A Haplotype GWAS in Syndromic Familial Colorectal Cancer
Abstract
:1. Introduction
2. Results
2.1. Replication of the Loci Found in Previous Haplotype GWAS
2.2. Haplotype GWAS with Correct Cases and Better-Matched Controls
2.3. Selection of Candidate Variants for SNP Analysis
3. Discussion
4. Materials and Methods
4.1. Cases and Controls for GWAS
4.2. Cases for Whole-Genome Sequencing (WGS)
4.3. Cases for Whole-Exome Sequencing (WES)
4.4. Cases and Controls for the Association Studies
4.5. Genotyping, Quality Control, and Haplotype GWAS
4.6. Algorithm for Selection of Candidate SNPs Using the Sequencing Data
4.7. WGS and WES
4.8. Association Study Using MALDI-TOF
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRC | Colorectal Cancer |
GWAS | Genome-Wide Association Study |
SNV | Single-Nucleotide Variant |
WGS | Whole-Genome Sequencing |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kanth, P.; Grimmett, J.; Champine, M.; Burt, R.; Samadder, N.J. Hereditary colorectal polyposis and cancer syndromes: A primer on diagnosis and management. Am. J. Gastroenterol. 2017, 112, 1509–1525. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.; Weedon, M.N.; Green, H.D.; Mallabar-Rimmer, B.; Harrison, J.W.; Wood, A.R.; Ruth, K.S.; Tyrrell, J.; Wright, C.F. Influence of family history on penetrance of hereditary cancers in a population setting. eClinicalMedicine 2023, 64, 102159. [Google Scholar] [CrossRef] [PubMed]
- Valle, L.; de Voer, R.M.; Goldberg, Y.; Sjursen, W.; Försti, A.; Ruiz-Ponte, C.; Caldés, T.; Garré, P.; Olsen, M.F.; Nordling, M.; et al. Update on genetic predisposition to colorectal cancer and polyposis. Mol. Asp. Med. 2019, 69, 10–26. [Google Scholar] [CrossRef]
- Olkinuora, A.P.; Peltomäki, P.T.; Aaltonen, L.A.; Rajamäki, K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum. Mol. Genet. 2021, 30, R206–R224. [Google Scholar] [CrossRef]
- Lindblom, A.; Zhou, X.L.; Liu, T.; Liljegren, A.; Skoglund, J.; Djureinovic, T. Colorectal cancer as a complex disease: Defining at-risk subjects in the general population—A preventive strategy. Expert. Rev. Anticancer Ther. 2004, 4, 377–385. [Google Scholar] [CrossRef]
- Tenesa, A.; Dunlop, M. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat. Rev. Genet. 2009, 10, 353–358. [Google Scholar] [CrossRef]
- Fernandez-Rozadilla, C.; Timofeeva, M.; Chen, Z.; Law, P.; Thomas, M.; Schmit, S.; Díez-Obrero, V.; Hsu, L.; Fernandez-Tajes, J.; Palles, C.; et al. Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and East Asian ancestries. Nat. Genet. 2023, 55, 89–99. [Google Scholar] [CrossRef]
- Fehringer, G.; Kraft, P.; Pharoah, P.D.; Eeles, R.A.; Chatterjee, N.; Schumacher, F.R.; Schildkraut, J.M.; Lindström, S.; Brennan, P.; Bickeböller, H.; et al. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations. Cancer Res. 2016, 76, 5103–5114. [Google Scholar] [CrossRef]
- Forsberg, A.; Keranen, A.; von Holst, S.; Picelli, S.; Papadogiannakis, N.; Ghazi, S.; Lindblom, A. Defining new colorectal cancer syndromes in a population-based cohort of the disease. Anticancer. Res. 2017, 37, 1831–1835. [Google Scholar] [CrossRef]
