The Molecular Interplay Between Oral Microbiome and Oral Cancer Pathogenesis
Abstract
1. Introduction
2. General Characteristics of the Oral Microbiome
3. The Connection Between Oral Microbiome and Oral Cancer
3.1. Oral Microbiome and Premalignant Lesions
3.2. Oral Bacterial Landscape and Oral Cancer
Bacterium (Phylum) | Gram | Mechanism of Action | References |
---|---|---|---|
Fusobacterium nucleatum (Fusobacteriota) | + | FadA adhesin activates E-cadherin/β-catenin signaling; chronic inflammation via LPS and flagella; CCL20 activation; promotes proliferation, invasion, metastasis; DNA damage via Ku70/p53; activates TLR4 → p38 MAPK & NF-κB (p65); increases IL-6 and IL-8; Fap2 binds TIGIT, inhibiting NK cells. | [20,40,63,67,68,69] |
Porphyromonas gingivalis (Bacteroidetes) | − | Inhibits apoptosis via JAK1/STAT3; increases invasion, migration, EMT; oxidative stress & DNA damage; chemoresistance; gingipains degrade ECM and inactivate complement; activates β-catenin/TCF; modulates miRNAs (e.g., miR-21); induces IL-6 and IL-8. | [29,68,70,71,72] |
Treponema denticola (Spirochaetota) | − | Dentilisin enhances invasiveness; disrupts junctions; increases MMPs; activates β1/β3 integrins; degrades fibronectin/laminin; activates p38 MAPK & ERK1/2. | [72] |
Aggregatibacter actinomycetemcomitans (Pseudomonadota) | − | Induces pro-inflammatory cytokines; produces H2S and methyl mercaptan; promotes proliferation/migration/angiogenesis; MK2 pathway; LtxA toxin induces apoptosis; stimulates IL-1β via NLRP3; activates osteoclastogenesis. | [73,74,75] |
Prevotella intermedia (Bacteroidetes) | − | Dysbiosis/inflammation; extracellular proteases degrade immunoglobulins & complement; activates IL-8 and TNF-α via TLR2/TLR4. | [76,77] |
Peptostreptococcus stomatis (Bacillota) | + | Promotes inflammation; enriched in OSCC tumor tissue; possible synergy with other anaerobes. | [58] |
Parvimonas micra (Bacillota) | + | Correlated with advanced stage & lymphatic spread; promotes inflammation; stimulates IL-6; activates NF-κB; biofilm cooperation with F. nucleatum. | [68] |
Streptococcus anginosus (Bacillota) | + | Produces acetaldehyde; induces apoptosis; DNA damage via aldehydes; activates IL-8 and TNF-α; upregulates COX-2/PGE2; increases VEGF-mediated angiogenesis. | [78] |
Pseudomonas aeruginosa (Pseudomonadota) | − | LPS/flagella → TLR/MyD88/NF-κB; ExoU induces IL-8/KC; LasI disrupts E-cadherin; DNA double-strand breaks; nitrite reductase; exotoxin A inhibits protein synthesis; ROS generation; elastase degrades ECM. | [29,63,64] |
Haemophilus influenzae (Pseudomonadota) | − | Higher abundance in advanced OSCC; activates TLR2/TLR4 → IL-8; induces NETs, sustaining inflammation. | [68] |
Fusobacterium periodonticum (Fusobacteriota) | − | Linked to advanced stage & lymphatic spread; stimulates IL-1β and IL-18 via inflammasome. | [68] |
Streptococcus constellatus (Bacillota) | + | Enriched in advanced stages; involved in inflammation; lactate production supports anaerobes. | [68] |
Filifactor alocis (Bacillota) | + | Increased in advanced OSCC; oxidative stress resistance via superoxide dismutase; evades phagocytosis; sustains inflammation via IL-1β. | [68] |
Veillonella spp. (Bacillota—class Negativicutes) | − | Associated with OSCC; lactate metabolism to propionate/acetate; alters pH; stimulates IL-6/IL-8. | [68] |
3.3. Periodontitis Bacteria and Oral Cancer
3.4. The Link Between Other Oral Microbial Components and Oral Cancer Development
3.5. Oral Microbiome and Gastrointestinal Cancers
Organ | Bacterial Type and Changes | Molecular Mechanisms | Reference |
---|---|---|---|
Esophageal cancer | ↑ Prevotella melaninogenica, Streptococcus mitis, Porphyromonas gingivalis, Capnocytophaga gingivalis, Firmicutes, Negativicutes, Selenomonadales, Prevotellaceae, Prevotella, Veillonellaceae Bulleidia, Catonella, Moryella, Corynebacterium, Peptococus, Cardiobacterium | Acetaldehyde production and ROS production Apoptosis induction and modulates tumor microenviroment Promotes DNA damage EMT Chemoresistance | [76,96,97,98,99] |
Gastric cancer | ↑ Haemophilus parainfluenzae, Nitrospirae Cyanobacteria species, Streptococcus ↓ Anaerovorax, Bulleidia, Peptostreptococcs | N-nitroso compounds Acetaldehyde production | [94,95] |
Pancreatic cancer | ↑ Neisseria elongata, Streptococcus mitis, Porphyromonas gingivalis | Cytokine production DNA damage Acetaldehyde production ROS production | [76,77,100,101] |
Colorectal cancer | ↑ Fusobacterium nucleatum, Prevotella intermedia ↓ Haemophilus, Micromonas Prevotella Heterobacterium, Neisseria Streptococcus | Inflammation Dentilisin → tumor invasiveness Mycrobiome dysregulation DNA damage | [76,77] |
4. Therapeutic Strategies Involving Oral Microbiota in the Management of Oral Cancer
4.1. Bacterial Potential as an Antitumor Agent
4.2. Probiotics as Part of the Oral Cancer Management Strategy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
CRC | Colorectal Cancer |
EMT | Epithelial–Mesenchymal Transition |
HOMD | The Human Oral Microbiome Database |
LasL | Las autoinducer synthase |
LasR | Las Regulator |
MMP | Metalloproteinase |
OLK | Oral Leukoplakia |
OPMD | Oral Potential Malignant Disorder |
OLP | Oral Lichen Planus |
OSCC | Oral Squamous Cell Carcinoma |
SCFA | Short-Chain Fatty Acids |
References
- Available online: https://gco.iarc.who.int/today (accessed on 15 June 2025).
