HLA Class II Alleles and Suicidal Behavior: Evidence from a Case–Control Study
Abstract
1. Introduction
2. Results
2.1. HLA-DQB1 and DRB1 Alleles Genetic Associations with Suicidal Behavior
2.1.1. Genetic Associations of HLA-DQB1 Alleles and Genotypes with Suicidal Behavior
2.1.2. Genetic Associations of HLA-DRB1 Alleles and Genotypes with Suicidal Behavior
2.2. Distribution of HLA-DRB1~DQB1 Haplotypes and Their Association with Suicidal Behavior
2.3. Correlations of Suicidal Behaviors with Psychosocial Determinants in HLA-DQB1 and DRB1 Alleles
2.3.1. Correlations of HLA-DQB1 Alleles with Psychosocial Determinants of Suicidal Behavior
2.3.2. Correlations of HLA-DRB1 Alleles with Psychosocial Determinants of Suicidal Behavior
3. Discussion
4. Materials and Methods
4.1. Study Population Structure and Institutional Sources
4.1.1. Case Group Constitution
- Psychiatric Clinic of the Cluj County Emergency Hospital:
- ○
- X6x—Intentional self-poisoning
- ○
- X7x—Intentional self-harm
- Institute of Legal Medicine, Cluj-Napoca:
4.1.2. Control Group Constitution
4.2. Data Acquisition Protocols and Preanalytical Handling
4.2.1. Clinical and Demographic Data Collection
- Demographic information (age, sex, area of residence)
- Socioeconomic indicators
- Psychiatric diagnostic history (ICD-10 and ICD-10-CM coding)
- Autopsy reports
- Toxicological screenings
4.2.2. Sample Collection and Transport
- For living participants: Peripheral venous blood samples were collected in Ethylenediaminetetraacetic acid (EDTA)-coated vacutainer tubes by qualified personnel under sterile conditions. Samples were transported on ice.
- For deceased individuals: Biological specimens were collected during autopsy and preserved following standard medico-legal forensic protocols.
4.3. DNA Isolation and Quality Control Protocol
- Cell lysis with Buffer 1, Proteinase K, and RNase
- Ethanol precipitation
- Column-based purification with Buffer X and Buffer 2
- Elution in 200 µL TRIS buffer
4.4. HLA Genotyping: PCR-Based Allele Detection Technologies
4.4.1. Fluorescence-Guided Typing with HLA-FluoGene DRDQ
- DNA diluted to 1 ng/μL (±50%)
- PCR amplification on a G-Storm thermocycler (LabTech International, Rotherham, UK)
- Fluorescence signals detected using FluoVista Analyzer (endpoint) or FluoQube (real-time)
- Data processed with FluoGene Software(V. 1.8.0) evaluating Q-values and CT thresholds
- Initial denaturation: 96 °C for 2 min
- 38 cycles: 95 °C for 15 s, 60 °C for 49 s (fluorescence read)
- Ramp rate: 2.5 °C/s
- Detection channels: Blue, Green, Orange
4.4.2. Gel-Based Typing with HLA-Ready Gene Kits
- PCR amplification via ReadyGene protocols
- Electrophoretic separation on agarose gel
- Band pattern interpretation using Ready Gene Online browser-based software (V. 1.2.0.0)
- Integrated positive/negative controls and virtual allele mapping interface
4.5. Data Structuring, Statistical Analysis and Statistical Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beutel, M.E.; Klein, E.M.; Brähler, E.; Reiner, I.; Jünger, C.; Michal, M.; Wiltink, J.; Wild, P.S.; Münzel, T.; Lackner, K.J.; et al. Loneliness in the general population: Prevalence, determinants and relations to mental health. BMC Psychiatry 2017, 17, 97. [Google Scholar] [CrossRef] [PubMed]
- De Jong Gierveld, J.; Havens, B. Cross-national comparisons of social isolation and loneliness: Introduction and overview. Can. J. Aging 2004, 23, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.L.; Miller, A.B. Suicidal thoughts and behavior in children and adolescents: An ecological model of resilience. Adolesc. Res. Rev. 2018, 3, 123–154. [Google Scholar] [CrossRef]
- Roy, A.; Hodgkinson, C.A.; DeLuca, V.; Goldman, D.; Enoch, M.-A. Two HPA axis genes, CRHBP and FKBP5, interact with childhood trauma to increase the risk for suicidal behavior. J. Psychiatr. Res. 2012, 46, 72–79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lasgaard, M.; Goossens, L.; Elklit, A. Loneliness, depressive symptomatology, and suicide ideation in adolescence: Cross-sectional and longitudinal analyses. J. Abnorm. Child. Psychol. 2011, 39, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Coci, C.; Invernizzi, R.; Capone, L.; Casini, E.; Orlandi, M.; Galli, P.; Rossi, I.; Martinelli, O.; Borgatti, R.; Mensi, M.M.; et al. Psychological and behavioral characterization of suicide ideators and suicide attempters in adolescence. Front. Psychiatry 2022, 13, 1009460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- WHO Suicide Key Facts (mar 2025). Available online: https://www.who.int/news-room/fact-sheets/detail/suicide (accessed on 28 March 2025).
