Hemoglobin-Based Oxygen Carriers: Selected Advances and Challenges in the Design of Safe Oxygen Therapeutics (A Focused Review)
Abstract
1. Introduction
2. Characteristics of Hemoglobin
- HbA—the basic hemoglobin found in adults, composed of two alpha chains and two beta chains,
- HbF—fetal hemoglobin, present in infants, composed of two alpha chains and two gamma chains,
- HbA2—minor form of hemoglobin present only in 2.5% of the human population in adults, composed of two alpha chains and two delta chains,
- HbS—hemoglobin of sickled red blood cells, composed of two alpha chains and two mutated beta chains.
3. Oxygen and Carbon Dioxide Transport by Hemoglobin
4. Hemoglobin-Based Oxygen Carriers
4.1. Unmodified Hemoglobin
4.2. Molecular Modifications of Hemoglobin
4.3. Clinical Products and Their Outcomes
4.4. Encapsulation Technologies
4.5. Design Considerations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hess, J.R. An Update on Solutions for Red Cell Storage. Transfus. Med. Hemotherapy 2010, 37, 306–315. [Google Scholar] [CrossRef]
- Stramer, S.L.; Hollinger, F.B.; Katz, L.M.; Kleinman, S.; Metzel, P.S.; Gregory, K.R.; Dodd, R.Y. Emerging infectious disease agents and their potential threat to transfusion safety. Transfusion 2009, 49 (Suppl. S2), 1S–29S. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Liu, H. Hemoglobin-Based Oxygen Carriers: Where Are We Now in 2023? Medicina 2023, 59, 396. [Google Scholar] [CrossRef] [PubMed]
- Perutz, M.F. Hemoglobin Structure and Respiratory Transport. Sci. Am. 1978, 239, 92–125. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Hall, M.E. Guyton and Hall Textbook of Medical Physiology, 14th ed.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- Ahmed, M.H.; Ghatge, M.S.; Safo, M.K. Hemoglobin: Structure, Function and Allostery. Subcell. Biochem. 2020, 94, 345–382. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, V.G.; Orkin, S.H. The Switch from Fetal to Adult Hemoglobin. Cold Spring Harb. Perspect. Med. 2013, 3, a011643. [Google Scholar] [CrossRef]
- Perutz, M.F. Mechanisms of Cooperativity and Allosteric Regulation in Proteins. Q. Rev. Biophys. 1989, 22, 139–236. [Google Scholar] [CrossRef]
- Mairbäurl, H.; Weber, R.E. Respiratory Function of Hemoglobin. Compr. Physiol. 2012, 2, 1463–1489. [Google Scholar] [CrossRef]
- West, J.B. Respiratory Physiology: The Essentials, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2016. [Google Scholar]
- Zhu, K.; Wang, L.; Xiao, Y.; Zhang, X.; You, G.; Chen, Y.; Wang, Q.; Zhao, L.; Zhou, H.; Chen, G. Nanomaterial-Related Hemoglobin-Based Oxygen Carriers, with Emphasis on Liposome and Nano-Capsules: Progress and Future Directions. J. Nanobiotechnol. 2024, 22, 336. [Google Scholar] [CrossRef]
- Sen Gupta, A. Hemoglobin-Based Oxygen Carriers: Current State-of-the-Art and Novel Molecules. Shock 2019, 52, 70–83. [Google Scholar] [CrossRef]
- Buehler, P.W.; D’Agnillo, F.; Schaer, D.J. Hemoglobin-Based Oxygen Carriers: From Mechanisms of Toxicity and Clearance to Rational Drug Design. Trends Mol. Med. 2010, 16, 447–457. [Google Scholar] [CrossRef]
- Boretti, F.S.; Buehler, P.W.; D’Agnillo, F.; Kluge, K.; Glaus, T.; Butt, O.I.; Jia, Y.; Goede, J.; Pereira, C.P.; Maggiorini, M.; et al. Sequestration of Extracellular Hemoglobin within a Haptoglobin Complex Decreases Its Hypertensive and Oxidative Effects in Dogs and Guinea Pigs. J. Clin. Investig. 2009, 119, 2271–2280. [Google Scholar] [CrossRef]
- Cabrales, P.; Friedman, J.M. HBOC Vasoactivity: Interplay between Nitric Oxide Scavenging and Capacity to Generate Bioactive Nitric Oxide Species. Antioxid. Redox Signal. 2013, 18, 2284–2297. [Google Scholar] [CrossRef]