- Ali, J.; Sabiha, B.; Jan, H.U.; Haider, S.A.; Khan, A.A.; Ali, S.S. Genetic etiology of oral cancer. Oral Oncol. 2017, 70, 23–28. [Google Scholar] [CrossRef]
- Jadhav, K.B.; Gupta, N. Clinicopathological prognostic implicators of oral squamous cell carcinoma: Need to understand and revise. N. Am. J. Med. Sci. 2013, 5, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J. Expression of mutant p53 in oral squamous cell carcinoma is correlated with the effectiveness of intra-arterial chemotherapy. Oncol. Lett. 2015, 10, 2883–2887. [Google Scholar] [CrossRef]
- Thomas, S.; Balan, A.; Balaram, P. The expression of retinoblastoma tumor suppressor protein in oral cancers and precancers: A clinicopathological study. Dent. Res. J. 2015, 12, 307–314. [Google Scholar] [CrossRef]
- Padhi, S.S.; Roy, S.; Kar, M.; Saha, A.; Roy, S.; Adhya, A.; Baisakh, M.; Banerjee, B. Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma. Oral Oncol. 2017, 73, 27–35. [Google Scholar] [CrossRef]
- Caruntu, A.; Scheau, C.; Tampa, M.; Georgescu, S.R.; Caruntu, C.; Tanase, C. Complex Interaction Among Immune, Inflammatory, and Carcinogenic Mechanisms in the Head and Neck Squamous Cell Carcinoma. Adv. Exp. Med. Biol. 2021, 1335, 11–35. [Google Scholar] [CrossRef]
- Deo, P.; Deshmukh, R. Oral microbiome and oral cancer—The probable nexus. J. Oral Maxillofac. Pathol. 2020, 24, 361–367. [Google Scholar] [CrossRef]
- Kavarthapu, A.; Gurumoorthy, K. Linking chronic periodontitis and oral cancer: A review. Oral Oncol. 2021, 121, 105375. [Google Scholar] [CrossRef] [PubMed]
- Pelucchi, C.; Gallus, S.; Garavello, W.; Bosetti, C.; La Vecchia, C. Cancer risk associated with alcohol and tobacco use: Focus on upper aero-digestive tract and liver. Alcohol Res. Health 2006, 29, 193–198. [Google Scholar] [PubMed]
- Börnigen, D.; Ren, B.; Pickard, R.; Li, J.; Ozer, E.; Hartmann, E.M.; Xiao, W.; Tickle, T.; Rider, J.; Gevers, D.; et al. Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Sci. Rep. 2017, 7, 17686. [Google Scholar] [CrossRef]
- Mosaddad, S.A.; Beigi, K.; Doroodizadeh, T.; Haghnegahdar, M.; Golfeshan, F.; Ranjbar, R.; Tebyanian, H. Therapeutic applications of herbal/synthetic/bio-drug in oral cancer: An update. Eur. J. Pharmacol. 2021, 890, 173657. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Nouri, Z.; Choi, S.W.; Choi, I.J.; Ryu, K.W.; Woo, S.M.; Park, S.J.; Lee, W.J.; Choi, W.; Jung, Y.S.; Myung, S.K.; et al. Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer. Cancers 2023, 15, 2898. [Google Scholar] [CrossRef]
- Yao, Q.-W.; Zhou, D.-S.; Peng, H.-J.; Ji, P.; Liu, D.-S. Association of periodontal disease with oral cancer: A meta-analysis. Tumor Biol. 2014, 35, 7073–7077. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Yu, H.; Zhou, H.; Xu, S. Oral Microbiota as Promising Diagnostic Biomarkers for Gastrointestinal Cancer: A Systematic Review. OncoTargets Ther. 2019, 12, 11131–11144. [Google Scholar] [CrossRef] [PubMed]
- Amieva, M.; Peek, R.M. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016, 150, 64–78. [Google Scholar] [CrossRef]
- Marshall, B.J.; Warren, J.R.; Blincow, E.D.; Phillips, M.; Stewart Goodwin, C.; Murray, R.; Blackbourn, S.J.; Waters, T.E.; Sanderson, C.R. Prospective Double-Blind Trial of Duodenal Ulcer Relapse After Eradication of Campylobacter Pylori. Lancet 1988, 332, 1437–1442. [Google Scholar] [CrossRef]
- Andreica, V.; Dumitraşcu, D.; Saşcă, N.; Saşcă, C.; Drăghici, A.; Pascu, O.; Gorgan, V.; Ban, A. Campylobacter pylori infection in chronic gastritis and gastric cancer. Rev. Med. Interna Neurol. Psihiatr. Neurochir. Derm.-Venerol. Med. Interna 1989, 41, 49–56. [Google Scholar]
- Sami, A.; Elimairi, I.; Stanton, C.; Ross, R.P.; Ryan, C.A. The role of the microbiome in oral squamous cell carcinoma with insight into the microbiome–treatment axis. Int. J. Mol. Sci. 2020, 21, 8061. [Google Scholar] [CrossRef] [PubMed]
- Mallika, L.; Augustine, D.; Rao, R.S.; Patil, S.; Alamir, A.W.H.; Awan, K.H.; Sowmya, S.V.; Haragannavar, V.C.; Prasad, K. Does microbiome shift play a role in carcinogenesis? A systematic review. Transl. Cancer Res. 2020, 9, 3153–3166. [Google Scholar] [CrossRef] [PubMed]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Neufeld, J.D. Life in a World without Microbes. PLoS Biol. 2014, 12, e1002020. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, E.; Mayer, M.J.; Cotter, P.D.; Narbad, A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 2019, 10, 1–21. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The Human Oral Microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med. 2016, 8, 51. [Google Scholar] [CrossRef]
- Zhang, M.; Whiteley, M.; Lewin, G.R. Polymicrobial Interactions of Oral Microbiota: A Historical Review and Current Perspective. mBio 2022, 13, e0023522. [Google Scholar] [CrossRef]
- Vyhnalova, T.; Danek, Z.; Gachova, D.; Linhartova, P.B. The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms 2021, 9, 1549. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Hein, R.; Schmidt, T.M.; Kamada, N. The Bacterial Connection between the Oral Cavity and the Gut Diseases. J. Dent. Res. 2020, 99, 1021–1029. [Google Scholar] [CrossRef]
