Structural and Pharmacological Insights into Propranolol: An Integrated Crystallographic Perspective
Abstract
1. Introduction
2. Historical Development and Pharmacological Profile of Propranolol
2.1. Mechanism of Action
2.2. Clinical Application
2.3. Regulatory Milestones
3. Chemical Aspects of Propranolol
3.1. Propranolol’s Molecular Structure
3.2. Pharmacokinetic Properties of Propranolol
3.3. Propranolol’s Physicochemical Properties
3.4. Propranolol’s Solubility
3.5. Pharmacodynamics and Metabolism of Propranolol
4. Crystallographic Aspect of Propranolol
4.1. Reported Crystallographic Structures of Propranolol
4.1.1. β-Adrenergic Receptors (β-ARs)
4.1.2. The Interaction Between Propranolol and the Cel7A Enzyme
4.1.3. Interaction Between Propranolol and the Human β2-Adrenergic Receptor
4.1.4. Comparative Structural Analysis of Selected β-Blockers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srinivasan, A.V. Propranolol: A 50-year historical perspective. Ann. Indian Acad. Neurol. 2019, 22, 21. [Google Scholar] [CrossRef]
- Szeleszczuk, Ł.; Bethanis, K.; Christoforides, E.; Pisklak, D.M. Combining X-ray and NMR crystallography to explore the structural disorder in racemic propranolol hydrochloride. CrystEngComm 2025, 27, 433–446. [Google Scholar]
- Albouaini, K.; Andron, M.; Alahmar, A.; Egred, M. Beta-blockers use in patients with chronic obstructive pulmonary disease and concomitant cardiovascular conditions. Int. J. Chronic Obstr. Pulm. Dis. 2007, 2, 535–540. [Google Scholar]
- Arnold, M. Headache classification committee of the international headache society (IHS) the international classification of headache disorders. Cephalalgia 2018, 38, 1–211. [Google Scholar] [CrossRef]
- Steenen, S.A.; Van Wijk, A.J.; Van Der Heijden, G.J.; van Westrhenen, R.; de Lange, J.; de Jongh, A. Propranolol for the treatment of anxiety disorders: Systematic review and meta-analysis. J. Psychopharmacol. 2016, 30, 128–139. [Google Scholar]
- Pokhrel, B.; Aiman, W.; Bhusal, K. Thyroid Storm; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Eisenstein, K.A. Infantile Hemangiomas: A Review and Future Opportunities. Mo. Med. 2023, 120, 49. [Google Scholar] [PubMed]
- Xu, X.; Kaindl, J.; Clark, M.J.; Hübner, H.; Hirata, K.; Sunahara, R.K.; Gmeiner, P.; Kobilka, B.K.; Liu, X. Binding pathway determines norepinephrine selectivity for the human β1AR over β2AR. Cell Res. 2021, 31, 569–579. [Google Scholar] [PubMed]
- Phadke, R.S.; Kumar, N.V.; Hosur, R.; Saran, A.; Govil, G. Structure and function of propranolol: A β-adrenergic blocking drug. Int. J. Quantum Chem. 1981, 20, 85–92. [Google Scholar]
- Serreau, R.; Amirouche, A.; Benyamina, A.; Berteina-Raboin, S. Propranolol hydrochloride psychiatric effectiveness and oxidative stress: An update. Oxygen 2024, 4, 139–149. [Google Scholar] [CrossRef]
- Modarresi, M.; Amro, A.; Amro, M.; Sobeih, A.; Okoro, U.; Mansoor, K.; Rueda, C.; Elhamdani, R.; BenHamed, N.; Kocher, T. Management of cardiogenic shock due to thyrotoxicosis: A systematic literature review. Curr. Cardiol. Rev. 2020, 16, 326–332. [Google Scholar]
- Duarte, J.D.T.; Dalton, R.; Elchynski, A.L.; Smith, D.M.; Cicali, E.J.; Lee, J.C.; Duong, B.Q.; Petry, N.J.; Aquilante, C.L.; Beitelshees, A.L.; et al. Pharmacogenomics of CYP2D6 and beta-blocker response. Br. J. Pharmacol. 2019, 176, 4362–4374. [Google Scholar]
- O’Logbon, J.; Tarantola, L.; Williams, N.R.; Mehta, S.; Ahmed, A.; Davies, E.A. Does propranolol have a role in cancer treatment? A systematic review of the epidemiological and clinical trial literature on beta-blockers. J. Cancer Res. Clin. Oncol. 2025, 151, 212. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Hemangiol, Propranolol: Public Assessment Report. EMA/CHMP/8171/2014; Committee for Medicinal Products for Human Use (CHMP); 2014. Available online: https://www.ema.europa.eu/en/documents/assessment-report/hemangiol-epar-public-assessment-report_en.pdf (accessed on 31 July 2025).