- Wallander, K.; Liu, W.; von Holst, S.; Thutkawkorapin, J.; Kontham, V.; Forsberg, A.; Lindblom, A.; Lagerstedt-Robinson, K. Genetic analyses supporting colorectal, gastric, and prostate cancer syndromes. Genes Chromosomes Cancer 2019, 58, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Winnberg, J.S.; Vermani, L.; Liu, W.; Soller, V.; Thutkawkorapin, J.; Lindblad, M.; Lindblom, A. A genome-wide association study in Swedish colorectal cancer patients with gastric- and prostate cancer in relatives. Hered. Cancer Clin. Pract. 2024, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- Schmit, S.L.; Edlund, C.K.; Schumacher, F.R.; Gong, J.; A Harrison, T.; Huyghe, J.R.; Qu, C.; Melas, M.; Van Den Berg, D.J.; Wang, H.; et al. Novel common genetic susceptibility loci for colorectal cancer. J. Natl. Cancer Inst. 2019, 111, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Mahdessian, H.; Helgadottir, H.; Zhou, X.; Thutkawkorapin, J.; Jiao, X. Colorectal cancer risk susceptibility loci in a Swedish population. Mol. Carcinog. 2021, 61, 288–300. [Google Scholar] [CrossRef]
- Dudbridge, F.; Gusnanto, A. Estimation of significance thresholds for genomewide association scans. Genet. Epidemiol. 2008, 32, 227–234. [Google Scholar] [CrossRef]
- Michailidou, K.; Lindstrom, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemacon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al. Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 924. [Google Scholar] [CrossRef]
- Law, P.J.; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.; Fernandez-Tajes, J.; Farrington, S.; Svinti, V.; Palles, C.; Orlando, G.; et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun. 2019, 10, 2154. [Google Scholar] [CrossRef]
- Dadaev, T.; Saunders, E.J.; Newcombe, P.J.; Anokian, E.; Leongamornlert, D.A.; Brook, M.N.; Cieza-Borrella, C.; Mijuskovic, M.; Wakerell, S.; Al Olama, A.A.; et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 2018, 9, 2256. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Ramus, S.J.; Tyrer, J.; Lee, A.; Shen, H.C.; Beesley, J.; Lawrenson, K.; McGuffog, L.; Healey, S.; Lee, J.M.; et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat. Genet. 2015, 47, 164–171. [Google Scholar] [CrossRef]
- Shrine, N.; Guyatt, A.L.; Erzurumluoglu, A.M.; Jackson, V.E.; Hobbs, B.D.; Melbourne, C.A.; Batini, C.; Fawcett, K.A.; Song, K.; Sakornsakolpat, P.; et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019, 51, 481–493. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhou, Y.; Xu, Q.; Liao, B.; Qiu, X.; Liu, J. RNA methylase RBM15 facilitates malignant progression of colorectal cancer through regulating E2F2 in an m6A modification-dependent manner. J. Biochem. Mol. Toxicol. 2024, 38, e70014. [Google Scholar] [CrossRef] [PubMed]