- Huse, S.M.; Ye, Y.; Zhou, Y.; Fodor, A.A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 2012, 7, e34242. [Google Scholar] [CrossRef] [PubMed]
- Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
- Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.; Chakraborty, B.; Wen, Z.; Richards, V.P.; Jeannine Brady, L.; Lemos, J.A. Biology of oral streptococci. In Gram-Positive Pathogens; Wiley: Hoboken, NJ, USA, 2019; pp. 426–434. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Mager, D.L.; Haffajee, A.D.; Delvin, P.M.; Norris, C.M.; Posner, M.R.; Goodson, J.M. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 2005, 3, 27. [Google Scholar] [CrossRef] [PubMed]
- Giordano-Kelhoffer, B.; Lorca, C.; March Llanes, J.; Rábano, A.; Del Ser, T.; Serra, A.; Gallart-Palau, X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022, 10, 1803. [Google Scholar] [CrossRef]
- Karpiński, T.M. Role of oral microbiota in cancer development. Microorganisms 2019, 7, 20. [Google Scholar] [CrossRef]
- Kowalski, K.; Mulak, A. Brain-gut-microbiota axis in Alzheimer’s disease. J. Neurogastroenterol. Motil. 2019, 25, 48–60. [Google Scholar] [CrossRef]
- Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Kunath, B.J.; De Rudder, C.; Laczny, C.C.; Letellier, E.; Wilmes, P. The oral–gut microbiome axis in health and disease. Nat. Rev. Microbiol. 2024, 22, 791–805. [Google Scholar] [CrossRef]
- Chocolatewala, N.; Chaturvedi, P.; Desale, R. The role of bacteria in oral cancer. Indian J. Med. Paediatr. Oncol. 2010, 31, 126–131. [Google Scholar] [CrossRef]
- Lee, W.H.; Chen, H.M.; Yang, S.F.; Liang, C.; Peng, C.Y.; Lin, F.M.; Tsai, L.L.; Wu, B.C.; Hsin, C.H.; Chuang, C.Y.; et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017, 7, 16540. [Google Scholar] [CrossRef]
- Willis, J.R.; Gabaldón, T. The human oral microbiome in health and disease: From sequences to ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef]
- Pietrobon, G.; Tagliabue, M.; Stringa, L.M.; De Berardinis, R.; Chu, F.; Zocchi, J.; Carlotto, E.; Chiocca, S.; Ansarin, M. Leukoplakia in the Oral Cavity and Oral Microbiota: A Comprehensive Review. Cancers 2021, 13, 4439. [Google Scholar] [CrossRef]
- Amer, A.; Galvin, S.; Healy, C.M.; Moran, G.P. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia species. Front. Microbiol. 2017, 8, 2391. [Google Scholar] [CrossRef]
- Schmidt, B.L.; Kuczynski, J.; Bhattacharya, A.; Huey, B.; Corby, P.M.; Queiroz, E.L.S.; Nightingale, K.; Kerr, A.R.; DeLacure, M.D.; Veeramachaneni, R.; et al. Changes in Abundance of Oral Microbiota Associated with Oral Cancer. PLoS ONE 2014, 9, e98741. [Google Scholar] [CrossRef]
- Gallimidi, A.B.; Fischman, S.; Revach, B.; Bulvik, R.; Maliutina, A.; Rubinstein, A.M.; Nussbaum, G.; Elkin, M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015, 6, 22613–22623. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Nuccio, F.; Piattelli, A.; Curia, M.C. The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms 2023, 11, 2358. [Google Scholar] [CrossRef] [PubMed]
- Abdul, N.S.; Rashdan, Y.; Alenezi, N.; Alenezi, M.; Mohsin, L.; Hassan, A. Association Between Oral Microbiota and Oral Leukoplakia: A Systematic Review. Cureus 2024, 16, e52095. [Google Scholar] [CrossRef]
- Hassane, D.C.; Lee, R.B.; Pickett, C.L. Campylobacter jejuni cytolethal distending toxin promotes DNA repair responses in normal human cells. Infect. Immun. 2003, 71, 541–545. [Google Scholar] [CrossRef]
- Tuominen, H.; Rautava, J. Oral Microbiota and Cancer Development. Pathobiology 2021, 88, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.; Whelan, A.; Al-Hebshi, N.N.; Healy, C.M.; Moran, G.P. Acetaldehyde production by Rothia mucilaginosa isolates from patients with oral leukoplakia. J. Oral Microbiol. 2020, 12, 1743066. [Google Scholar] [CrossRef] [PubMed]
- Ganly, I.; Yang, L.; Giese, R.A.; Hao, Y.; Nossa, C.W.; Morris, L.G.T.; Rosenthal, M.; Migliacci, J.; Kelly, D.; Tseng, W.; et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int. J. Cancer 2019, 145, 775–784. [Google Scholar] [CrossRef]
- Decsi, G.; Soki, J.; Pap, B.; Dobra, G.; Harmati, M.; Kormondi, S.; Pankotai, T.; Braunitzer, G.; Minarovits, J.; Sonkodi, I.; et al. Chicken or the Egg: Microbial Alterations in Biopsy Samples of Patients with Oral Potentially Malignant Disorders. Pathol. Oncol. Res. 2019, 25, 1023–1033. [Google Scholar] [CrossRef]
- Hashimoto, K.; Shimizu, D.; Hirabayashi, S.; Ueda, S.; Miyabe, S.; Oh-Iwa, I.; Nagao, T.; Shimozato, K.; Nomoto, S. Changes in oral microbial profiles associated with oral squamous cell carcinoma vs. leukoplakia. J. Investig. Clin. Dent. 2019, 10, e12445. [Google Scholar] [CrossRef]
- Wang, K.; Lu, W.; Tu, Q.; Ge, Y.; He, J.; Zhou, Y.; Gou, Y.; Van Nostrand, J.D.; Qin, Y.; Li, J.; et al. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Sci. Rep. 2016, 6, 22943. [Google Scholar] [CrossRef] [PubMed]
- Pushalkar, S.; Ji, X.; Li, Y.; Estilo, C.; Yegnanarayana, R.; Singh, B.; Li, X.; Saxena, D. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 2012, 12, 144. [Google Scholar] [CrossRef]
- Tomic, U.; Nikolic, N.; Carkic, J.; Mihailovic, D.; Jelovac, D.; Milasin, J.; Pucar, A. Streptococcus mitis and Prevotella melaninogenica Influence Gene Expression Changes in Oral Mucosal Lesions in Periodontitis Patients. Pathogens 2023, 12, 1194. [Google Scholar] [CrossRef]
