Systemic Metabolic Rewiring in a Mouse Model of Left Ventricular Hypertrophy
Abstract
1. Introduction
2. Results
2.1. Mybpc3−/− Mice Have Altered Respiration Compared to Wild-Type Mice
2.2. Mybpc3−/− Mice Have Altered Substrate Stores Compared to Wild-Type Mice
2.3. Circulating Metabolites Differ Between Mybpc3−/− and Wild-Type Males
2.4. Mybpc3−/− Males Have Decreased OXPHOS Capacity in the Heart and Skeletal Muscle Compared to Wild-Type Males
2.5. Long-Chain Fatty Acid Supplementation Ameliorates Decreased OXPHOS Capacity in Mybpc3−/− Mouse Skeletal Muscles
2.6. Exogenous Supplementation of LCFAs Bypasses Lipid Storage in Mybpc3−/− Mice
2.7. A High-Fat Diet Boosts Mybpc3−/− Cardiac Respiration
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Indirect Calorimetry, RER, and Energy Expenditure
4.3. Assessment of Body Composition
4.4. Histology
4.5. Fasted Glucose and Ketone Measurements
4.6. Acylcarnitine Analysis
4.7. High-Resolution Respirometry in Isolated Mitochondria
4.8. High-Resolution Respirometry of Permeabilized Muscle Fibers
4.9. Exercise Challenge
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenkranz, S.; Gibbs, J.S.R.; Wachter, R.; De Marco, T.; Vonk-Noordegraaf, A.; Vachiéry, J.-L. Left Ventricular Heart Failure and Pulmonary Hypertension. Eur. Heart J. 2016, 37, 942–954. [Google Scholar] [CrossRef]
- Nwabuo, C.C.; Vasan, R.S. Pathophysiology of Hypertensive Heart Disease: Beyond Left Ventricular Hypertrophy. Curr. Hypertens. Rep. 2020, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Noels, H.; van der Vorst, E.P.C.; Rubin, S.; Emmett, A.; Marx, N.; Tomaszewski, M.; Jankowski, J. Renal-Cardiac Crosstalk in the Pathogenesis and Progression of Heart Failure. Circ. Res. 2025, 136, 1306–1334. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef] [PubMed]
- Marian, A.J.; Braunwald, E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef]
- Carrier, L.; Knöll, R.; Vignier, N.; Keller, D.I.; Bausero, P.; Prudhon, B.; Isnard, R.; Ambroisine, M.-L.; Fiszman, M.; Ross, J.; et al. Asymmetric Septal Hypertrophy in Heterozygous cMyBP-C Null Mice. Cardiovasc. Res. 2004, 63, 293–304. [Google Scholar] [CrossRef]
- Harris, S.P.; Bartley, C.R.; Hacker, T.A.; McDonald, K.S.; Douglas, P.S.; Greaser, M.L.; Powers, P.A.; Moss, R.L. Hypertrophic Cardiomyopathy in Cardiac Myosin Binding Protein-C Knockout Mice. Circ. Res. 2002, 90, 594–601. [Google Scholar] [CrossRef]
- Tuomainen, T.; Tavi, P. The Role of Cardiac Energy Metabolism in Cardiac Hypertrophy and Failure. Exp. Cell Res. 2017, 360, 12–18. [Google Scholar] [CrossRef]
- Shi, X.; Qiu, H. New Insights Into Energy Substrate Utilization and Metabolic Remodeling in Cardiac Physiological Adaption. Front. Physiol. 2022, 13, 831829. [Google Scholar] [CrossRef]
- Chu, W.; Wan, L.; Zhao, D.; Qu, X.; Cai, F.; Huo, R.; Wang, N.; Zhu, J.; Zhang, C.; Zheng, F.; et al. Mild Hypoxia-Induced Cardiomyocyte Hypertrophy via up-Regulation of HIF-1α-Mediated TRPC Signalling. J. Cell. Mol. Med. 2012, 16, 2022–2034. [Google Scholar] [CrossRef]
- Sherratt, S.C.R.; Mason, R.P.; Libby, P.; Steg, P.G.; Bhatt, D.L. Do Patients Benefit from Omega-3 Fatty Acids? Cardiovasc. Res. 2023, 119, 2884–2901. [Google Scholar] [CrossRef]
- Wu, M.; Tan, J.; Cao, Z.; Cai, Y.; Huang, Z.; Chen, Z.; He, W.; Liu, X.; Jiang, Y.; Gao, Q.; et al. Sirt5 Improves Cardiomyocytes Fatty Acid Metabolism and Ameliorates Cardiac Lipotoxicity in Diabetic Cardiomyopathy via CPT2 De-Succinylation. Redox Biol. 2024, 73, 103184. [Google Scholar] [CrossRef]