- Cabrales, P. Examining and Mitigating Acellular Hemoglobin Vasoactivity. Antioxid. Redox Signal. 2013, 18, 2329–2341. [Google Scholar] [CrossRef]
- Alayash, A.I.; D’Agnillo, F.; Buehler, P.W. First-Generation Blood Substitutes: What Have We Learned? Expert Opin. Biol. Ther. 2007, 7, 665–675. [Google Scholar] [CrossRef]
- Natanson, C.; Kern, S.J.; Lurie, P.; Banks, S.M.; Wolfe, S.M. Cell-Free Hemoglobin-Based Blood Substitutes and Risk of Myocardial Infarction and Death: A Meta-Analysis. JAMA 2008, 299, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Mozzarelli, A.; Ronda, L.; Faggiano, S.; Bettati, S.; Bruno, S. Haemoglobin-Based Oxygen Carriers: Research and Reality towards an Alternative to Blood Transfusions. Blood Transfus. 2010, 8, 59–68. [Google Scholar] [CrossRef]
- Jahr, J.S.; Akha, A.S.; Holtby, R.J. Crosslinked, Polymerized, and PEG-Conjugated Hemoglobin-Based Oxygen Carriers: Clinical Safety and Efficacy of Recent and Current Products. Curr. Drug Discov. Technol. 2012, 9, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Winslow, R.M. Cell-Free Hemoglobin Oxygen Carriers: Scientific Foundations and Clinical Development. Vox Sang. 2003, 84, 211–219. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Freedom of Information Summary: Oxyglobin® (Hemoglobin Glutamer-200 (Bovine)), NADA 141-067; FDA: Rockville, MD, USA, 1998. Available online: https://animaldrugsatfda.fda.gov/adafda/views/#/home/previewsearch/141-067 (accessed on 15 September 2025).
- Authier, S.; Haefner, D.; Pouliot, M. Oxyglobin in the Treatment of Anemia in Dogs: A Review of Clinical Efficacy and Safety. Vet. Ther. 2002, 3, 245–256. [Google Scholar]
- Squires, J.E. Artificial Blood. Science 2002, 295, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Sloan, E.P.; Koenigsberg, M.; Weir, W.B.; Clark, J.M.; O’Connor, R.; Olinger, M.; Cydulka, R. Emergency Resuscitation of Patients Enrolled in the US DCLHb Clinical Efficacy Trial. Prehospital Disaster Med. 2015, 30, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Silverman, T.A.; Weiskopf, R.B. Hemoglobin-Based Oxygen Carriers: Current Status and Future Directions. Anesthesiology 2009, 111, 946–963. [Google Scholar] [CrossRef] [PubMed]
- D’Agnillo, F. Redox Activity of Cell-Free Hemoglobin: Implications for Vascular Oxidative Stress and Endothelial Dysfunction. In Hemoglobin-Based Oxygen Carriers as Red Cell Substitutes and Oxygen Therapeutics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 665–682. [Google Scholar] [CrossRef]
- Harrington, J.P.; Wollocko, J.; Wollocko, H. Structural and Redox Behavior of OxyVita™—A Zero-Linked Polymeric Hemoglobin: Comparison with Natural Acellular Polymeric Hemoglobins. Artif. Cells Blood Substit. Biotechnol. 2010, 38, 64–68, Erratum in: Artif Cells Blood Substit Immobil Biotechnol. 2011, 39, 191. [Google Scholar] [CrossRef]
- Taguchi, K.; Yamasaki, K.; Maruyama, T.; Otagiri, M. Comparison of the Pharmacokinetic Properties of Hemoglobin-Based Oxygen Carriers. J. Funct. Biomater. 2017, 8, 11. [Google Scholar] [CrossRef]
- Harrington, J.P.; Wollocko, J.; Kostecki, E.; Wollocko, H. Physicochemical Characteristics of OxyVita Hemoglobin, a Zero-Linked Polymer: Liquid and Powder Preparations. Artif. Cells Blood Substit. Biotechnol. 2011, 39, 12–18. [Google Scholar] [CrossRef]
- Jansman, M.M.T.; Hosta-Rigau, L. Recent and Prominent Examples of Nano- and Microarchitectures as Hemoglobin-Based Oxygen Carriers. Adv. Colloid Interface Sci. 2018, 260, 65–84. [Google Scholar] [CrossRef]
- Sakai, H. Present Situation of the Development of Cellular-Type Hemoglobin-Based Oxygen Carrier (Hemoglobin-Vesicles). Curr. Drug Discov. Technol. 2012, 9, 188–193. [Google Scholar] [CrossRef]