- Nagy, K.N.; Sonkodi, I.; Szöke, I.; Nagy, E.; Newman, H.N. The microflora associated with human oral carcinomas. Oral Oncol. 1998, 34, 304–308. [Google Scholar] [CrossRef]
- Nie, F.; Wang, L.; Huang, Y.; Yang, P.; Gong, P.; Feng, Q.; Yang, C. Characteristics of Microbial Distribution in Different Oral Niches of Oral Squamous Cell Carcinoma. Front. Cell. Infect. Microbiol. 2022, 12, 905653. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Deng, J.; Donati, V.; Merali, N.; Frampton, A.E.; Giovannetti, E.; Deng, D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024, 13, 93. [Google Scholar] [CrossRef] [PubMed]
- Al-Hebshi, N.N.; Nasher, A.T.; Maryoud, M.Y.; Homeida, H.E.; Chen, T.; Idris, A.M.; Johnson, N.W. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci. Rep. 2017, 7, 1834. [Google Scholar] [CrossRef]
- Irfan, M.; Delgado, R.Z.R.; Frias-Lopez, J. The Oral Microbiome and Cancer. Front. Immunol. 2020, 11, 591088. [Google Scholar] [CrossRef]
- Zhu, W.; Shen, W.; Wang, J.; Xu, Y.; Zhai, R.; Zhang, J.; Wang, M.; Wang, M.; Liu, L. Capnocytophaga gingivalis is a potential tumor promotor in oral cancer. Oral Dis. 2024, 30, 353–362. [Google Scholar] [CrossRef]
- Deo, P.N.; Deshmukh, R.S.; Gaike, A.H.; Christopher, A.; Gujare, M.; Inamdar, M. Oral microbiome profiles in oral potentially malignant disorders and oral cancer—A diagnostic perspective. J. Oral Maxillofac. Pathol. 2025, 29, 87–97. [Google Scholar] [CrossRef]
- Wen, L.; Mu, W.; Lu, H.; Wang, X.; Fang, J.; Jia, Y.; Li, Q.; Wang, D.; Wen, S.; Guo, J.; et al. Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression in an Immune Microenvironment. J. Dent. Res. 2020, 99, 666–675. [Google Scholar] [CrossRef]
- Yang, C.Y.; Yeh, Y.M.; Yu, H.Y.; Chin, C.Y.; Hsu, C.W.; Liu, H.; Huang, P.J.; Hu, S.N.; Liao, C.T.; Chang, K.P.; et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front. Microbiol. 2018, 9, 862. [Google Scholar] [CrossRef]
- Petersen, P.E. Oral cancer prevention and control—The approach of the World Health Organization. Oral Oncol. 2009, 45, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Onate, M.D.; Pauley, K.M.; Bhattacharyya, I.; Cha, S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int. J. Oral Sci. 2011, 3, 209–215. [Google Scholar] [CrossRef]
- Nakhjiri, S.F.; Park, Y.; Yilmaz, O.; Chung, W.O.; Watanabe, K.; El-Sabaeny, A.; Park, K.; Lamont, R.J. Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis. FEMS Microbiol. Lett. 2001, 200, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimonds, Z.R.; Rodriguez-Hernandez, C.J.; Bagaitkar, J.; Lamont, R.J. From Beyond the Pale to the Pale Riders: The Emerging Association of Bacteria with Oral Cancer. J. Dent. Res. 2020, 99, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Herbert, B.A.; Steinkamp, H.M.; Gaestel, M.; Kirkwood, K.L. Mitogen-activated protein kinase 2 signaling shapes macrophage plasticity in Aggregatibacter actinomycetemcomitans-induced bone loss. Infect. Immun. 2017, 85, e00552-16. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Verma, M.; Panda, M. Role of Oral Microbiome Signatures in Diagnosis and Prognosis of Oral Cancer. Technol. Cancer Res. Treat. 2019, 18, 1533033819867354. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Berggren, K.L.; Spiess, C.D.; Smith, H.M.; Tejwani, A.; Weir, S.J.; Lominska, C.E.; Thomas, S.M.; Gan, G.N. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol. Carcinog. 2022, 61, 173–199. [Google Scholar] [CrossRef] [PubMed]
- Reitano, E.; De’angelis, N.; Gavriilidis, P.; Gaiani, F.; Memeo, R.; Inchingolo, R.; Bianchi, G.; De’Angelis, G.L.; Carra, M.C. Oral bacterial microbiota in digestive cancer patients: A systematic review. Microorganisms 2021, 9, 2585. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, Q.; Fan, W.; Huang, F.; He, H. Oral microbiota and gastrointestinal cancer. OncoTargets Ther. 2019, 12, 4721–4728. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, Y.; Chen, L.; Gao, J.; Yang, D.Q. Effect of Streptococcus anginosus on biological response of tongue squamous cell carcinoma cells. BMC Oral Health 2021, 21, 141. [Google Scholar] [CrossRef]
- Mathur, R.; Singhavi, H.R.; Malik, A.; Nair, S.; Chaturvedi, P. Role of Poor Oral Hygiene in Causation of Oral Cancer-a Review of Literature. Indian J. Surg. Oncol. 2019, 10, 184–195. [Google Scholar] [CrossRef]
- Peter, T.K.; Withanage, M.H.H.; Comnick, C.L.; Pendleton, C.; Dabdoub, S.; Ganesan, S.; Drake, D.; Banas, J.; Xie, X.J.; Zeng, E. Systematic review and meta-analysis of oral squamous cell carcinoma associated oral microbiome. Front. Microbiol. 2022, 13, 968304. [Google Scholar] [CrossRef]
- Li, Y.; Tan, X.; Zhao, X.; Xu, Z.; Dai, W.; Duan, W.; Huang, S.; Zhang, E.; Liu, J.; Zhang, S.; et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis. Oral Oncol. 2020, 107, 104710. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chu, M.; Huang, Z.; Yang, X.; Ran, S.; Hu, B.; Zhang, C.; Liang, J. Variations in oral microbiota associated with oral cancer. Sci. Rep. 2017, 7, 11773. [Google Scholar] [CrossRef]
- Bierne, H.; Hamon, M.; Cossart, P. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2012, 2, a010272. [Google Scholar] [CrossRef]