- Coimbra, B.M.; Hoeboer, C.M.; Yik, J.; Mello, A.F.; Mello, M.F.; Olff, M. Meta-analysis of the effect of racial discrimination on suicidality. SSM Popul. Health 2022, 20, 101283. [Google Scholar] [CrossRef]
- Bachmann, S. Epidemiology of suicide and the psychiatric perspective. Int. J. Environ. Res. Public Health 2018, 15, 1425. [Google Scholar] [CrossRef] [PubMed]
- Nock, M.K.; Hwang, I.; Sampson, N.A.; Kessler, R.C. Mental disorders, comorbidity and suicidal behavior: Results from the National Comorbidity Survey Replication. Mol. Psychiatry 2010, 15, 868–876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- GTurecki, D.A. Brent, Suicide and suicidal behaviour. Lancet 2016, 387, 1227–1239. [Google Scholar] [CrossRef]
- Hufford, M.R. Alcohol and suicidal behavior. Clin. Psychol. Rev. 2001, 21, 797–811. [Google Scholar] [CrossRef]
- Inder, K.J.; Handley, T.E.; Johnston, A.; Weaver, N.; Coleman, C.; Lewin, T.J.; Slade, T.; Kelly, B.J. Determinants of suicidal ideation and suicide attempts: Parallel cross-sectional analyses examining geographical location. BMC Psychiatry 2014, 4, 208. [Google Scholar] [CrossRef]
- Boenisch, S.; Bramesfeld, A.; Mergl, R.; Havers, I.; Althaus, D.; Lehfeld, H.; Niklewski, G.; Hegerl, U. The role of alcohol use disorder and alcohol consumption in suicide attempts--a secondary analysis of 1921 suicide attempts. Eur. Psychiatry 2010, 25, 414–420. [Google Scholar] [CrossRef] [PubMed]
- De Berardis, D.; Fornaro, M.; Valchera, A.; Cavuto, M.; Perna, G.; Di Nicola, M.; Serafini, G.; Carano, A.; Pompili, M.; Vellante, F.; et al. Eradicating suicide at its roots: Preclinical bases and clinical evidence of the efficacy of ketamine in the treatment of suicidal behavior. Int. J. Mol. Sci. 2018, 19, 2888. [Google Scholar] [CrossRef] [PubMed]
- Capuzzi, E.; Caldiroli, A.; Capellazzi, M.; Tagliabue, I.; Buoli, M.; Clerici, M. Biomarkers of suicidal behaviors: A comprehensive critical review. Adv. Clin. Chem. 2020, 96, 179–216. [Google Scholar] [CrossRef] [PubMed]
- Troya, M.I.; Babatunde, O.; Polidano, K.; Bartlam, B.; McCloskey, E.; Dikomitis, L.; Chew-Graham, C.A. Self-harm in older adults: Systematic review. Br. J. Psychiatry 2019, 214, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Castellví, P.; Lucas-Romero, E.; Miranda-Mendizábal, A.; Parés-Badell, O.; Almenara, J.; Alonso, I.; Blasco, M.; Cebrià, A.; Gabilondo, A.; Gili, M.; et al. Longitudinal association between self-injurious thoughts and behaviors and suicidal behavior in adolescents and young adults: A systematic review with meta-analysis. J. Affect. Disord. 2017, 215, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.P.; Oquendo, M.A. Suicide Risk Assessment and Prevention: Challenges and Opportunities. Focus 2020, 8, 88–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nock, M.K.; Borges, G.; Bromet, E.J.; Alonso, J.; Angermeyer, M.; Beautrais, A.; Bruffaerts, R.; Chiu, W.T.; de Girolamo, G.; Gluzman, S.; et al. Cross-national prevalence and risk factors for suicidal ideation, plans, and attempts in the WHO World Mental Health Surveys. Br. J. Psychiatry 2008, 192, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Borges, G.; Angst, J.; Nock, M.K.; Ruscio, A.M.; Kessler, R.C. Risk factors for the incidence and persistence of suicide-related outcomes: A 10-year follow-up study using the National Comorbidity Surveys. J. Affect. Disord. 2008, 105, 25–33. [Google Scholar] [CrossRef]
- MS Kaplan, B.H.; McFarland, N.; Huguet, J.T. Newsom, Physical illness, functional limitations, and suicide risk: A population-based study. Am. J. Orthopsychiatry 2007, 77, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Ellis, T.E. Classification of suicidal behavior: A review and step toward integration. Suicide Life-Threat. Behav. 1988, 18, 358–371. [Google Scholar] [CrossRef]
- Jang, K.L.; Livesley, W.J.; Vernon, P.A. Heritability of the big five personality dimensions and their facets: A twin study. J. Personal. 1996, 64, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Joiner, T. Why People Die by Suicide; Harvard University Press: Cambridge, MA, USA, 2005; ISBN 9780674025493. [Google Scholar]
- Ribeiro, J.D.; Joiner, T.E. The interpersonal-psychological theory of suicidal behavior: Current status and future directions. J. Clin. Psychol. 2009, 65, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Giegling, I.; Maul, S.; Hartmann, A.M.; Rujescu, D. Genetic aspects of suicide. In Oxford Textbook of Suicidology and Suicide Prevention; Oxford University Press: Mumbai, India, 2024; pp. 68–82. [Google Scholar] [CrossRef]
- Large, M.; Kaneson, M.; Myles, N.; Myles, H.; Gunaratne, P.; Ryan, C. Meta-Analysis of Longitudinal Cohort Studies of Suicide Risk Assessment among Psychiatric Patients: Heterogeneity in Results and Lack of Improvement over Time. PLoS ONE 2016, 11, e0156322. [Google Scholar] [CrossRef]
- Zai, C.C.; de Luca, V.; Strauss, J.; Tong, R.P.; Sakinofsky, I.; Kennedy, J.L. Genetic factors and suicidal behavior (Chapter 11). In The Neurobiological Basis of Suicide; Dwivedi, Y., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2012; ISBN 978-1-4398-3881-5. Available online: https://pubmed.ncbi.nlm.nih.gov/23035279/ (accessed on 28 August 2025).