- Chaudhari, K.; Syed, B.A. The pipeline and market for migraine drugs. Nat. Rev. Drug Discov. 2024, 23, 246–247. [Google Scholar] [CrossRef]
- Roullet, P.; Vaiva, G.; Véry, E.; Bourcier, A.; Yrondi, A.; Dupuch, L.; Lamy, P.; Thalamas, C.; Jasse, L.; El Hage, W. Traumatic memory reactivation with or without propranolol for PTSD and comorbid MD symptoms: A randomised clinical trial. Neuropsychopharmacology 2021, 46, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Matmour, D.; Hadjadj Aoul, Z.F.; Guermouche, H. Enantioseparation of (RS)-Propranolol by Chiral High-Performance Liquid Chromatography to Optimize its Therapeutic Profile. Pharm. Chem. J. 2020, 7, 14–17. [Google Scholar]
- Hamark, C.; Pendrill, R.; Landström, J.; Dotson Fagerström, A.; Sandgren, M.; Ståhlberg, J.; Widmalm, G. Enantioselective binding of propranolol and analogues thereof to cellobiohydrolase Cel7A. Chem. A Eur. J. 2018, 24, 17975–17985. [Google Scholar] [CrossRef] [PubMed]
- Kalam, M.N.; Rasool, M.F.; Rehman, A.U.; Ahmed, N. Clinical pharmacokinetics of propranolol hydrochloride: A review. Curr. Drug Metab. 2020, 21, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Mortlock, R.; Smith, V.; Nesci, I.; Bertoldi, A.; Ho, A.; El Mekkawi, Z.; Kakuzada, L.; Williams, K.; Pont, L.; De Rubis, G. A comparative evaluation of propranolol pharmacokinetics in obese versus ideal weight individuals: A blueprint towards a personalised medicine. Chem. Biol. Interact. 2023, 371, 110351. [Google Scholar] [CrossRef]
- PubChem National Center for Biotechnology Information U.S. National Library of Med. Available online: https://pubchem.ncbi.nlm.nih.gov/substance/96025129 (accessed on 31 July 2025).
- Settimo, L.; Bellman, K.; Knegtel, R.M. Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm. Res. 2014, 31, 1082–1095. [Google Scholar] [CrossRef]
- Chhetri, N.; Ali, M. Exploring the pH-Responsive Interaction of β-Blocker drug Propranolol with Biomimetic Micellar Media: Fluorescence and electronic absorption studies. J. Fluoresc. 2024, 34, 1291–1306. [Google Scholar] [CrossRef]
- Zheng, Y.; Benet, L.Z.; Okochi, H.; Chen, X. pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: The importance of passive diffusion. Pharm. Res. 2015, 32, 2516–2526. [Google Scholar] [CrossRef]
- Sigma-Aldrich. (R)-(+)-Propranolol hydrochloride Product Information Sheet. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/335/023/p5544pis.pdf (accessed on 23 August 2025).
- National Center for Biotechnology Information. Propranolol Hydrochloride Compound Summary. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4946 (accessed on 23 August 2025).
- Selleck Chemicals. Propranolol HCl Datasheet. Available online: https://www.selleckchem.com/datasheet/propranolol-hcl-S407601-DataSheet.html (accessed on 23 August 2025).