- Mivehchi, H.; Eskandari-Yaghbastlo, A.; Pour Bahrami, P.; Elhami, A.; Faghihinia, F.; Nejati, S.T.; Kazemi, K.S.; Nabi Afjadi, M. Exploring the role of oral bacteria in oral cancer: A narrative review. Discov. Oncol. 2025, 16, 242. [Google Scholar] [CrossRef]
- Geng, F.; Zhang, Y.; Lu, Z.; Zhang, S.; Pan, Y. Fusobacterium nucleatum Caused DNA Damage and Promoted Cell Proliferation by the Ku70/p53 Pathway in Oral Cancer Cells. DNA Cell Biol. 2020, 39, 144–151. [Google Scholar] [CrossRef]
- Healy, C.M.; Moran, G.P. The microbiome and oral cancer: More questions than answers. Oral Oncol. 2019, 89, 30–33. [Google Scholar] [CrossRef]
- Gillison, M.L.; Koch, W.M.; Capone, R.B.; Spafford, M.; Westra, W.H.; Wu, L.; Zahurak, M.L.; Daniel, R.W.; Viglione, M.; Symer, D.E.; et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 2000, 92, 709–720. [Google Scholar] [CrossRef]
- Aguayo, F.; Perez-Dominguez, F.; Osorio, J.C.; Oliva, C.; Calaf, G.M. PI3K/AKT/mTOR Signaling Pathway in HPV-Driven Head and Neck Carcinogenesis: Therapeutic Implications. Biology 2023, 12, 672. [Google Scholar] [CrossRef]
- Lo, A.K.F.; Dawson, C.W.; Lung, H.L.; Wong, K.L.; Young, L.S. The Role of EBV-Encoded LMP1 in the NPC Tumor Microenvironment: From Function to Therapy. Front. Oncol. 2021, 11, 640207. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wei, J.; Luo, Y.; Deng, Y.; Que, T.; Zhang, X.; Liu, F.; Zhang, J.; Luo, X. Epstein-barr virus promotes tumor angiogenesis by activating STIM1-dependent Ca2+ signaling in nasopharyngeal carcinoma. Pathogens 2021, 10, 1275. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Preston, R.; Godoy-Vitorino, F.; Jedlicka, A.; Rodríguez-Hilario, A.; González, H.; Bondy, J.; Lawson, F.; Folawiyo, O.; Michailidi, C.; Dziedzic, A.; et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 2016, 7, 51320–51334. [Google Scholar] [CrossRef] [PubMed]
- Srinivasprasad, V.; Dineshshankar, J.; Sathiyajeeva, J.; Karthikeyan, M.; Sunitha, J.; Ragunathan, R. Liaison between micro-organisms and oral cancer. J. Pharm. Bioallied Sci. 2015, 7, S354–S360. [Google Scholar] [CrossRef]
- Marttila, E.; Uittamo, J.; Rusanen, P.; Lindqvist, C.; Salaspuro, M.; Rautemaa, R. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; He, M.; Lei, Y.; Liu, Y.; Li, X.; Xiang, X.; Wu, Q.; Wang, Q. Oral Microbiota and Tumor—A New Perspective of Tumor Pathogenesis. Microorganisms 2022, 10, 2206. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Gao, X.; Wu, L.; Yan, B.; Wang, Z.; Zhang, X.; Peng, L.; Yu, J.; Sun, G.; Yang, Y. Salivary Microbiota for Gastric Cancer Prediction: An Exploratory Study. Front. Cell. Infect. Microbiol. 2021, 11, 640309. [Google Scholar] [CrossRef] [PubMed]
- Snider, E.J.; Compres, G.; Freedberg, D.E.; Giddins, M.J.; Khiabanian, H.; Lightdale, C.J.; Nobel, Y.R.; Toussaint, N.C.; Uhlemann, A.C.; Abrams, J.A. Barrett’s esophagus is associated with a distinct oral microbiome. Clin. Transl. Gastroenterol. 2018, 9, e135. [Google Scholar] [CrossRef]
- Chen, X.; Winckler, B.; Lu, M.; Cheng, H.; Yuan, Z.; Yang, Y.; Jin, L.; Ye, W. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS ONE 2015, 10, e0143603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, T.; Yan, Y.; Zhang, Y.; Li, Z.; Wang, Y.; Yang, J.; Xia, Y.; Xiao, H.; Han, H.; et al. Alterations of Oral Microbiota in Chinese Patients with Esophageal Cancer. Front. Cell. Infect. Microbiol. 2020, 10, 541144. [Google Scholar] [CrossRef]
- Yamamura, K.; Baba, Y.; Nakagawa, S.; Mima, K.; Miyake, K.; Nakamura, K.; Sawayama, H.; Kinoshita, K.; Ishimoto, T.; Iwatsuki, M.; et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin. Cancer Res. 2016, 22, 5574–5581. [Google Scholar] [CrossRef]
- Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut 2018, 67, 120–127. [Google Scholar] [CrossRef]
- Farrell, J.J.; Zhang, L.; Zhou, H.; Chia, D.; Elashoff, D.; Akin, D.; Paster, B.J.; Joshipura, K.; Wong, D.T.W. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 2012, 61, 582–588. [Google Scholar] [CrossRef]
- Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012, 22, 299–306. [Google Scholar] [CrossRef]
- Huang, J.; Roosaar, A.; Axéll, T.; Ye, W. A prospective cohort study on poor oral hygiene and pancreatic cancer risk. Int. J. Cancer 2016, 138, 340–347. [Google Scholar] [CrossRef]
- Porcheri, C.; Mitsiadis, T.A. New Scenarios in Pharmacological Treatments of Head and Neck Squamous Cell Carcinomas. Cancers 2021, 13, 5515. [Google Scholar] [CrossRef]
- Mastronicola, R.; Le Roux, P.; Casse, A.; Cortese, S.; Beulque, E.; Perna, M.; Dolivet, G. Current Approaches to Salvage Surgery for Head and Neck Cancer: A Comprehensive Review. Cancers 2023, 15, 2625. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Li, L.; Li, D.; Liu, J.; Li, X.; Li, W.; Xu, X.; Zhang, M.J.; Chandler, L.A.; Lin, H.; et al. The First Approved Gene Therapy Product for Cancer Ad-p53 (Gendicine): 12 Years in the Clinic. Hum. Gene Ther. 2018, 29, 160–179. [Google Scholar] [CrossRef]
- Satake, K.; Takagi, E.; Ishii, A.; Kato, Y.; Imagawa, Y.; Kimura, Y.; Tsukuda, M. Anti-tumor effect of vitamin A and D on head and neck squamous cell carcinoma. Auris Nasus Larynx 2003, 30, 403–412. [Google Scholar] [CrossRef]