- McGuffin, P.; Marušič, A.; Farmer, A. What Can Psychiatric Genetics Offer Suicidology? Crisis 2001, 22, 61–65. [Google Scholar] [CrossRef]
- Voracek, M.; Loibl, L.M.; Dervic, K.; Kapusta, N.D.; Niederkrotenthaler, T.; Sonneck, G. Consistency of immigrant suicide rates in Austria with country-of-birth suicide rates: A role for genetic risk factors for suicide? Psychiatry Res. 2009, 170, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Carballo, J.J.; Akamnonu, C.P.; Oquendo, M.A. Neurobiology of suicidal behavior. An integration of biological and clinical findings. Arch. Suicide Res. 2008, 12, 93–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De la Cruz-Cano, E. Association between FKBP5 and CRHR1 genes with suicidal behavior: A systematic review. Behav. Brain Res. 2017, 317, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Chadda, R.K.; Gupta, A. Looking into biological markers of suicidal behaviours. Indian J. Med. Res. 2019, 150, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Niciu, M.J.; Mathews, D.C.; Ionescu, D.F.; Richards, E.M.; Furey, M.L.; Yuan, P.; Nugent, A.C.; Henter, I.D.; Machado-Vieira, R.; Zarate, C.A., Jr. Biomarkers in mood disorders research: Developing new and improved therapeutics. Rev. Psiquiatr. Clin. 2014, 41, 131–134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnston, J.N.; Campbell, D.; Caruncho, H.J.; Henter, I.D.; Ballard, E.D.; A Zarate, C. Suicide Biomarkers to Predict Risk, Classify Diagnostic Subtypes, and Identify Novel Therapeutic Targets: 5 Years of Promising Research. Int. J. Neuropsychopharmacol. 2022, 25, 197–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blasco-Fontecilla, H.; Lopez-Castroman, J.; Giner, L.; Baca-Garcia, E.; Oquendo, M.A. Predicting suicidal behavior: Are we really that far along? Comment on “Discovery and validation of blood biomarkers for suicidality”. Curr. Psychiatry Rep. 2013, 15, 424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thorsby, E. A short history of HLA. Tissue Antigens 2009, 74, 101–116. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, H.O. Discovering the role of the major histocompatibility complex in the immune response. Annu. Rev. Immunol. 2000, 18, 1–17. [Google Scholar] [CrossRef]
- Klein, J.; Sato, A. The HLA system. First of two parts. N. Engl. J. Med. 2000, 343, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Matei, H.V.; Vica, M.L.; Siserman, C.V. Association between HLA class II alleles and hepatitis B virus infection in Transylvania, Romania. Immunol. Investig. 2018, 47, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Canto, E.; Oksenberg, J.R. Multiple sclerosis genetics. Mult. Scler. J. 2018, 24, 75–79. [Google Scholar] [CrossRef]
- Cruz-Tapias, P.; Castiblanco, J.; Anaya, J.M. HLA Association with Autoimmune Diseases. In Autoimmunity: From Bench to Bedside [Internet]; Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., Levy, R.A., Cervera, R., Eds.; El Rosario University Press: Bogota, Colombia, 2013; Chapter 17. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459459/ (accessed on 18 August 2025).
- Horton, R.; Wilming, L.; Rand, V.; Lovering, R.C.; Bruford, E.A.; Khodiyar, V.K.; Lush, M.J.; Povey, S.; Talbot, C.C.; Wright, M.W.; et al. Gene map of the extended human MHC. Nat. Rev. Genet. 2004, 5, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Covic, M.; Ştefănescu, D.; Sandovici, I. Genetică Medicală; Polirom: Iaşi, Romania, 2011. [Google Scholar]
- Seshasubramanian, V.; Raghavan, V.; SathishKannan, A.D.; Naganathan, C.; Ramachandran, A.; Arasu, P.; Rajendren, P.; John, S.; Mowry, B.; Rangaswamy, T.; et al. Association of HLA-A, -B, -C, -DRB1 and -DQB1 alleles at amino acid level in individuals with schizophrenia: A study from South India. Int. J. Immunogenet. 2020, 47, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Sayeh, A.; Cheikh, C.B.; Mrad, M.; Lakhal, N.; Gritli, N.; Galelli, S.; Oumaya, A.; Fekih-Mrissa, N. Association of HLA-DR/DQ polymorphisms with schizophrenia in Tunisian patients. Ann. Saudi Med. 2014, 34, 503–507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamouza, R.; Oliveira, J.; Etain, B.; Bengoufa, D.; Hamdani, N.; Manier, C.; Mariaselvam, C.; Sundaresh, A.; Bellivier, F.; Henry, C.; et al. HLA genetics in bipolar disorder. Acta Psychiatr. Scand. 2018, 138, 464–471. [Google Scholar] [CrossRef]
- Cheng, B.; Yang, J.; Cheng, S.; Pan, C.; Liu, L.; Meng, P.; Yang, X.; Wei, W.; Liu, H.; Jia, Y.; et al. Associations of classical HLA alleles with depression and anxiety. HLA 2024, 103, e15173. [Google Scholar] [CrossRef] [PubMed]
- Hollar, D.W. Risk for intentional violent death associated with HLA genotypes: A preliminary survey of deceased American organ donors. Genetica 2009, 137, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Trowsdale, J.; Knight, J.C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 2013, 14, 301–323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, T.-W.; Moon, J.; Kim, T.-J.; Jun, J.-S.; Lim, J.-A.; Lee, S.-T.; Jung, K.-H.; Park, K.-I.; Jung, K.-Y.; Chu, K.; et al. HLA-A*11:01 is associated with levetiracetam-induced psychiatric adverse events. PLoS ONE 2018, 13, e0200812. [Google Scholar] [CrossRef] [PubMed]
- Matei, H.V.; Vică, M.L.; Ciucă, I.; Coman, H.G.; Nicula, G.Z.; Siserman, C.V. Correlations Among the HLA-DQB1 Alleles and Suicidal Behavior. J. Forensic Sci. 2020, 65, 166–169. [Google Scholar] [CrossRef]
- Vuscan, M.E.; Vica, M.L.; Balici, S.; Nicula, G.Z.; Rusu, S.I.; Siserman, C.V.; Coman, H.G.; Matei, H.V. Association of HLA class II alleles with suicidal behavior in a Transylvanian population. Rev. Rom. Med. Lab. 2023, 31, 15–24. [Google Scholar] [CrossRef]