- Paarnio, K.; Väyrynen, J.P.; A Väyrynen, S.; Kantola, T.; Karhu, T.; Tervahartiala, T.; Klintrup, K.; Sorsa, T.; Salo, T.; Mäkelä, J.; et al. TLR2 and TLR4 in colorectal cancer: Relationship to tumor necrosis and markers of systemic inflammation. Neoplasma 2022, 69, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xie, Y.; Li, M.; Zhou, F.; Zhong, Z.; Liu, Y.; Wang, F.; Qi, J. Association between SFRP promoter hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol. Lett. 2019, 18, 3481–3492. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Angulo, M.; Ayala-Madrigal, M.L.; Moreno-Ortiz, J.M.; Peregrina-Sandoval, J.; Garcia-Ayala, F.D. Microbiota composition and its impact on DNA methylation in colorectal cancer. Front. Genet. 2023, 14, 1037406. [Google Scholar] [CrossRef]
- Li, L.; Plummer, S.J.; Thompson, C.L.; Tucker, T.C.; Casey, G. Association between phosphatidylinositol 3-kinase regulatory subunit p85alpha Met326Ile genetic polymorphism and colon cancer risk. Clin. Cancer Res. 2008, 14, 633–637. [Google Scholar] [CrossRef]
- Ershov, P.; Poyarkov, S.; Konstantinova, Y.; Veselovsky, E.; Makarova, A. Transcriptomic signatures in colorectal cancer progression. Curr. Mol. Med. 2023, 23, 239–249. [Google Scholar] [CrossRef]
- Park, Y.-L.; Cho, S.-B.; Park, S.-Y.; Oh, H.-H.; Myung, E.; Im, C.-M.; Son, S.; Kim, S.; Cho, S.-Y.; Chung, M.-W.; et al. Engulfment and Cell Motility 1 (ELMO1) regulates tumor cell behavior and predicts prognosis in colorectal cancer. Anticancer Res. 2022, 42, 5343–5355. [Google Scholar] [CrossRef]
- Carvajal, A.E.; Serrano-Morales, J.M.; Vázquez-Carretero, M.D.; García-Miranda, P.; Calonge, M.L.; Peral, M.J.; Ilundain, A.A. Reelin protects from colon pathology by maintaining the intestinal barrier integrity and repressing tumorigenic genes. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2126–2134. [Google Scholar] [CrossRef]
- King, C.M.; Ding, W.; Eshelman, M.A.; Yochum, G.S. TCF7L1 regulates colorectal cancer cell migration by repressing GAS1 expression. Sci. Rep. 2024, 14, 12477. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Z.; Zhong, J.; Lin, L. Circ-ACAP2 facilitates the progression of colorectal cancer through mediating miR-143-3p/FZD4 axis. Eur. J. Clin. Investig. 2021, 51, e13607. [Google Scholar] [CrossRef]
- Huang, Z.; He, H.; Qiu, F.; Qian, H. Expression and prognosis value of the KLF family members in colorectal cancer. J. Oncol. 2022, 2022, 6571272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Sun, C.; Chen, X.; Han, L.; Wang, T.; Liu, J.; Chen, X.; Zhao, D. Effect of Pterostilbene, a natural derivative of resveratrol, in the treatment of colorectal cancer through Top1/Tdp1-mediated DNA repair pathway. Cancers 2021, 13, 4002. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, I.; Pardamean, B.; Baurley, J.W.; Budiarto, A.; Miskad, U.A.; Lusikooy, R.E.; Arsyad, A.; Irwan, A.; Mathew, G.; Suriapranata, I.; et al. Genetic risk factors for colorectal cancer in multiethnic Indonesians. Sci. Rep. 2021, 11, 9988. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Huang, T.; Li, J.; Zhou, C.; Yang, P.; Ni, C.; Chen, S. Role of CDH13 promoter methylation in the carcinogenesis, progression, and prognosis of colorectal cancer: A systematic meta-analysis under PRISMA guidelines. Medicine 2017, 96, e5956. [Google Scholar] [CrossRef]
- Segditsas, S.; Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 2006, 25, 7531–7537. [Google Scholar] [CrossRef]