- Scheau, C.; Mihai, L.G.; Bădărău, I.A.; Căruntu, C. Emerging applications of some important natural compounds in the field of oncology. Farmacia 2020, 68, 992–998. [Google Scholar] [CrossRef]
- Bostan, M.; Petrică-Matei, G.G.; Radu, N.; Hainarosie, R.; Stefanescu, C.D.; Diaconu, C.C.; Roman, V. The Effect of Resveratrol or Curcumin on Head and Neck Cancer Cells Sensitivity to the Cytotoxic Effects of Cisplatin. Nutrients 2020, 12, 2596. [Google Scholar] [CrossRef]
- Cretu, B.; Zamfir, A.; Bucurica, S.; Scheau, A.E.; Savulescu Fiedler, I.; Caruntu, C.; Caruntu, A.; Scheau, C. Role of Cannabinoids in Oral Cancer. Int. J. Mol. Sci. 2024, 25, 969. [Google Scholar] [CrossRef] [PubMed]
- Scheau, C.; Caruntu, C.; Badarau, I.A.; Scheau, A.E.; Docea, A.O.; Calina, D.; Caruntu, A. Cannabinoids and inflammations of the gut-lung-skin barrier. J. Pers. Med. 2021, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayana, T.; Thrishulamurthy, C.J.; Kaur, J.; Prakash, V.A.; Jagadeesh, K.M.; Ahmed, H.S. Ocular Manifestations in Head and Neck Cancer: A Cross-Sectional Study from a Tertiary Care Centre from South India. Rom. J. Ophthalmol. 2023, 67, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Mücke, T.; Wagenpfeil, S.; Kesting, M.R.; Hölzle, F.; Wolff, K.D. Recurrence interval affects survival after local relapse of oral cancer. Oral Oncol. 2009, 45, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.N.; Brown, J.S.; Woolgar, J.A.; Lowe, D.; Magennis, P.; Shaw, R.J.; Sutton, D.; Errington, D.; Vaughan, D. Survival following primary surgery for oral cancer. Oral Oncol. 2009, 45, 201–211. [Google Scholar] [CrossRef] [PubMed]
- So, W.K.W.; Chan, R.J.; Chan, D.N.S.; Hughes, B.G.M.; Chair, S.Y.; Choi, K.C.; Chan, C.W.H. Quality-of-life among head and neck cancer survivors at one year after treatment—A systematic review. Eur. J. Cancer 2012, 48, 2391–2408. [Google Scholar] [CrossRef] [PubMed]
- Rhoten, B.A.; Murphy, B.; Ridner, S.H. Body image in patients with head and neck cancer: A review of the literature. Oral Oncol. 2013, 49, 753–760. [Google Scholar] [CrossRef]
- Pannunzio, S.; Di Bello, A.; Occhipinti, D.; Scala, A.; Messina, G.; Valente, G.; Quirino, M.; Di Salvatore, M.; Tortora, G.; Cassano, A. Multimodality treatment in recurrent/metastatic squamous cell carcinoma of head and neck: Current therapy, challenges, and future perspectives. Front. Oncol. 2023, 13, 1288695. [Google Scholar] [CrossRef]
- Holloway, R.L.; Hellewell, J.L.; Marbella, A.M.; Layde, P.M.; Myers, K.B.; Campbell, B.H. Psychosocial effects in long-term head and neck cancer survivors. Head Neck 2005, 27, 281–288. [Google Scholar] [CrossRef]
- Wu, V.H.; Gutkind, J.S. GPCRs in head and neck squamous cell carcinoma. Improv. Ther. Ratio Head Neck Cancer 2019, 6, 317–334. [Google Scholar] [CrossRef]
- Ravindran, S.; Ranganathan, S.; Karthikeyan, R.; Nandini, J.; Shanmugarathinam, A.; Kannan, S.K.; Durga Prasad, K.; Marri, J.; Rajaganapathi, K. The role of molecular biomarkers in the diagnosis, prognosis, and treatment stratification of oral squamous cell carcinoma: A comprehensive review. J. Liq. Biopsy 2025, 7, 100285. [Google Scholar] [CrossRef]
- Caruntu, A.; Moraru, L.; Surcel, M.; Munteanu, A.; Costache, D.O.; Tanase, C.; Constantin, C.; Scheau, C.; Neagu, M.; Caruntu, C. Persistent Changes of Peripheral Blood Lymphocyte Subsets in Patients with Oral Squamous Cell Carcinoma. Healthcare 2022, 10, 342. [Google Scholar] [CrossRef]
- Caruntu, A.; Moraru, L.; Lupu, M.; Vasilescu, F.; Dumitrescu, M.; Cioplea, M.; Popp, C.; Dragusin, A.; Caruntu, C.; Zurac, S. Prognostic potential of tumor-infiltrating immune cells in resectable oral squamous cell carcinoma. Cancers 2021, 13, 2268. [Google Scholar] [CrossRef]
- Felgner, S.; Kocijancic, D.; Frahm, M.; Weiss, S. Bacteria in cancer therapy: Renaissance of an old concept. Int. J. Microbiol. 2016, 2016, 8451728. [Google Scholar] [CrossRef]
- Mengesha, A.; Dubois, L.; Chiu, R.K.; Paesmans, K.; Wouters, B.G.; Lambin, P.; Theys, J. Potential and limitations of bacterial-mediated cancer therapy. Front. Biosci. 2007, 12, 3880–3891. [Google Scholar] [CrossRef]
- Ecol, M. Clostridium perfringens type A–E toxin plasmids. Res. Microbiol. 2017, 25, 1032–1057. [Google Scholar]
- Minton, N. Clostridia in cancer therapy. Nat. Rev. Microbiol. 2003, 1, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Naureen, Z.; Medori, M.C.; Dhuli, K.; Donato, K.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; Bertelli, M. Polyphenols and Lactobacillus reuteri in oral health. J. Prev. Med. Hyg. 2022, 63, E246–E254. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.C.; Plummer, H.C.; Siebenmann, C.O.; Chapman, M.G. Effect of Histolyticus Infection and Toxin on Transplantable Mouse Tumors. Proc. Soc. Exp. Biol. Med. 1947, 66, 461–467. [Google Scholar]
- Hoffman, R.M. Future of bacterial therapy of cancer. Methods Mol. Biol. 2016, 1409, 177–184. [Google Scholar]
- Enejiyon, S.O.; Adabara, N.U.; Wuna, M.M.; Fasasi, R.A. Salmonella Typhimurium as a potential anticancer agent: A Review. Sri Lankan J. Infect. Dis. 2020, 10, 98–113. [Google Scholar] [CrossRef]