- Abozguia, K.; Elliott, P.; McKenna, W.; Phan, T.T.; Nallur-Shivu, G.; Ahmed, I.; Maher, A.R.; Kaur, K.; Taylor, J.; Henning, A.; et al. Metabolic Modulator Perhexiline Corrects Energy Deficiency and Improves Exercise Capacity in Symptomatic Hypertrophic Cardiomyopathy. Circulation 2010, 122, 1562–1569. [Google Scholar] [CrossRef]
- Kaimoto, S.; Hoshino, A.; Ariyoshi, M.; Okawa, Y.; Tateishi, S.; Ono, K.; Uchihashi, M.; Fukai, K.; Iwai-Kanai, E.; Matoba, S. Activation of PPAR-α in the Early Stage of Heart Failure Maintained Myocardial Function and Energetics in Pressure-Overload Heart Failure. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H305–H313. [Google Scholar] [CrossRef]
- Lahey, R.; Wang, X.; Carley, A.N.; Lewandowski, E.D. Dietary Fat Supply to Failing Hearts Determines Dynamic Lipid Signaling for Nuclear Receptor Activation and Oxidation of Stored Triglyceride. Circulation 2014, 130, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Mengi, S.A.; Dhalla, N.S. Carnitine Palmitoyltransferase-I, a New Target for the Treatment of Heart Failure: Perspectives on a Shift in Myocardial Metabolism as a Therapeutic Intervention. Am. J. Cardiovasc. Drugs 2004, 4, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Adrogue, J.V.; Golfman, L.; Uray, I.; Lemm, J.; Youker, K.; Noon, G.P.; Frazier, O.H.; Taegtmeyer, H. Intramyocardial Lipid Accumulation in the Failing Human Heart Resembles the Lipotoxic Rat Heart. FASEB J. 2004, 18, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Klingenspor, M.; Tschöp, M.H. Revisiting Energy Expenditure: How to Correct Mouse Metabolic Rate for Body Mass. Nat. Metab. 2021, 3, 1134–1136. [Google Scholar] [CrossRef]
- Rogers, P.; Webb, G.P. Estimation of Body Fat in Normal and Obese Mice. Br. J. Nutr. 1980, 43, 83–86. [Google Scholar] [CrossRef]
- Haemmerle, G.; Lass, A.; Zimmermann, R.; Gorkiewicz, G.; Meyer, C.; Rozman, J.; Heldmaier, G.; Maier, R.; Theussl, C.; Eder, S.; et al. Defective Lipolysis and Altered Energy Metabolism in Mice Lacking Adipose Triglyceride Lipase. Science 2006, 312, 734–737. [Google Scholar] [CrossRef]
- Cole, L.K.; Mejia, E.M.; Sparagna, G.C.; Vandel, M.; Xiang, B.; Han, X.; Dedousis, N.; Kaufman, B.A.; Dolinsky, V.W.; Hatch, G.M. Cardiolipin Deficiency Elevates Susceptibility to a Lipotoxic Hypertrophic Cardiomyopathy. J. Mol. Cell. Cardiol. 2020, 144, 24–34. [Google Scholar] [CrossRef]
- Ranjbarvaziri, S.; Kooiker, K.B.; Ellenberger, M.; Fajardo, G.; Zhao, M.; Vander Roest, A.S.; Woldeyes, R.A.; Koyano, T.T.; Fong, R.; Ma, N.; et al. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation 2021, 144, 1714–1731. [Google Scholar] [CrossRef]
- Magida, J.A.; Leinwand, L.A. Metabolic Crosstalk between the Heart and Liver Impacts Familial Hypertrophic Cardiomyopathy. EMBO Mol. Med. 2014, 6, 482–495. [Google Scholar] [CrossRef]
- Rose, K.L.; Pin, C.L.; Wang, R.; Fraser, D.D. Combined Insulin and Bicarbonate Therapy Elicits Cerebral Edema in a Juvenile Mouse Model of Diabetic Ketoacidosis. Pediatr. Res. 2007, 61, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.; Rivadeneira, A.; Narayanan, A.; Kim, G.Y.; Choi, I. Induction of Alcoholic Ketoacidosis in Mice. Physiology 2024, 39, 743. [Google Scholar] [CrossRef]
- Makrecka-Kuka, M.; Sevostjanovs, E.; Vilks, K.; Volska, K.; Antone, U.; Kuka, J.; Makarova, E.; Pugovics, O.; Dambrova, M.; Liepinsh, E. Plasma Acylcarnitine Concentrations Reflect the Acylcarnitine Profile in Cardiac Tissues. Sci. Rep. 2017, 7, 17528. [Google Scholar] [CrossRef] [PubMed]
