression Analysis of Adenylate Kinase Family Members in Pepper Under Abiotic Stress. International Journal of Molecular Sciences. 2025; 26(20):10213. https://doi.org/10.3390/ijms262010213
Chicago/Turabian StyleHan, Bingxue, Kexu Sun, Jingyuan Zhou, Junwei Xu, Aidi Feng, and Xiaohong Zhao. 2025. "Genome-Wide Identification and Expression Analysis of Adenylate Kinase Family Members in Pepper Under Abiotic Stress" International Journal of Molecular Sciences 26, no. 20: 10213. https://doi.org/10.3390/ijms262010213
APA StyleHan, B., Sun, K., Zhou, J., Xu, J., Feng, A., & Zhao, X. (2025). Genome-Wide Identification and Expression Analysis of Adenylate Kinase Family Members in Pepper Under Abiotic Stress. International Journal of Molecular Sciences, 26(20), 10213. https://doi.org/10.3390/ijms262010213