- Wen, M.; Jung, S.; Moon, K.S.; Jiang, S.N.; Li, S.Y.; Min, J.J. Targeting orthotopic glioma in mice with genetically engineered Salmonella typhimurium. J. Korean Neurosurg. Soc. 2014, 55, 131–135. [Google Scholar] [CrossRef]
- Bermudes, D.; Low, B.; Pawelek, J. 6 Tumor-Targeted Salmonella Highly Selective Delivery Vectors. In Cancer Gene Therapy; Springer: New York, NY, USA, 2000. [Google Scholar]
- Lee, C.H.; Wu, C.L.; Shiau, A.L. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J. Gene Med. 2004, 6, 1382–1393. [Google Scholar] [CrossRef]
- Oelschlaeger, T.A. Bacteria as tumor therapeutics? Bioeng. Bugs 2010, 1, 146–147. [Google Scholar] [CrossRef]
- Duong, M.T.; Qin, Y.; You, S.H.; Min, J.J. Bacteria-cancer interactions: Bacteria-based cancer therapy. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef]
- Fessler, J.; Matson, V.; Gajewski, T.F. Exploring the emerging role of the microbiome in cancer immunotherapy. J. Immunother. Cancer 2019, 7, 108. [Google Scholar] [CrossRef]
- Panebianco, C.; Andriulli, A.; Pazienza, V. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018, 6, 92. [Google Scholar] [CrossRef]
- Ma, W.; Mao, Q.; Xia, W.; Dong, G.; Yu, C.; Jiang, F. Gut microbiota shapes the efficiency of cancer therapy. Front. Microbiol. 2019, 10, 1050. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Yi, R.; Zhou, X.; Long, X.; Pan, Y.; Zhao, X. Preventive Effect of Lactobacillus fermentum CQPC08 on 4-Nitroquineline-1-Oxide Induced Tongue Cancer in C57BL/6 Mice. Foods 2019, 8, 93. [Google Scholar] [CrossRef]
- Asoudeh-Fard, A.; Barzegari, A.; Dehnad, A.; Bastani, S.; Golchin, A.; Omidi, Y. Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signaling pathways. BioImpacts 2017, 7, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S. Can probiotics stop oral cancer progression? Evid. Based Dent. 2022, 23, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhang, B.; Hu, X.; Li, J.; Wu, M.; Yan, C.; Yang, Y.; Li, Y. Neisseria sicca and Corynebacterium matruchotii inhibited oral squamous cell carcinomas by regulating genome stability. Bioengineered 2022, 13, 14094–14106. [Google Scholar] [CrossRef]
- Yohana, W.; Rafisa, A. Unlocking the potential of capsaicin in oral health (Review). Biomed. Rep. 2024, 21, 153. [Google Scholar] [CrossRef] [PubMed]
- Periferakis, A.T.; Periferakis, A.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; Savulescu-Fiedler, I.; Scheau, C.; Caruntu, C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023, 15, 4097. [Google Scholar] [CrossRef] [PubMed]
- Căruntu, C.; Negrei, C.; Ghiţă, M.A.; Căruntu, A.; Bădărău, A.I.; Buraga, I.; Boda, D.; Albu, A.; Brănişteanu, D. Capsaicin, a hot topic in skin pharmacology and physiology. Farmacia 2015, 63, 487–491. [Google Scholar]
- Legesse Bedada, T.; Feto, T.K.; Awoke, K.S.; Garedew, A.D.; Yifat, F.T.; Birri, D.J. Probiotics for cancer alternative prevention and treatment. Biomed. Pharmacother. 2020, 129, 110409. [Google Scholar] [CrossRef]
- Meurman, J.H.; Stamatova, I.V. Probiotics: Evidence of Oral Health Implications. Folia Med. 2018, 60, 21–29. [Google Scholar] [CrossRef]
- Tagg, J.R.; Harold, L.K.; Jain, R.; Hale, J.D.F. Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front. Microbiol. 2023, 14, 1161155. [Google Scholar] [CrossRef]
- Raheem, A.; Liang, L.; Zhang, G.; Cui, S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front. Immunol. 2021, 12, 616713. [Google Scholar] [CrossRef]
- Mignolet, J.; Cerckel, G.; Damoczi, J.; Ledesma-Garcia, L.; Sass, A.; Coenye, T.; Nessler, S.; Hols, P. Subtle selectivity in a pheromone sensor triumvirate desynchronizes competence and predation in a human gut commensal. eLife 2019, 8, e47139. [Google Scholar] [CrossRef]
- Petrova, P.; Arsov, A.; Tsvetanova, F.; Parvanova-Mancheva, T.; Vasileva, E.; Tsigoriyna, L.; Petrov, K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022, 14, 2038. [Google Scholar] [CrossRef]
- Domzaridou, E.; Van Staa, T.; Renehan, A.G.; Cook, N.; Welfare, W.; Ashcroft, D.M.; Palin, V. The Impact of Oral Antibiotics Prior to Cancer Diagnosis on Overall Patient Survival: Findings from an English Population-Based Cohort Study. Curr. Oncol. 2023, 30, 8434–8443. [Google Scholar] [CrossRef] [PubMed]
- Mohd Fuad, A.S.; Amran, N.A.; Nasruddin, N.S.; Burhanudin, N.A.; Dashper, S.; Arzmi, M.H. The Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Oral Cancer Management. Probiotics Antimicrob. Proteins 2023, 15, 1298–1311. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Ha, E.M. Combination therapy of Lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells. J. Microbiol. Biotechnol. 2016, 26, 1490–1503. [Google Scholar] [CrossRef]
- Wegh, C.A.M.; Geerlings, S.Y.; Knol, J.; Roeselers, G.; Belzer, C. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci. 2019, 20, 4673. [Google Scholar] [CrossRef]
- Khan, T.; Date, A.; Chawda, H.; Patel, K. Polysaccharides as potential anticancer agents—A review of their progress. Carbohydr. Polym. 2019, 210, 412–428. [Google Scholar] [CrossRef]
- Nazari, S.S.; Doyle, A.D.; Yamada, K.M. Mechanisms of Basement Membrane Micro-Perforation during Cancer Cell Invasion into a 3D Collagen Gel. Gels 2022, 8, 567. [Google Scholar] [CrossRef]