- Helgadottir, H.T.; Thutkawkorapin, J.; Rohlin, A.; Nordling, M.; Lagerstedt-Robinson, K.; Lindblom, A. Identification of known and novel familial cancer genes in Swedish colorectal cancer families. Int. J. Cancer 2021, 149, 627–634. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Illumina. Infinium OncoArray-500K [Internet]. Available online: http://www.illumina.com/products/by-type/microarray-kits/infinium-oncoarray-500k.html (accessed on 10 November 2024).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Medicine TAiM. SNP Genotyping Service with Agena, Based on MALDI-TOF Analysis 2023. Available online: https://www.maf.ki.se/snp-genotyping-agena/ (accessed on 20 November 2024).
- Garcia, M.; Juhos, S.; Larsson, M.; Olason, P.I.; Martin, M.; Eisfeldt, J.; DiLorenzo, S.; Sandgren, J.; De Ståhl, T.D.; Ewels, P.; et al. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Research 2020, 9, 63. [Google Scholar] [CrossRef]
Locus | First Analysis BP1–BP2 (GRCh37) | HF | OR | p-Value | Genes | Second Analysis BP1–BP2 (GRCh37) | HF | OR | p-Value |
---|---|---|---|---|---|---|---|---|---|
1q32.2 | 208968409–209083609 | 0.03 | 2.08 | 3.17 × 10−8 | No gene | 208968409–209083609 | 0.01 | 3.35 | 0.0002 |
3q29 | 195750742–195973244 | 0.02 | 2.99 | 2.32 × 10−8 | TFRC, SLC51A, ZDHHC19, PCYT1A | 195750742–195973244 | 0.02 | 2.14 | 0.004 |
4q35.1 | 185088648–185252818 | 0.01 | 2.84 | 1.30 × 10−8 | ENPP6 | 185170812–185249147 | 0.07 | 1.46 | 0.001 |
4q26 | 119506139–119835148 | 0.01 | 3.62 | 1.59 × 10−8 | METTL14, SEC24D, SYNPO2 | 119552849–119809572 | 0.01 | 2.28 | 0.00001 |
4p15.31 | 20852244–21112046 | 0.01 | 3.25 | 2.72 × 10−8 | KCNIP4 | 20864229–21000867 | 0.01 | 4.07 | 4.00 × 10−4 |
8p23.1 | 11236975–11355821 | 0.01 | 3.04 | 4.47 × 10−8 | FAM167A, BLK | 11303011–11361552 | 0.01 | 2.58 | 0.0004 |
13q33.3 | 109832287–109897922 | 0.11 | 1.71 | 9.20 × 10−9 | MYO16 | 109796718–109897922 | 0.03 | 2.54 | 21.86 × 10−6 |
13q13.3 | 37374156–37460648 | 0.07 | 1.86 | 4.15 × 10−8 | RFXAP, SMAD9 | 37366006–37488131 | 0.05 | 2.05 | 8.00 × 10−6 |
16q23.3 | 82871769–82899877 | 0.01 | 3.60 | 1.38 × 10−8 | CDH13 | 82866767–82912571 | 0.02 | 1.54 | 0.06 |
22q11.21 | 19872009–19930121 | 0.03 | 2.30 | 2.56 × 10−10 | TXNRD2, COMT | 19889825–19934025 | 0.09 | 1.54 | 9.00 × 10−5 |
Locus | BP1–BP2 (GRCh 37) | HF | OR | p-Value | Gene | * PubMed Articles |
---|---|---|---|---|---|---|
2p25.2 | 5593978–5703784 | 0.02 | 3.4 | 3.86 × 10−6 | no gene | |
2p25.1 | 11503455–11652795 | 0.07 | 1.82 | 3.09 × 10−6 | E2F6, GREB1 | E2F6:153 |
2q33.1 | 202688907–202839768 | 0.02 | 3.45 | 3.64 × 10−7 | CDK15 | 14 |
2q36.3 | 226183385–226447735 | 0.02 | 3.23 | 4.32 × 10−6 | NYAP2 | 1 |
2q37.3 | 241894333–241957677 | 0.04 | 2.23 | 2.74 × 10−6 | SNED1 | 7 |
4p14 | 40625135–40677462 | 0.02 | 2.4 | 4.31 × 10−6 | RBM47 | 46 |
4q13.1 | 63992411–64174876 | 0.03 | 2.71 | 3.83 × 10−6 | no gene | |
4q13.3 | 76049479–76083820 | 0.02 | 2.64 | 5.30 × 10−7 | no gene | |
4q21.22 | 82401332–82475476 | 0.01 | 3.55 | 2.60 × 10−6 | RASGEF1B | 5 |
4q31.1 | 141234930–141372158 | 0.03 | 2.19 | 2.81 × 10−6 | SCOC, CLGN, MGAT4D | SCOC:16 |