- Brisch, R.; Steiner, J.; Mawrin, C.; Krzyzanowska, M.; Jankowski, Z.; Gos, T. Microglia in the dorsal raphe nucleus plays a potential role in both suicide facilitation and prevention in affective disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 403–415. [Google Scholar] [CrossRef]
- Gonçalves de Andrade, E.; González Ibáñez, F.; Tremblay, M.-È. Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Front. Cell Neurosci. 2022, 16, 839396. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nakagawa, R.; Okanoya, K.; Iseki, E. Glial Markers of Suicidal Behavior in the Human Brain—A Systematic Review of Postmortem Studies. Int. J. Mol. Sci. 2024, 25, 5750. [Google Scholar] [CrossRef]
- Tamouza, R.; Krishnamoorthy, R.; Leboyer, M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context. Brain Behav. Immun. 2021, 91, 731–739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Q.S.; Shabalin, A.A.; DiBlasi, E.; Gopal, S.; Canuso, C.M.; Palotie, A.; Drevets, W.C.; Docherty, A.R.; Coon, H. Genome-wide association study meta-analysis of suicide death and suicidal behavior. Mol. Psychiatry 2023, 28, 891–900. [Google Scholar] [CrossRef]
- Mann, J.J.; Apter, A.; Bertolote, J.; Beautrais, A.; Currier, D.; Haas, A.; Hegerl, U.; Lonnqvist, J.; Malone, K.; Marusic, A.; et al. Suicide prevention strategies: A systematic review. JAMA 2005, 294, 2064–2074. [Google Scholar] [CrossRef]
- Dumitru, M.; Papari, A.; Seceleanu, A.; Sunda, I. Suicide in Romania Compared to the EU-28 Countries. Soc. Sci. Educ. Res. Rev. 2019, 6, 131–148. [Google Scholar]
- Zalsman, G.; Hawton, K.; Wasserman, D.; van Heeringen, K.; Arensman, E.; Sarchiapone, M.; Carli, V.; Höschl, C.; Winkler, P.; Balazs, J.; et al. European evidence-based suicide prevention program group by the expert platform on mental health, f.o.d., evidence-based national suicide prevention taskforce in europe: A consensus position paper. Eur. Neuropsychopharmacol. 2017, 27, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.T.; Hillmer, A.; Holmes, S.E.; Pietrzak, R.H.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Angarita, G.A.; Carson, R.E.; Krystal, J.H.; et al. In vivo evidence for dysregulation of mGluR5 as a biomarker of suicidal ideation. Proc. Natl. Acad. Sci. USA 2019, 116, 11490–11495, Erratum in Proc. Natl. Acad. Sci. USA 2019, 116, 13702. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brundin, L.; Bryleva, E.Y.; Thirtamara Rajamani, K. Role of Inflammation in Suicide: From Mechanisms to Treatment. Neuropsychopharmacology 2017, 42, 271–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lengvenyte, A.; Conejero, I.; Courtet, P.; Olié, E. Biological bases of suicidal behaviours: A narrative review. Eur. J. Neurosci. 2021, 53, 330–351. [Google Scholar] [CrossRef] [PubMed]
- Mirkovic, B.; Laurent, C.; Podlipski, M.A.; Frebourg, T.; Cohen, D.; Gerardin, P. Genetic Association Studies of Suicidal Behavior: A Review of the Past 10 Years, Progress, Limitations, and Future Directions. Front. Psychiatry 2016, 7, 158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashley-Koch, A.E.; Kimbrel, N.; Qin, X.J.; Lindquist, J.H.; Garrett, M.E.; Dennis, M.F.; Hair, L.P.; Huffman, J.E.; Jacobson, D.; Madduri, R.; et al. Genome-wide association study identifies four pan-ancestry loci for suicidal ideation in the Million Veteran Program. PLoS Genet. 2023, 19, e1010623. [Google Scholar] [CrossRef] [PubMed]
- Zettergren, A.; Jonson, M.; Mellqvist Fässberg, M.; Najar, J.; Rydberg Sterner, T.; Seidu, N.M.; Kern, S.; Blennow, K.; Zetterberg, H.; Skoog, I.; et al. Passive and active suicidal ideation in a population-based sample of older adults: Associations with polygenic risk scores of relevance for suicidal behavior. Front. Psychiatry 2023, 14, 1101956. [Google Scholar] [CrossRef] [PubMed]
- Vică, M.L.; Dobreanu, M.; Curocichin, G.; Matei, H.V.; Bâlici, Ș.; Vușcan, M.E.; Chiorean, A.D.; Nicula, G.Z.; Mironescu, D.C.P.; Leucuța, D.C.; et al. The Influence of HLA Polymorphisms on the Severity of COVID-19 in the Romanian Population. Int. J. Mol. Sci. 2024, 25, 1326. [Google Scholar] [CrossRef]
- Vuscan, M.E.; Buciuta, A.; Vica, M.L.; Balici, S.; Rusu, S.I.; Siserman, C.V.; Coman, H.G.; Matei, H.V. Impact of the COVID-19 pandemic on the suicidal behavior in Romania. Arch. Suicide Res. 2023, 27, 554–564. [Google Scholar] [CrossRef]
- Fiorillo, M.T.; Paladini, F.; Tedeschi, V.; Sorrentino, R. HLA Class I or Class II and Disease Association: Catch the Difference If You Can. Front. Immunol. 2017, 8, 1475. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar] [PubMed] [PubMed Central]
- Li, R. Global Meta-Analysis of the Gut-Brain Axis: Unveiling the Impact of Microbiome Alterations on Psychiatric Disorders. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Sher, L. The impact of the COVID-19 pandemic on suicide rates. Qjm: Int. J. Med. 2020, 113, 707–712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zalsman, G.; Stanley, B.; Szanto, K.; Clarke, D.E.; Carli, V.; Mehlum, L. Suicide in the time of COVID-19: Review and recommendations. Arch. Suicide Res. 2020, 24, 477–482. [Google Scholar] [CrossRef]
- World Health Organization. Mental Health and COVID-19: Early Evidence of the Pandemic’s Impact [Internet]. Geneva: World Health Organization; 2022 Mar 2. (COVID-19 Scientific Briefs). Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Mental_health-2022.1 (accessed on 12 August 2025).