- Cayman Chemical. (±)-Propranolol-d7 Product Page. Available online: https://www.caymanchem.com/product/25282 (accessed on 23 August 2025).
- Lam, M.; Nashed, N.; Nokhodchi, A. Liqui-Mass Technology as a Novel Tool to Produce Sustained Release Liqui-Tablet Made from Liqui-Pellets. Pharmaceutics 2021, 13, 1049. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, K.; Li, X.; Wang, Y.; Xu, Q. Influence of cytochrome P450 2D6 polymorphisms on the efficacy of oral propranolol in treating infantile hemangioma. BioMed Res. Int. 2020, 2020, 8732871. [Google Scholar] [CrossRef] [PubMed]
- DailyMed. Propranolol Hydrochloride Tablets, USP. Available online: https://dailymed.nlm.nih.gov (accessed on 31 May 2025).
- Duarte, J.D.; Thomas, C.D.; Lee, C.R.; Huddart, R.; Agundez, J.A.; Baye, J.F.; Gaedigk, A.; Klein, T.E.; Lanfear, D.E.; Monte, A.A. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6, ADRB1, ADRB2, ADRA2C, GRK4, and GRK5 genotypes and beta-blocker therapy. Clin. Pharmacol. Ther. 2024, 116, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Hinderling, P.H.; Hartmann, D. Pharmacokinetics of propranolol in humans. Eur. J. Drug Metab. Pharmacokinet. 1982, 7, 273–280. [Google Scholar]
- FDA. Propranolol Extended-Release Capsules Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/018553s037lbl.pdf (accessed on 1 August 2025).
- Biology Insights. The CYP2D6 Gene and Its Role in Drug Metabolism. Available online: https://biologyinsights.com (accessed on 20 July 2025).
- DrugBank. DrugBank. Clinical Pharmacokinetics of Propranolol. Available online: https://go.drugbank.com/articles/A180295 (accessed on 11 July 2025).
- Ubic, R. Crystallography and Crystal Chemistry; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Rehman, Z.; Lubay, J.; Franks, W.T.; Bartók, A.P.; Corlett, E.K.; Nguyen, B.; Scrivens, G.; Samas, B.M.; Frericks-Schmidt, H.; Brown, S.P. Organic NMR crystallography: Enabling progress for applications to pharmaceuticals and plant cell walls. Faraday Discuss. 2025, 255, 222–243. [Google Scholar] [CrossRef]
- Srivastava, K.; Vikram, G.; Kaushik, S.; Sinha, M.; Kaur, P.; Sharma, S.; Singh, T.P. Crystal Structure of the complex of C-Lobe of Lactoferrin with Isopropylamino-3-(1-Naphthyloxy)Propan-2-ol at 2.38 A Resolution. Available online: https://www.rcsb.org/structure/3MJN (accessed on 31 January 2025).
- Emwas, A.-H.; Szczepski, K.; Poulson, B.G.; Chandra, K.; McKay, R.T.; Dhahri, M.; Alahmari, F.; Jaremko, L.; Lachowicz, J.I.; Jaremko, M. NMR as a “gold standard” method in drug design and discovery. Molecules 2020, 25, 4597. [Google Scholar] [CrossRef] [PubMed]
- Grieco, A.; Quereda-Moraleda, I.; Martin-Garcia, J.M. Innovative Strategies in X-ray Crystallography for Exploring Structural Dynamics and Reaction Mechanisms in Metabolic Disorders. J. Pers. Med. 2024, 14, 909. [Google Scholar] [CrossRef]
- Hemangiol 3.75 mg/mL Oral Solution; the Summary of Product Characteristic. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/hemangiol (accessed on 25 May 2025).