- Sankarapandian, V.; Maran, B.A.V.; Rajendran, R.L.; Jogalekar, M.P.; Gurunagarajan, S.; Krishnamoorthy, R.; Gangadaran, P.; Ahn, B.C. An Update on the Effectiveness of Probiotics in the Prevention and Treatment of Cancer. Life 2022, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, A.I.; Pappalardo, V.Y.; Buijs, M.J.; Brandt, B.W.; Mäkitie, A.A.; Meurman, J.H.; Zaura, E. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. Microbiome 2023, 11, 171. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.H. Impact of Microbiota Transplant on Resistome of Gut Microbiota in Gnotobiotic Piglets and Human Subjects. Front. Microbiol. 2020, 11, 932. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wu, J.; Jin, D.; Wang, B.; Cao, H. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int. J. Cancer 2019, 145, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Zavoshti, H.F.; Abbasi, A. Postbiotics as promising tools for cancer adjuvant therapy. Adv. Pharm. Bull. 2021, 11, 1–5. [Google Scholar] [CrossRef]
- Nami, Y.; Tavallaei, O.; Kiani, A.; Moazami, N.; Samari, M.; Derakhshankhah, H.; Jaymand, M.; Haghshenas, B. Anti-oral cancer properties of potential probiotic lactobacilli isolated from traditional milk, cheese, and yogurt. Sci. Rep. 2024, 14, 6398. [Google Scholar] [CrossRef]
- Pignatelli, P.; Romei, F.M.; Bondi, D.; Giuliani, M.; Piattelli, A.; Curia, M.C. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int. J. Mol. Sci. 2022, 23, 8323. [Google Scholar] [CrossRef] [PubMed]
Detection Method | Description | Common Applications | Sample Type | Microbiome Target | Detectable Microorganisms | References |
---|---|---|---|---|---|---|
16S rRNA Gene Sequencing | Targets bacterial ribosomal RNA genes to identify and quantify microbial taxa | Profiling bacterial communities in OSCC | Saliva, tissue biopsy | Bacterial taxonomy (genus/species level) | Fusobacterium, Streptococcus, Prevotella | [47,66,68] |
Metagenomics | Whole-genome sequencing of microbial DNA from samples | Comprehensive microbial diversity analysis | Saliva, tissue biopsy | Bacterial genes, pathways, and species composition | Porphyromonas, Actinomyces; Candida albicans; HPV, EBV | [43,64,87] |
Transcriptomics | Analyzes RNA transcripts to study gene expression patterns | Identifying active microbial genes in tumors | Tissue biopsy | Bacterial gene expression profiles | Streptococcus mitis; Fusobacterium nucleatum Candida spp. | [59] |
Proteomics | Studies protein expression and interactions | Detecting microbial proteins linked to cancer | Tissue biopsy, saliva | Bacterial protein markers and functional pathways | Treponema denticola; Candida albicans | [52,72] |
Metabolomics | Measures metabolites produced by microbes | Linking microbial metabolism to tumorigenesis | Saliva, blood, tissue | Bacterial metabolic products and signatures | Prevotella, Lactobacillus; Candida | [14,53] |
Quantitative PCR (qPCR) | Quantifies specific microbial DNA/RNA sequences | Validation of microbial biomarkers | Saliva, tissue biopsy | Targeted bacterial genes or species | Fusobacterium, Streptococcus mitis; Prevotella melaninogenica HPV | [59,68] |
Salivary Biomarker Analysis | Detects microbial and host-derived markers in saliva | Non-invasive early detection of OSCC | Saliva | Bacterial enzymes, DNA fragments, or metabolites | Capnocytophaga, Neisseria; Candida; HPV | [36,52,66,87] |
Species | Gram | Mechanism | Effects | References |
---|---|---|---|---|
Lactobacillus spp. | + | Inhibits the binding of other bacteria to the epithelial cells | Arrests bacterial growth | [163] |
L. fermentum | + | Anti-inflammatory properties Phagocytosis | ↗G-CSF ↗GM-CSF ↗IgG ↗IgM ↗IL-4 ↗IL-12 ↗TNF-alpha ↗IFN-gamma ↘Malondialdehyde ↘Damaging products | [139,164] |
L. plantarum | + | Apoptosis in OSCC | ↗PTEN ↗MAPK | [114,115] |
L. salivarius Ren | + | Cancer cell inhibition | N/A | [116] |
Neisseria sicca Corynebacterium matruchotii | −/+ | Pyroptosis Anti-inflammatory properties Tumor growth inhibition | ↘Cyclin D1 ↘NF-κB ↘IL-6 ↘CD4+ T cells ↘M2 macrophages | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urzică, R.-N.; Crețu, B.; Căruntu, A.; Bucurica, S.; Farcasiu, A.-T.; Ciupescu, L.M.; Scheau, C.; Căruntu, C. The Molecular Interplay Between Oral Microbiome and Oral Cancer Pathogenesis. Int. J. Mol. Sci. 2025, 26, 10212. https://doi.org/10.3390/ijms262010212
Urzică R-N, Crețu B, Căruntu A, Bucurica S, Farcasiu A-T, Ciupescu LM, Scheau C, Căruntu C. The Molecular Interplay Between Oral Microbiome and Oral Cancer Pathogenesis. International Journal of Molecular Sciences. 2025; 26(20):10212. https://doi.org/10.3390/ijms262010212
Chicago/Turabian StyleUrzică, Roxana-Nicoleta, Brigitte Crețu, Ana Căruntu, Săndica Bucurica, Alexandru-Titus Farcasiu, Laurențiu Mihai Ciupescu, Cristian Scheau, and Constantin Căruntu. 2025. "The Molecular Interplay Between Oral Microbiome and Oral Cancer Pathogenesis" International Journal of Molecular Sciences 26, no. 20: 10212. https://doi.org/10.3390/ijms262010212
APA StyleUrzică, R.-N., Crețu, B., Căruntu, A., Bucurica, S., Farcasiu, A.-T., Ciupescu, L. M., Scheau, C., & Căruntu, C. (2025). The Molecular Interplay Between Oral Microbiome and Oral Cancer Pathogenesis. International Journal of Molecular Sciences, 26(20), 10212. https://doi.org/10.3390/ijms262010212