- Pfefferbaum, B.; North, C.S. Mental health and the COVID-19 pandemic. N. Engl. J. Med. 2020, 383, 510–512. [Google Scholar] [CrossRef]
- Yan, Y.; Hou, J.; Li, Q.; Yu, N.X. Suicide before and during the COVID-19 Pandemic: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 3346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glanville, K.P.; Coleman, J.R.I.; Hanscombe, K.B.; Euesden, J.; Choi, S.W.; Purves, K.L.; Breen, G.; Air, T.M.; Andlauer, T.F.; Baune, B.T.; et al. Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated with Depression. Biol. Psychiatry 2020, 87, 419–430. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Le Clerc, S.; Lombardi, L.; Baune, B.T.; Amare, A.T.; Schubert, K.O.; Hou, L.; Clark, S.R.; Papiol, S.; Cearns, M.; Heilbronner, U.; et al. HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders. Sci. Rep. 2021, 11, 17823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Astbury, S.; Reynolds, C.J.; Butler, D.K.; Muñoz-Sandoval, D.C.; Lin, K.; Pieper, F.P.; Otter, A.; Kouraki, A.; Cusin, L.; Nightingale, J.; et al. HLA-DR polymorphism in SARS-CoV-2 infection and susceptibility to symptomatic COVID-19. Immunology 2022, 166, 68–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lincoln, M.R.; Montpetit, A.; Cader, M.Z.; Saarela, J.; A Dyment, D.; Tiislar, M.; Ferretti, V.; Tienari, P.J.; Sadovnick, A.D.; Peltonen, L.; et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat. Genet. 2005, 37, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, A.P.; Sanchez-Padilla, D.E.; Drew, J.C.; Oli, M.W.; Roesch, L.F.W.; Triplett, E.W. Saliva microbiome, dietary, and genetic markers are associated with suicidal ideation in university students. Sci. Rep. 2022, 12, 14306. [Google Scholar] [CrossRef]
- Irish Schizophrenia Genomics Consortium; Wellcome Trust Case Control Consortium 2. Genome-wide association study implicates HLA-C* 01: 02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol. Psychiatry 2012, 72, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Richard-Devantoy, S.; Berlim, M.T.; Jollant, F. Suicidal behaviour and memory: A systematic review and meta-analysis. World J. Biol. Psychiatry 2014, 16, 544–566. [Google Scholar] [CrossRef]
- Torous, J.; Walker, R. Leveraging digital health and machine learning toward reducing Suicide-From panacea to practical tool. JAMA Psychiatry 2019, 76, 999–1000. [Google Scholar] [CrossRef]
- Lennon, J.C. Machine learning algorithms for suicide risk: A premature arms race? Gen. Psychiatry 2020, 33, e100269. [Google Scholar] [CrossRef]
- Wang, W.; Luo, C.; Aseltine, R.H.; Wang, F.; Yan, J.; Chen, K. Suicide Risk Modeling with Uncertain Diagnostic Records. arXiv 2020, arXiv:2009.02597. [Google Scholar] [CrossRef]
- Choi, J.; Cho, S.; Ko, I.; Han, S. Identification of Risk Factors for Suicidal Ideation and Attempt Based on Machine Learning Algorithms: A Longitudinal Survey in Korea (2007–2019). Int. J. Environ. Res. Public. Health 2021, 18, 12772. [Google Scholar] [CrossRef] [PubMed]
- Bentley, K.H.; Zuromski, K.L.; Fortgang, R.G.; Madsen, E.M.; Kessler, D.; Lee, H.; Nock, M.K.; Reis, B.Y.; Castro, V.M.; Smoller, J.W. Implementing Machine Learning Models for Suicide Risk Prediction in Clinical Practice: Focus Group Study with Hospital Providers. JMIR Form. Res. 2022, 6, e30946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| No. | DQB1 Allele | RR | CI95% | OR | CI95% | p |
|---|---|---|---|---|---|---|
| 1 | DQB1*02 | 0.97 | 0.74–1.26 | 0.93 | 0.56–1.56 | 0.90 |
| 2 | DQB1*03 | 0.96 | 0.78–1.18 | 0.92 | 0.61–1.38 | 0.75 |
| 3 | DQB1*04 | 0.66 | 0.21–2.07 | 0.49 | 0.09–2.73 | 0.68 |
| 4 | DQB1*05 | 1.04 | 0.84–1.29 | 1.08 | 0.69–1.68 | 0.82 |
| 5 | DQB1*06 | 1.09 | 0.85–1.40 | 1.20 | 0.71–2.03 | 0.59 |
| No. | DQB1 Genotype | RR | CI95% | OR | CI95% | p |
|---|---|---|---|---|---|---|
| 1 | DQB1*02/*02 | 1.34 | 0.75–2.38 | 2.02 | 0.37–11.16 | 0.68 |
| 2 | DQB1*02/*03 | 0.93 | 0.70–1.23 | 0.86 | 0.50–1.47 | 0.68 |
| 3 | DQB1*02/*04 | 2.01 | 1.82–2.22 | - | Undefined | 0.48 |
| 4 | DQB1*02/*05 | 0.61 | 0.39–0.95 | 0.43 | 0.22–0.83 | 0.02 * |
| 5 | DQB1*02/*06 | 1.60 | 1.22–2.09 | 3.69 | 1.19–11.42 | 0.03 * |
| 6 | DQB1*03/*03 | 0.91 | 0.65–1.25 | 0.83 | 0.45–1.52 | 0.64 |
| 7 | DQB1*03/*04 | - | Undefined | - | Undefined | 0.48 |