4q31.3 | 154605745–154787090 | 0.02 | 3.02 | 3.97 × 10−6 | TLR2, RNF175, SFRP2 | TLR2:1675; SFRP2:575 |
4q35.1 | 183942308–184215675 | 0.01 | 5.3 | 3.27 × 10−6 | WWC2 | 25 |
5q13.1 | 67529191–67553636 | 0.02 | 3.38 | 1.05 × 10−6 | PIK3R1 | 643 |
6p21.1 | 45705079–45793972 | 0.02 | 3.17 | 1.09 × 10−6 | no gene | |
6q23.2 | 133702841–133741558 | 0.02 | 3.29 | 4.54 × 10−6 | EYA4 | 76 |
6q25.3 | 158732602–158973475 | 0.04 | 2.03 | 8.93 × 10−7 | TMEM181, TULP4 | TMEM181:2 |
6q27 | rs2093524-rs10945405 | 0.01 | 4.02 | 2.31 × 10−6 | THBS2 | 258 |
7p14.2 | 36210485–36252293 | 0.02 | 4.02 | 1.62 × 10−6 | EEPD1 | 19 |
7p14.1 | 37298800–37382520 | 0.01 | 3.84 | 1.90 × 10−6 | ELMO1 | 81 |
7q22.1 | 103119863–103130403 | 0.03 | 2.72 | 3.86 ×10−6 | RELN | 167 |
7q35 | 146559474–146767404 | 0.01 | 5.41 | 3.08 × 10−7 | CNTNAP2 | |
8p23.2 | 5430697–5505188 | 0.02 | 3.3 | 1.84 × 10−6 | no gene | |
8q24.22 | 131997225–132114762 | 0.02 | 2.59 | 4.11 × 10−6 | no gene | |
9p24.3 | 1124087–1199448 | 0.05 | 2.3 | 2.41 × 10−8 | no gene | |
9p24.3 | 1876496–1980819 | 0.02 | 3.37 | 7.11 × 10−7 | no gene | |
9q21.31 | 82433182–82433182 | 0.61 | 1.38 | 2.20 × 10−6 | no gene | |
9q21.31 | 82445976–82446394 | 0.54 | 1.35 | 3.54 × 10−6 | no gene | |
9q21.33 | 89168700–89336987 | 0.01 | 3.92 | 9.69 × 10−7 | no gene | |
9q21.33 | 89481996–89574902 | 0.05 | 1.82 | 4.99 × 10−6 | GAS1 | 132 |
9q21.33 | 89669067–89821219 | 0.07 | 1.74 | 3.83 × 10−6 | LINC02872 | 1 |
9q34.2 | 136822827–136866925 | 0.11 | 1.75 | 1.51 × 10−6 | VAV2 | 178 |
10q11.21 | 45270373–45451178 | 0.02 | 3.33 | 1.33 × 10−6 | TMEM72 | |
10q26.3 | 132676113–132742585 | 0.01 | 4.77 | 2.33 × 10−6 | no gene | |
11q14.2 | 86657520–86836648 | 0.01 | 4.34 | 1.51 × 10−6 | FZD4, TMEM135, PRSS23 | FZD4:147; TMEM135:1 |
12q24.32 | 128767084–128916719 | 0.04 | 2.46 | 3.95 × 10−6 | TMEM132C | 8 |
13q12.11 | 20407151–20686272 | 0.03 | 2.52 | 9.14 × 10−7 | ZMYM5, ZMYM2 | ZMYM5:3; ZMYM2:58 |
13q12.3 | 29989466–30075686 | 0.09 | 1.77 | 1.92 × 10−6 | MTUS2 | 9 |
13q22.1 | 74316318–74347673 | 0.07 | 1.74 | 2.29 × 10−6 | KLF12 | 98 |
13q33.3 | 109796718–109897922 | 0.03 | 2.54 | 1.86 × 10−6 | MYO16 | 12 |
13q33.3 | 109886427–109972182 | 0.04 | 2.03 | 4.22 × 10−6 | no gene | |
14q31.3 | 85180203–85377659 | 0.02 | 2.58 | 2.33 × 10−6 | no gene | |
14q32.11 | 90422664–90621770 | 0.04 | 2.4 | 3.08 × 10−6 | TDP1, KCNK13 | TDP1:219 |
15q13.3 | 32962642–32976055 | 0.01 | 3.52 | 4.54 × 10−6 | SCG5 | 65 |
16p13.3 | 5420304–5525490 | 0.01 | 3.94 | 3.84 × 10−6 | RBFOX1 | |
16p13.2 | 8120348–8277932 | 0.01 | 4.3 | 3.60 × 10−6 | no gene | |
16q23.3 | 82673410–82691564 | 0.01 | 6.35 | 3.18 × 10−6 | CDH13 | 308 |
17p12 | 14942734–15057691 | 0.04 | 2.19 | 4.31 × 10−6 | no gene | |
17q12 | 31790250–31888205 | 0.01 | 6.52 | 3.40 × 10−6 | ASIC2 | 29 |
17q21.32 | 46348384–46355550 | 0.02 | 2.76 | 2.46 × 10−6 | SKAP1 | 40 |
17q25.3 | 77925723–77958254 | 0.01 | 3.99 | 4.41 × 10−6 | TBC1D16 | 11 |
18q21.2 | 53179419–53379992 | 0.03 | 2.59 | 2.53 × 10−7 | TCF4 | 1595 |
19q12 | 20411543–20663314 | 0.02 | 2.89 | 4.94 × 10−6 | no gene | |
20q13.33 | 60966686–60966686 | 0.71 | 1.47 | 2.84 × 10−7 | CABLES2 | 8 |