- Goedecke, J.H.; Gibson, A.S.C.; Grobler, L.; Collins, M.; Noakes, T.D.; Lambert, E.V. Determinants of the Variability in Respiratory Exchange Ratio at Rest and during Exercise in Trained Athletes. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1325–E1334. [Google Scholar] [CrossRef]
- König, C.; Plank, A.-C.; Kapp, A.; Timotius, I.K.; von Hörsten, S.; Zimmermann, K. Thirty Mouse Strain Survey of Voluntary Physical Activity and Energy Expenditure: Influence of Strain, Sex and Day–Night Variation. Front. Neurosci. 2020, 14, 531. [Google Scholar] [CrossRef]
- Shridhar, P.; Glennon, M.S.; Pal, S.; Waldron, C.J.; Chetkof, E.J.; Basak, P.; Clavere, N.G.; Banerjee, D.; Gingras, S.; Becker, J.R. MDM2 Regulation of HIF Signaling Causes Microvascular Dysfunction in Hypertrophic Cardiomyopathy. Circulation 2023, 148, 1870–1886. [Google Scholar] [CrossRef]
- Salminen, A.; Vihko, V.; Pilström, L. Effect of Endurance Training on the Capacity of Red and White Skeletal Muscle of Mouse to Oxidize Carboxyl-14C-Labelled Palmitate. Acta Physiol. Scand. 1977, 101, 318–328. [Google Scholar] [CrossRef]
- Doerrier, C.; Garcia-Souza, L.F.; Krumschnabel, G.; Wohlfarter, Y.; Mészáros, A.T.; Gnaiger, E. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. In Mitochondrial Bioenergetics; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; Volume 1782, pp. 31–70. [Google Scholar] [CrossRef]
- Menezes Junior, A.d.S.; França-e-Silva, A.L.G.d.; Oliveira, H.L.d.; Lima, K.B.A.d.; Porto, I.d.O.P.; Pedroso, T.M.A.; Silva, D.d.M.e.; Freitas, A.F., Jr. Genetic Mutations and Mitochondrial Redox Signaling as Modulating Factors in Hypertrophic Cardiomyopathy: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 5855. [Google Scholar] [CrossRef]
- He, L.; Kim, T.; Long, Q.; Liu, J.; Wang, P.; Zhou, Y.; Ding, Y.; Prasain, J.; Wood, P.A.; Yang, Q. Carnitine Palmitoyltransferase-1b Deficiency Aggravates Pressure Overload–Induced Cardiac Hypertrophy Caused by Lipotoxicity. Circulation 2012, 126, 1705–1716. [Google Scholar] [CrossRef]
- Jalili, T.; Manning, J.; Kim, S. Increased Translocation of Cardiac Protein Kinase C Β2 Accompanies Mild Cardiac Hypertrophy in Rats Fed Saturated Fat. J. Nutr. 2003, 133, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Dal Canto, E. Distinct Myocardial Targets for Diabetes Therapy in Heart Failure with Preserved or Reduced Ejection Fraction. JACC Heart Fail. 2018, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Bertero, E.; Nickel, A.; Kohlhaas, M.; Gibson, G.E.; Heggermont, W.; Heymans, S.; Maack, C. Selective NADH Communication from α-Ketoglutarate Dehydrogenase to Mitochondrial Transhydrogenase Prevents Reactive Oxygen Species Formation under Reducing Conditions in the Heart. Basic Res. Cardiol. 2020, 115, 53. [Google Scholar] [CrossRef] [PubMed]
- McLain, A.L.; Szweda, P.A.; Szweda, L.I. α-Ketoglutarate Dehydrogenase: A Mitochondrial Redox Sensor. Free Radic. Res. 2011, 45, 29–36. [Google Scholar] [CrossRef]
- Tang, D.; Gu, Y.; Chen, S.; Niu, T.; Zhu, J.; Liu, P.; Ding, M.; Guo, Y. Alpha-Ketoglutarate Is Required for Chronic Hypoxia-Induced Cardiac Remodeling. Am. J. Physiol. Cell Physiol. 2024, 327, C728–C736. [Google Scholar] [CrossRef]
- Mooli, R.G.R.; Ramakrishnan, S.K. Emerging Role of Hepatic Ketogenesis in Fatty Liver Disease. Front. Physiol. 2022, 13, 946474. [Google Scholar] [CrossRef]
- Fernández-Lainez, C.; Aguilar-Lemus, J.J.; Vela-Amieva, M.; Ibarra-González, I. Tandem Mass Spectrometry Newborn Screening for Inborn Errors of Intermediary Metabolism: Abnormal Profile Interpretation. Curr. Med. Chem. 2012, 19, 4511–4522. [Google Scholar] [CrossRef]