| 8 | DQB1*03/*05 | 1.14 | 0.90–1.44 | 1.31 | 0.79–2.20 | 0.36 |
| 9 | DQB1*03/*06 | 0.95 | 0.70–1.30 | 0.91 | 0.50–1.65 | 0.88 |
| 10 | DQB1*04/*05 | 0.66 | 0.21–2.07 | 0.49 | 0.09–2.73 | 0.68 |
| 11 | DQB1*04/*06 | - | Undefined | - | Undefined | 0.48 |
| 12 | DQB1*05/*05 | 1.37 | 1.04–1.80 | 2.11 | 0.96–4.64 | 0.09 |
| 13 | DQB1*05/*06 | 0.87 | 0.58–1.30 | 0.76 | 0.37–1.58 | 0.58 |
| 14 | DQB1*06/*06 | 1.26 | 0.85–1.87 | 1.70 | 0.61–4.78 | 0.44 |
| No. | DRB1 Allele | RR | CI95% | OR | CI95% | p |
|---|---|---|---|---|---|---|
| 1 | DRB1*01 | 1.06 | 0.77–1.44 | 1.12 | 0.58–2.15 | 0.87 |
| 2 | DRB1*03 | 0.85 | 0.57–1.26 | 0.73 | 0.36–1.47 | 0.48 |
| 3 | DRB1*04 | 0.61 | 0.37–1.00 | 0.43 | 0.20–0.90 | 0.03 * |
| 4 | DRB1*07 | 1.16 | 0.88–1.54 | 1.38 | 0.72–2.63 | 0.41 |
| 5 | DRB1*08 | 0.66 | 0.21–2.07 | 0.49 | 0.09–2.73 | 0.68 |
| 6 | DRB1*09 | - | Undefined | - | Undefined | 1 |
| 7 | DRB1*10 | 1 | 0.37–2.68 | 1 | 0.14–7.17 | 1 |
| 8 | DRB1*11 | 0.94 | 0.73–1.21 | 0.88 | 0.54–1.44 | 0.71 |
| 9 | DRB1*12 | 1.68 | 1.16–2.44 | 5.10 | 0.59–44.10 | 0.22 |
| 10 | DRB1*13 | 0.97 | 0.69–1.36 | 0.94 | 0.49–1.83 | 1 |
| 11 | DRB1*14 | 0.94 | 0.56–1.57 | 0.88 | 0.33–2.34 | 1 |
| 12 | DRB1*15 | 1.23 | 0.95–1.60 | 1.58 | 0.84–2.97 | 0.20 |
| 13 | DRB1*16 | 1.16 | 0.88–1.54 | 1.38 | 0.72–2.63 | 0.41 |
| Determinants | Allele Indicator | DQB1*02 | DQB1*03 | DQB1*04 | DQB1*05 | DQB1*06 |
|---|---|---|---|---|---|---|
| Social/familial problems | Frequency | 44.4% | 50% | 100% | 41.7% | 57.7% |
| Pearson X2 | 0.228 | 0.064 | 1.066 | 0.925 | 1.063 | |
| 2-tailed p | 0.633 | 0.801 | 0.302 b,c | 0.336 | 0.302 | |
| Psychiatric pathology | Frequency | 85.2% | 72.0% | 100% | 77.8% | 92.3% |
| Pearson X2 | 0.562 | 3.111 b,c | 0.252 | 0.150 | 3.023 | |
| 2-tailed p | 0.453 | 0.078 | 0.616 | 0.699 | 0.082 | |
| Trauma | Frequency | 41.2% | 42.0% | 0% | 54.5% | 47.2% |
| Pearson X2 | 0.372 | 0.649 | 1.716 | 2.291 | 0.030 | |
| 2-tailed p | 0.542 | 0.421 | 0.190 b,c | 0.130 | 0.862 | |
| Abuse | Frequency | 35.3% | 26.1% | 0% | 41.8% | 41.7% |
| Pearson X2 | 0.007 | 3.482 | 1.073 | 1.713 | 0.946 | |
| 2-tailed p | 0.936 | 0.062 | 0.300 b,c | 0.191 | 0.331 | |
| Chronic diseases | Frequency | 67.6% | 63.8% | 50% | 61.8% | 77.8% |
| Pearson X2 | 0.032 | 0.312 | 0.241 | 0.696 | 2.589 | |
| 2-tailed p | 0.858 | 0.576 | 0.623 b,c | 0.404 | 0.108 | |
| Cancer | Frequency | 0% | 2.9% | 0% | 0% | 5.6% |
| Pearson X2 | 0.857 | 0.392 | 0.042 | 1.593 | 2.725 | |
| 2-tailed p | 0.355 b,c | 0.531 b | 0.837 b,c | 0.207 b | 0.099 b,c | |
| Death of close relatives | Frequency | 70.6% | 52.2% | 100% | 49.1% | 52.8% |
| Pearson X2 | 3.988 | 0.369 | 1.646 | 1.117 | 0.096 | |
| 2-tailed p | 0.046 * | 0.544 | 0.199 b,c | 0.291 | 0.756 | |
| Disillusionment | Frequency | 67.6% | 55.1% | 100% | 60% | 61.1% |
| Pearson X2 | 0.951 | 1.170 | 1.336 | 0.001 | 0.015 | |
| 2-tailed p | 0.329 | 0.279 | 0.248 b,c | 0.971 | 0.902 | |
| Depression | Frequency | 94.1% | 88.4% | 100% | 90.9% | 97.2% |
| Pearson X2 | 0.285 | 1.672 | 0.180 | 0.088 | 1.706 | |
| 2-tailed p | 0.593 b | 0.196 | 0.672 b,c | 0.767 b | 0.191 b | |
| Self-harm | Frequency | 52.9% | 39.1% | 0% | 40% | 52.8% |
| Pearson X2 | 1.372 | 0.975 | 1.580 | 0.467 | 1.419 | |
| 2-tailed p | 0.241 | 0.324 | 0.209 b,c | 0.494 | 0.234 | |
| Alcohol abuse | Frequency | 47.1% | 40.6% | 50% | 40% | 52.8% |
| Pearson X2 | 0.169 | 0.470 | 0.031 | 0.467 | 1.419 | |
| 2-tailed p | 0.681 | 0.493 | 0.861 b,c | 0.494 | 0.234 | |
| Drug addiction | Frequency | 38.2% | 23.2% | 0% | 38.2% | 38.9% |
| Pearson X2 | 0.583 | 4.338 | 0.980 | 1.063 | 0.780 | |
| 2-tailed p | 0.445 | 0.037 * | 0.322 b,c | 0.303 | 0.377 | |
| Compulsive eating | Frequency | 17.6% | 14.5% | 0% | 14.5% | 5.6% |
| Pearson X2 | 0.686 | 0.139 | 0.309 | 0.109 | 2.278 | |
| 2-tailed p | 0.407 b | 0.709 | 0.578 b,c | 0.741 | 0.131 b | |
| Lack of appetite | Frequency | 70.6% | 72.5% | 100% | 70.9% | 69.4% |
| Pearson X2 | 0.014 | 0.056 | 0.808 | 0.010 | 0.085 | |
| 2-tailed p | 0.905 | 0.813 | 0.369 b,c | 0.920 | 0.771 | |
| Obsessive ideas | Frequency | 73.5% | 78.3% | 100% | 83.6% | 69.4% |
| Pearson X2 | 0.382 | 0.031 | 0.585 | 1.626 | 1.665 | |
| 2-tailed p | 0.536 | 0.861 | 0.444 b,c | 0.202 | 0.197 | |
| Memory dysfunction | Frequency | 76.5% | 62.3% | 100% | 60% | 83.3% |