- Orehek, J.; Teslic, D.; Likozar, B. Continuous crystallization processes in pharmaceutical manufacturing: A review. Org. Process Res. Dev. 2020, 25, 16–42. [Google Scholar] [CrossRef]
- Wachter, S.B.; Gilbert, E.M. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 2012, 122, 104–112. [Google Scholar] [CrossRef]
- Böhm, E.W.; Stoffelns, B.; Gericke, A. β-Adrenoreceptors as Therapeutic Targets for Ocular Tumors and Other Eye Diseases—Historical Aspects and Nowadays Understanding. Int. J. Mol. Sci. 2023, 24, 4698. [Google Scholar] [CrossRef] [PubMed]
- Chhatar, S.; Lal, G. Role of adrenergic receptor signalling in neuroimmune communication. Curr. Res. Immunol. 2021, 2, 202–217. [Google Scholar] [CrossRef]
- Rasmussen, M.; Belza, A.; Almdal, T.; Toubro, S.; Bratholm, P.; Astrup, A.; Christensen, N.J. Change in β1-adrenergic receptor protein concentration in adipose tissue correlates with diet-induced weight loss. Clin. Sci. 2005, 108, 323–329. [Google Scholar] [CrossRef]
- Barnes, P.J. Distribution of receptor targets in the lung. Proc. Am. Thorac. Soc. 2004, 1, 345–351. [Google Scholar] [CrossRef]
- Billington, C.K.; Penn, R.B.; Hall, I.P. β 2 Agonists. Pharmacol. Ther. Asthma COPD 2017, 237, 23–40. [Google Scholar]
- Brender, S.; Barki-Harrington, L. β1-Adrenergic receptor downregulates the expression of cyclooxygenase-2. Biochem. Biophys. Res. Commun. 2014, 451, 319–321. [Google Scholar] [CrossRef]
- Zhou, L.; Kwoh, C.; Ran, D.; Ashbeck, E.; Lo-Ciganic, W.-H. Lack of evidence that beta blocker use reduces knee pain, areas of joint pain, or analgesic use among individuals with symptomatic knee osteoarthritis. Osteoarthr. Cartil. 2020, 28, 53–61. [Google Scholar] [CrossRef]
- DrugBank Online. Propranolol (DB00571). Available online: https://go.drugbank.com/drugs/DB00571 (accessed on 7 October 2025).
- Warne, T.; Moukhametzianov, R.; Baker, J.G.; Nehmé, R.; Edwards, P.C.; Leslie, A.G.; Schertler, G.F.; Tate, C.G. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 2011, 469, 241–244. [Google Scholar] [CrossRef]
- Wacker, D.; Fenalti, G.; Brown, M.A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R.C. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc. 2010, 132, 11443–11445. [Google Scholar] [CrossRef] [PubMed]
- Mudinoor, A.R.; Goodwin, P.M.; Rao, R.U.; Karuna, N.; Hitomi, A.; Nill, J.; Jeoh, T. Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose. Biotechnol. Biofuels 2020, 13, 10. [Google Scholar] [CrossRef]
- Fagerström, A.; Liljefors, T.; Sandgren, M.; Isaksson, R.; Ståhlberg, J.; Berg, U. Chiral recognition mechanism of cellobiohydrolase Cel7A for ligands based on the β-blocker propranolol: The effect of explicit water molecules on binding and selectivities. Nat. Sci. 2023, 3, e20220050. [Google Scholar] [CrossRef]
- Ståhlberg, J.; Henriksson, H.; Divne, C.; Isaksson, R.; Pettersson, G.; Johansson, G.; Jones, T.A. Structural basis for enantiomer binding and separation of a common β-blocker: Crystal structure of cellobiohydrolase Cel7A with bound (S)-propranolol at 1.9 Å resolution. J. Mol. Biol. 2001, 305, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, I.G.; Mowbray, S.L.; Ståhlberg, J. The catalytic module of Cel7D from Phanerochaete chrysosporium as a chiral selector: Structural studies of its complex with the beta blocker (R)-propranolol. Biol. Crystallogr. 2003, 59, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Ishchenko, A.; Stauch, B.; Han, G.W.; Batyuk, A.; Shiriaeva, A.; Li, C.; Zatsepin, N.; Weierstall, U.; Liu, W.; Nango, E. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ 2019, 6, 1106–1119. [Google Scholar] [CrossRef] [PubMed]