21q21.2 | 24419862–24555671 | 0.02 | 2.86 | 3.69 × 10−6 | no gene | |
22q12.2 | 31392606–31438931 | 0.03 | 2.41 | 4.97 × 10−6 | no gene |
Locus | SNP | Position (GRCh37) | Gene | Type | Ref Allele | Alt Allele | No of Cases (827) | No Ctrls (1530) | Odds Ratio | p-Value | No of Cases (293) | Odds Ratio | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2q33.1 | rs34851370 | 201835676 | CDK15 | missense | C | T | 816 | 1524 | 1.31 | ns | 293 | 1.44 | ns |
4q31.1 | rs358314 | 140381160 | SCOC | 3’UTR | C | T | 730 | 1341 | 1.09 | ns | 263 | 1.009 | ns |
rs358326 | 140388548 | CLGN | 3’UTR | A | G | 817 | 1525 | 1.01 | ns | 292 | 0.86 | ns | |
rs72716373 | 140385611 | SCOC | 3’UTR | T | C | 819 | 1516 | 0.82 | ns | 293 | 0.86 | ns | |
rs114046582 | 140398927 | CLGN | missense | G | A | 808 | 1512 | 0.87 | ns | 290 | 1.08 | ns | |
4q31.3 | rs139227237 | 153703557 | TLR2 | missense | T | C | 819 | 1527 | 0.95 | ns | 293 | 1.20 | ns |
rs34803482 | 153748734 | RNF175 | missense | C | G | 805 | 1434 | 1.21 | ns | 289 | 1.23 | ns | |
rs115872046 | 153723390 | RNF175 | missense | G | A | 816 | 1526 | 1.10 | ns | 293 | 1.43 | ns | |
rs5743708 | 153705165 | TLR2 | missense | G | A | 819 | 1525 | 0.97 | ns | 293 | 1.16 | ns | |
4q35.1 | rs141501417 | 183260972 | WWC2 | missense | G | A | 814 | 1523 | 0.77 | ns | 292 | 0.53 | ns |
6q27 | rs140852957 | 169221505 | THBS2 | missense | G | A | 818 | 1522 | 0.97 | ns | 293 | 0.87 | ns |
10q11.21 | rs115943733 | 44936215 | TMEM72 | 3’UTR | G | C | 817 | 1526 | 1.88 | ns | 293 | 3.26 | 0.009 |
11q14.2 | rs61735304 | 86954989 | FZD4 | missense | G | A | 818 | 1522 | 1.50 | ns | 292 | 1.19 | ns |
13q12.11 | rs35516773 | 19993526 | ZMYM2 | missense | G | C | 819 | 1522 | 1.51 | ns | 293 | 0.32 | ns |
13q12.3 | rs1213626528 | 29505477 | MTUS2 | 3’UTR | G | T | 819 | 1523 | 0 | ns | 293 | 0 | ns |
14q32.11 | rs7150480 | 90043536 | TDP1 | 3’UTR | T | C | 813 | 1527 | 1.23 | ns | 293 | 1.16 | ns |
20q13.33 | rs2427307 | 62391630 | CABLES2 | Intron | G | A | 819 | 1518 | 0.71 | 0.0001 | 293 | 0.67 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermani, L.; Samola Winnberg, J.; Liu, W.; Soller, V.; Sjödin, T.; Lindblad, M.; Lindblom, A. A Haplotype GWAS in Syndromic Familial Colorectal Cancer. Int. J. Mol. Sci. 2025, 26, 817. https://doi.org/10.3390/ijms26020817
Vermani L, Samola Winnberg J, Liu W, Soller V, Sjödin T, Lindblad M, Lindblom A. A Haplotype GWAS in Syndromic Familial Colorectal Cancer. International Journal of Molecular Sciences. 2025; 26(2):817. https://doi.org/10.3390/ijms26020817
Chicago/Turabian StyleVermani, Litika, Johanna Samola Winnberg, Wen Liu, Veronika Soller, Tilde Sjödin, Mats Lindblad, and Annika Lindblom. 2025. "A Haplotype GWAS in Syndromic Familial Colorectal Cancer" International Journal of Molecular Sciences 26, no. 2: 817. https://doi.org/10.3390/ijms26020817
APA StyleVermani, L., Samola Winnberg, J., Liu, W., Soller, V., Sjödin, T., Lindblad, M., & Lindblom, A. (2025). A Haplotype GWAS in Syndromic Familial Colorectal Cancer. International Journal of Molecular Sciences, 26(2), 817. https://doi.org/10.3390/ijms26020817