| Pearson X2 | 1.249 | 1.801 | 0.935 | 2.475 | 4.567 | |
| 2-tailed p | 0.264 | 0.180 | 0.334 b,c | 0.116 | 0.033 * |
| Determinants | Allele Indicator | DRB1 *01 | DRB1 *03 | DRB1 *04 | DRB1 *07 | DRB1 *08 | DRB1 *10 |
|---|---|---|---|---|---|---|---|
| Social/familial problems | Frequency | 23.5% | 30% | 50% | 52.6% | 100% | 0% |
| Pearson X2 | 4.858 | 1.487 | 0.009 | 0.145 | 1.066 | ||
| 2-tailed p | 0.028 * | 0.223 b | 0.925 b | 0.703 | 0.302 b,c | ||
| Psychiatric pathology | Frequency | 76.5% | 70% | 60% | 94.7% | 100% | 0% |
| Pearson X2 | 0.151 | 0.673 | 2.692 | 2.984 | 0.252 | ||
| 2-tailed p | 0.698 b | 0.412 b | 0.101 b | 0.084 b | 0.616 b,c | ||
| Trauma | Frequency | 52.4% | 33.3% | 36.4% | 41.7% | 0% | 50% |
| Pearson X2 | 0.396 | 1.036 | 0.428 | 0.199 | 1.716 | 0.014 | |
| 2-tailed p | 0.529 | 0.309 | 0.513 | 0.655 | 0.190 b,c | 0.907 b,c | |
| Abuse | Frequency | 33.3% | 26.7% | 36.4% | 37.5% | 0% | 0% |
| Pearson X2 | 0.019 | 0.462 | 0.014 | 0.095 | 1.073 | 1.073 | |
| 2-tailed p | 0.890 | 0.497 | 0.905 b | 0.758 | 0.300 b,c | 0.300 b,c | |
| Chronic diseases | Frequency | 61.9% | 73.3% | 54.5% | 62.5% | 50% | 100% |
| Pearson X2 | 0.206 | 0.357 | 0.724 | 0.179 | 0.241 | 1.026 | |
| 2-tailed p | 0.650 | 0.550 | 0.395 b | 0.672 | 0.623 b,c | 0.311 b,c | |
| Cancer | Frequency | 0% | 0% | 0% | 0% | 0% | 0% |
| Pearson X2 | 0.490 | 0.338 | 0.243 | 0.570 | 0.042 | 0.042 | |
| 2-tailed p | 0.484 b,c | 0.561 b,c | 0.622 b,c | 0.450 b,c | 0.837 b,c | 0.837 b,c | |
| Death of close relatives | Frequency | 52.4% | 53.3% | 63.6% | 70.8% | 100% | 50% |
| Pearson X2 | 0.070 | 0.021 | 0.343 | 2.736 | 1.646 | 0.021 | |
| 2-tailed p | 0.791 | 0.886 | 0.558 b | 0.098 | 0.199 b,c | 0.884 b,c | |
| Disillusionment | Frequency | 66.7% | 40% | 36.4% | 79.2% | 100% | 0% |
| Pearson X2 | 0.410 | 2.767 | 2.765 | 4.105 | 1.336 | 3.057 | |
| 2-tailed p | 0.522 | 0.096 | 0.096 b | 0.043 * | 0.248 b,c | 0.080 b,c | |
| Depression | Frequency | 100% | 73.3% | 90.9% | 100% | 100% | 50% |
| Pearson X2 | 2.091 | 7.418 | 0.013 | 2.431 | 0.180 | 4.718 | |
| 2-tailed p | 0.148 b | 0.006 *,b | 0.908 b,c | 0.119 b | 0.672 b,c | 0.030 *,b,c | |
| Self-harm | Frequency | 47.6% | 33.3% | 36.4% | 54.2% | 0% | 0% |
| Pearson X2 | 0.134 | 0.733 | 0.267 | 1.176 | 1.580 | 1.580 | |
| 2-tailed p | 0.715 | 0.392 | 0.605 b | 0.278 | 0.209 b,c | 0.209 b,c | |
| Alcohol abuse | Frequency | 42.9% | 53.3% | 45.5% | 41.7% | 50% | 0% |
| Pearson X2 | 0.010 | 0.590 | 0.012 | 0.054 | 0.031 | 1.580 | |
| 2-tailed p | 0.921 | 0.443 | 0.914 b | 0.816 | 0.861 b,c | 0.209 b,c | |
| Drug addiction | Frequency | 47.6% | 26.7% | 27.3% | 45.8% | 0% | 0% |
| Pearson X2 | 2.396 | 0.265 | 0.153 | 2.160 | 0.980 | 0.980 | |
| 2-tailed p | 0.122 | 0.607 b | 0.695 b | 0.142 | 0.322 b,c | 0.322 b,c | |
| Compulsive eating | Frequency | 4.8% | 13.3% | 27.3% | 20.8% | 0% | 0% |
| Pearson X2 | 1.478 | 0 | 1.987 | 1.361 | 0.309 | 0.309 | |
| 2-tailed p | 0.224 b | 0.994 b | 0.159 b | 0.243 b | 0.578 b,c | 0.578 b,c | |
| Lack of appetite | Frequency | 81.0% | 73.3% | 72.7% | 66.7% | 100% | 50% |
| Pearson X2 | 1.045 | 0.029 | 0.010 | 0.304 | 0.808 | 0.455 | |
| 2-tailed p | 0.307 | 0.865 b | 0.922 b | 0.581 | 0.369 b,c | 0.500 b,c | |
| Obsessive ideas | Frequency | 90.5% | 53.3% | 81.8% | 79.2% | 100% | 50% |
| Pearson X2 | 2.257 | 5.472 | 0.122 | 0.041 | 0.585 | 0.881 | |
| 2-tailed p | 0.133 b | 0.019 *,b | 0.727 b | 0.840 | 0.444 b,c | 0.348 b,c | |
| Memory dysfunction | Frequency | 71.4% | 66.7% | 45.5% | 79.2% | 100% | 50% |
| Pearson X2 | 0.102 | 0.022 | 2.829 | 1.475 | 0.935 | 0.315 | |
| 2-tailed p | 0.750 | 0.883 b | 0.093 b | 0.225 | 0.334 b,c | 0.575 b,c |
| Determinants | Allele Indicator | DRB1 *11 | DRB1 *12 | DRB1 *13 | DRB1 *14 | DRB1 *15 | DRB1 *16 |
|---|---|---|---|---|---|---|---|
| Social/familial problems | Frequency | 48.3% | 100% | 50% | 33.3% | 60.9% | 58.3% |
| Pearson X2 | 0.001 | 3.246 | 0.009 | 0.583 | 1.666 | 0.501 | |
| 2-tailed p | 0.971 | 0.072 b | 0.925 b | 0.445 b | 0.197 | 0.479 | |
| Psychiatric pathology | Frequency | 72.4% | 66.7% | 90% | 100% | 95.7% | 58.3% |
| Pearson X2 | 1.316 | 0.341 | 0.673 | 1.567 | 4.214 | 3.851 | |
| 2-tailed p | 0.251 | 0.559 b,c | 0.412 b | 0.211 b | 0.04 *,b | 0.05 *,b | |