Parameter | Description |
---|---|
Absorption | Rapid and complete absorption, peak plasma concentrations in 1–3 h. |
Bioavailability | ~26%, due to significant first-pass hepatic metabolism |
Protein Binding | >90%, primarily bound to albumin |
Half-Life | 3–6 h, requiring multiple daily doses |
Metabolism | Extensive hepatic metabolism via cytochrome P450 enzymes, forming active metabolite 4-hydroxypropranolol |
Excretion | <1% excreted unchanged in urine, indicating extensive biotransformation |
Volume of distribution (Vd) | large Vd (~3–5 L/kg), reflecting its extensive tissue binding, especially in lipid-rich organs like the brain and liver. |
Solvent | Solubility (mg/mL) | Temperature | Reference |
---|---|---|---|
Water | ~29 | 37 °C | [25,26] |
Ethanol | 10 | Not specified | [25,26] |
DMSO | 59 | 25 °C | [26,27] |
DMF | 50 | Not specified | [26,28] |
Tween 80 | 1.89 | 37 °C | [29] |
Tween 20 | 1.86 | 37 °C | [29] |
Kolliphor EL | 1.32 | 37 °C | [29] |
Chloroform | Slightly soluble | Not specified | [25,26] |
Ether | Practically insoluble | Not specified | [25,26] |
Benzene | Practically insoluble | Not specified | [25,26] |
Ethyl Acetate | Practically insoluble | Not specified | [25,26] |
PDB ID | Target | Resolution | Organism | Reference |
---|---|---|---|---|
1DY4 | Cellobiohydrolase Cel7A | 1.8 Å | Trichoderma reesei | https://www.rcsb.org/structure/1dy4 (accessed on 10 October 2025) |
6GRN | Cellobiohydrolase I (Cel7A) | 1.7 Å | Trichoderma reesei | https://www.rcsb.org/structure/6GRN (accessed on 10 October 2025) |
1H46 | Catalytic Module of Cel7D | 1.6 Å | Phanerochaete chrysosporium | https://www.rcsb.org/structure/1H46 (accessed on 10 October 2025) |
2RH1 | β2-adrenergic receptor | 2.4 Å | Homo sapiens | https://www.rcsb.org/structure/2RH1 (accessed on 10 October 2025) |
6PS5 | β2-adrenergic receptor | 2.8 Å | Homo sapiens | https://www.rcsb.org/structure/6ps5 (accessed on 10 October 2025) |
3MJN | C-lobe of lactoferrin | 2.38 Å | Bos taurus | https://www.rcsb.org/structure/3MJN (accessed on 10 October 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witczyńska, A.; Fijałkowski, Ł.; Mirowska-Guzel, D.; Blecharz-Klin, K.; Nowaczyk, A. Structural and Pharmacological Insights into Propranolol: An Integrated Crystallographic Perspective. Int. J. Mol. Sci. 2025, 26, 10080. https://doi.org/10.3390/ijms262010080
Witczyńska A, Fijałkowski Ł, Mirowska-Guzel D, Blecharz-Klin K, Nowaczyk A. Structural and Pharmacological Insights into Propranolol: An Integrated Crystallographic Perspective. International Journal of Molecular Sciences. 2025; 26(20):10080. https://doi.org/10.3390/ijms262010080
Chicago/Turabian StyleWitczyńska, Adrianna, Łukasz Fijałkowski, Dagmara Mirowska-Guzel, Kamila Blecharz-Klin, and Alicja Nowaczyk. 2025. "Structural and Pharmacological Insights into Propranolol: An Integrated Crystallographic Perspective" International Journal of Molecular Sciences 26, no. 20: 10080. https://doi.org/10.3390/ijms262010080
APA StyleWitczyńska, A., Fijałkowski, Ł., Mirowska-Guzel, D., Blecharz-Klin, K., & Nowaczyk, A. (2025). Structural and Pharmacological Insights into Propranolol: An Integrated Crystallographic Perspective. International Journal of Molecular Sciences, 26(20), 10080. https://doi.org/10.3390/ijms262010080