- Barkas, F.; Nomikos, T.; Liberopoulos, E.; Panagiotakos, D. Diet and Cardiovascular Disease Risk Among Individuals with Familial Hypercholesterolemia: Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2436. [Google Scholar] [CrossRef]
- Merritt, J.L.; MacLeod, E.; Jurecka, A.; Hainline, B. Clinical Manifestations and Management of Fatty Acid Oxidation Disorders. Rev. Endocr. Metab. Disord. 2020, 21, 479–493. [Google Scholar] [CrossRef]
- Holdy, K.E. Monitoring Energy Metabolism with Indirect Calorimetry: Instruments, Interpretation, and Clinical Application. Nutr. Clin. Pract. 2004, 19, 447–454. [Google Scholar] [CrossRef]
- Schmidt, A.V.; Bharathi, S.S.; Solo, K.J.; Bons, J.; Rose, J.P.; Schilling, B.; Goetzman, E.S. Sirt2 Regulates Liver Metabolism in a Sex-Specific Manner. Biomolecules 2024, 14, 1160. [Google Scholar] [CrossRef]
- Gucciardi, A.; Pirillo, P.; Di Gangi, I.M.; Naturale, M.; Giordano, G. A Rapid UPLC–MS/MS Method for Simultaneous Separation of 48 Acylcarnitines in Dried Blood Spots and Plasma Useful as a Second-Tier Test for Expanded Newborn Screening. Anal. Bioanal. Chem. 2012, 404, 741–751. [Google Scholar] [CrossRef]
- Rosca, M.G.; Hoppel, C.L. Mitochondrial Dysfunction in Heart Failure. Heart Fail. Rev. 2013, 18, 607–622. [Google Scholar] [CrossRef]
- Acín-Pérez, R.; Montales, K.; Nguyen, K.; Brownstein, A.; Stiles, L.; Divakaruni, A.S. Isolation of Mitochondria from Mouse Tissues for Functional Analysis. In Metabolic Reprogramming; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2023; Volume 2675, pp. 77–96. [Google Scholar] [CrossRef]











| Mybpc3−/− vs. Wild-Type ANCOVA Analysis | ||||||||
|---|---|---|---|---|---|---|---|---|
| Light Cycle | Dark Cycle | |||||||
| Sum of Squares | DF | F | p-Value | Sum of Squares | DF | F | p-Value | |
| Genotype | 3.97 × 104 | 1.0 | 0.0862 | 0.7712 | 1.46 × 104 | 1.0 | 0.0284 | 0.8674 |
| Sex | 6.44 × 104 | 1.0 | 0.1400 | 0.7111 | 3.20 × 105 | 1.0 | 0.6239 | 0.4365 |
| Genotype * Sex | 1.80 × 105 | 1.0 | 0.3829 | 0.5412 | 1.16 × 105 | 1.0 | 0.2264 | 0.6380 |
| Body Mass | 5.29 × 105 | 1.0 | 1.1255 | 0.2981 | 8.88 × 105 | 1.0 | 1.7344 | 0.1989 |
| Residual | 1.29 × 107 | 27.0 | NA | NA | 1.38 × 107 | 27.0 | NA | NA |
| HFD Mybpc3−/− vs. Wild-Type ANCOVA Analysis | ||||
|---|---|---|---|---|
| Sum of Squares | df | F | p-Value | |
| Genotype | 8.95 × 104 | 1.0 | 0.9538 | 0.3543 |
| Body Mass | 1.22 × 105 | 1.0 | 1.3014 | 0.2834 |
| Residual | 8.45 × 105 | 27.0 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, A.V.; Thambidurai, T.; D’Annibale, O.; Bharathi, S.S.; Wood, T.; Goetzman, E.S.; Stelzer, J.E. Systemic Metabolic Rewiring in a Mouse Model of Left Ventricular Hypertrophy. Int. J. Mol. Sci. 2025, 26, 10111. https://doi.org/10.3390/ijms262010111
Schmidt AV, Thambidurai T, D’Annibale O, Bharathi SS, Wood T, Goetzman ES, Stelzer JE. Systemic Metabolic Rewiring in a Mouse Model of Left Ventricular Hypertrophy. International Journal of Molecular Sciences. 2025; 26(20):10111. https://doi.org/10.3390/ijms262010111
Chicago/Turabian StyleSchmidt, Alexandra V., Tharika Thambidurai, Olivia D’Annibale, Sivakama S. Bharathi, Tim Wood, Eric S. Goetzman, and Julian E. Stelzer. 2025. "Systemic Metabolic Rewiring in a Mouse Model of Left Ventricular Hypertrophy" International Journal of Molecular Sciences 26, no. 20: 10111. https://doi.org/10.3390/ijms262010111
APA StyleSchmidt, A. V., Thambidurai, T., D’Annibale, O., Bharathi, S. S., Wood, T., Goetzman, E. S., & Stelzer, J. E. (2025). Systemic Metabolic Rewiring in a Mouse Model of Left Ventricular Hypertrophy. International Journal of Molecular Sciences, 26(20), 10111. https://doi.org/10.3390/ijms262010111