| Trauma | Frequency | 39.5% | 60% | 52.6% | 62.5% | 48.1% | 54.2% |
| Pearson X2 | 0.788 | 0.410 | 0.382 | 0.923 | 0.063 | 0.749 | |
| 2-tailed p | 0.375 | 0.522 b | 0.537 | 0.337 b | 0.802 | 0.387 | |
| Abuse | Frequency | 18.4% | 40% | 36.8% | 62.5% | 44.4% | 45.8% |
| Pearson X2 | 5.509 | 0.064 | 0.043 | 2.846 | 1.314 | 1.498 | |
| 2-tailed p | 0.019 * | 0.801 b | 0.836 | 0.092 b | 0.252 | 0.221 | |
| Chronic diseases | Frequency | 65.8% | 60% | 78.9% | 50% | 74.1% | 62.5% |
| Pearson X2 | 0.006 | 0.092 | 1.501 | 0.995 | 0.842 | 0.179 | |
| 2-tailed p | 0.938 | 0.762 b | 0.221 | 0.318 b | 0.359 | 0.672 | |
| Cancer | Frequency | 2.6% | 20% | 5.3% | 0% | 3.7% | 0% |
| Pearson X2 | 0.082 | 8.278 | 1.093 | 0.174 | 0.433 | 0.570 | |
| 2-tailed p | 0.774 b,c | 0.004 *,b,c | 0.296 b,c | 0.677 b,c | 0.510 b,c | 0.450 b,c | |
| Death of close relatives | Frequency | 50% | 40% | 52.6% | 75.0% | 55.6% | 41.7% |
| Pearson X2 | 0.496 | 0.473 | 0.052 | 1.335 | 0.003 | 1.995 | |
| 2-tailed p | 0.481 | 0.492 b | 0.820 | 0.248 b | 0.959 | 0.158 | |
| Disillusionment | Frequency | 52.6% | 60% | 47.4% | 75.0% | 85.2% | 50% |
| Pearson X2 | 1.128 | 0 | 1.447 | 0.762 | 8.156 | 1.189 | |
| 2-tailed p | 0.288 | 0.992 b | 0229 | 0.383 b | 0.004 * | 0.276 | |
| Depression | Frequency | 84.2% | 80% | 100% | 100% | 96.3% | 91.7% |
| Pearson X2 | 3.657 | 0.959 | 1.870 | 0.741 | 0.831 | 0.001 | |
| 2-tailed p | 0.056 b | 0.327 b,c | 0.171 b | 0.389 b,c | 0.362 b | 0.974 b | |
| Self-harm | Frequency | 44.7% | 0% | 47.4% | 37.5% | 66.7% | 29.2% |
| Pearson X2 | 0.014 | 4.011 | 0.104 | 0.138 | 6.604 | 2.403 | |
| 2-tailed p | 0.905 | 0.045 *,b | 0.747 | 0.711 b | 0.010 * | 0.121 | |
| Alcohol abuse | Frequency | 36.8% | 40% | 52.6% | 37.5% | 44.4% | 50% |
| Pearson X2 | 0.948 | 0.031 | 0.655 | 0.138 | 0.004 | 0.416 | |
| 2-tailed p | 0.330 | 0.860 b | 0.418 | 0.711 b | 0.949 | 0.519 | |
| Drug addiction | Frequency | 23.7% | 20% | 26.3% | 37.5% | 44.4% | 25.0% |
| Pearson X2 | 1.724 | 0.374 | 0.384 | 0.089 | 1.980 | 0.728 | |
| 2-tailed p | 0.189 | 0.541 b | 0.535 | 0.765 b | 0.159 | 0.393 | |
| Compulsive eating | Frequency | 7.9% | 0% | 5.3% | 37.5% | 7.4% | 25.0% |
| Pearson X2 | 1.182 | 0.785 | 1.171 | 4.257 | 0.934 | 3.273 | |
| 2-tailed p | 0.277 | 0.376 b,c | 0.279 b | 0.039 *,b | 0.334 b | 0.070 b | |
| Lack of appetite | Frequency | 78.9% | 20% | 68.4% | 62.5% | 74.1% | 66.7% |
| Pearson X2 | 1.306 | 6.650 | 0.093 | 0.326 | 0.107 | 0.304 | |
| 2-tailed p | 0.253 | 0.010 *,b | 0.760 | 0.568 b | 0.743 | 0.581 | |
| Obsessive ideas | Frequency | 73.7% | 80% | 63.2% | 100% | 85.2% | 79.2% |
| Pearson X2 | 0.405 | 0.018 | 2.504 | 2.414 | 1.048 | 0.041 | |
| 2-tailed p | 0.525 | 0.894 b | 0.114 b | 0.120 b | 0.306 | 0.840 | |
| Memory dysfunction | Frequency | 57.9% | 80% | 78.9% | 62.5% | 81.5% | 58.3% |
| Pearson X2 | 2.391 | 0.321 | 1.089 | 0.133 | 2.490 | 1.273 | |
| 2-tailed p | 0.122 | 0.571 b | 0.297 | 0.716 b | 0.115 | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cîmpianu, M.E.; Vică Matei, M.L.; Bâlici, Ș.; Nicula, G.Z.; Domșa, E.M.; Cîmpianu, T.; Rusu, S.I.; Coman, H.G.; Siserman, C.V. HLA Class II Alleles and Suicidal Behavior: Evidence from a Case–Control Study. Int. J. Mol. Sci. 2025, 26, 10181. https://doi.org/10.3390/ijms262010181
Cîmpianu ME, Vică Matei ML, Bâlici Ș, Nicula GZ, Domșa EM, Cîmpianu T, Rusu SI, Coman HG, Siserman CV. HLA Class II Alleles and Suicidal Behavior: Evidence from a Case–Control Study. International Journal of Molecular Sciences. 2025; 26(20):10181. https://doi.org/10.3390/ijms262010181
Chicago/Turabian StyleCîmpianu, Mihaela Elvira, Mihaela Laura Vică Matei, Ștefana Bâlici, Gheorghe Zsolt Nicula, Elena Maria Domșa, Teodora Cîmpianu, Sergiu Ionica Rusu, Horia George Coman, and Costel Vasile Siserman. 2025. "HLA Class II Alleles and Suicidal Behavior: Evidence from a Case–Control Study" International Journal of Molecular Sciences 26, no. 20: 10181. https://doi.org/10.3390/ijms262010181
APA StyleCîmpianu, M. E., Vică Matei, M. L., Bâlici, Ș., Nicula, G. Z., Domșa, E. M., Cîmpianu, T., Rusu, S. I., Coman, H. G., & Siserman, C. V. (2025). HLA Class II Alleles and Suicidal Behavior: Evidence from a Case–Control Study. International Journal of Molecular Sciences, 26(20), 10181. https://doi.org/10.3390/ijms262010181