- Tao, Z.; Ghoroghchian, P.P. Microparticle, Nanoparticle, and Stem Cell-Based Oxygen Carriers as Advanced Blood Substitutes. Trends Biotechnol. 2014, 32, 466–473. [Google Scholar] [CrossRef]
- Sakai, H.; Sou, K.; Horinouchi, H.; Kobayashi, K.; Tsuchida, E. Hemoglobin-Vesicle, a Cellular Artificial Oxygen Carrier that Fulfils the Physiological Roles of the Red Blood Cell Structure. Adv. Exp. Med. Biol. 2010, 662, 433–438. [Google Scholar] [CrossRef]
- Kaneda, S.; Ishizuka, T.; Goto, H.; Kimura, T.; Inaba, K.; Kasukawa, H. Liposome-Encapsulated Hemoglobin, TRM-645: Current Status of the Development and Important Issues for Clinical Application. Artif. Organs 2009, 33, 146–152. [Google Scholar] [CrossRef]
- Grzegorzewski, W.; Smyk, Ł.; Puchała, Ł.; Adadyński, L.; Szadurska-Noga, M.; Wojtkiewicz, J.; Derkaczew, M.; Wollocko, J.; Wollocko, B.; Wollocko, H. OxyVita®C Hemoglobin-Based Oxygen Carrier Improves Viability and Reduces Tubular Necrosis in Ex Vivo Preserved Rabbit Kidneys. Int. J. Mol. Sci. 2025, 26, 9266. [Google Scholar] [CrossRef]
- Rameez, S.; Alosta, H.; Palmer, A.F. Biocompatible and Biodegradable Polymersome Encapsulated Hemoglobin: A Potential Oxygen Carrier. Bioconjug. Chem. 2008, 19, 1025–1032. [Google Scholar] [CrossRef]
- Charoenphol, P.; Mocherla, S.; Bouis, D.; Namdee, K.; Pinsky, D.J.; Eniola-Adefeso, O. Targeting Therapeutics to the Vascular Wall in Atherosclerosis—Carrier Size Matters. Atherosclerosis 2011, 217, 364–370. [Google Scholar] [CrossRef]
- Liu, G.-Y.; Chen, C.-J.; Xu, J.-P. Biocompatible and Biodegradable Polymersomes as Delivery Vehicles in Biomedical Applications. Soft Matter 2012, 8, 8811–8821. [Google Scholar] [CrossRef]
- Rameez, S.; Banerjee, U.; Fontes, J.; Roth, A.; Palmer, A.F. The Reactivity of Polymersome Encapsulated Hemoglobin with Physiologically Important Gaseous Ligands: Oxygen, Carbon Monoxide and Nitric Oxide. Macromolecules 2012, 45, 2385–2389. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qi, Y.; He, S.; Wang, Y.; Xie, Z.; Jing, X.; Huang, Y. Asymmetric Copolymer Vesicles to Serve as a Hemoglobin Vector for Ischemia Therapy. Biomater. Sci. 2014, 2, 1254–1261. [Google Scholar] [CrossRef]
- Batool, F.; Delpy, E.; Zal, F.; Leize-Zal, E.; Huck, O. Therapeutic Potential of Hemoglobin Derived from the Marine Worm Arenicola marina (M101): A Literature Review of a Breakthrough Innovation. Mar. Drugs 2021, 19, 376. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Chang, H.-W.; Liu, H.-L.; Chen, Y.-C.; Chan, N.-L. Structural Basis for Cooperative Oxygen Binding and Allostery in Lumbricus terrestris Hemoglobin. Sci. Rep. 2015, 5, 9494. [Google Scholar] [CrossRef]
- Thuillier, R.; Dutheil, D.; Trieu, M.T.N.; Mallet, V.; Allain, G.; Roussel, J.C.; Badet, L.; Hauet, T. A New Oxygen Carrier, M101, Attenuates Ischemia–Reperfusion Injury in Kidney Preservation. Am. J. Transplant. 2011, 11, 1845–1860. [Google Scholar] [CrossRef]
- Le Meur, Y.; Badet, L.; Essig, M.; Thierry, A.; Büchler, M.; Drouin, S.; Deruelle, C.; Morelon, E.; Pesteil, F.; Delpech, P.-O.; et al. First-in-Human Use of M101 in Kidney Transplantation (OXYOP). Am. J. Transplant. 2020, 20, 1729–1738. [Google Scholar] [CrossRef]
- Le Meur, Y.; Delpy, E.; Renard, F.; Hauet, T.; Badet, L.; Rerolle, J.-P.; Thierry, A.; Büchler, M.; Zal, F.; Barrou, B. OXYOP Follow-Up. Artif. Organs 2022, 46, 597–605. [Google Scholar] [CrossRef]
- Le Meur, Y.; Nowak, E.; Barrou, B.; Thierry, A.; Badet, L.; Büchler, M.; Rerolle, J.-P.; Golbin, L.; Duveau, A.; Dantal, J.; et al. OXYOP2 Trial Protocol. Trials 2023, 24, 302. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. NCT02652520—HEMO2life® for Kidney Graft Preservation. Available online: https://clinicaltrials.gov/study/NCT02652520 (accessed on 15 September 2025).

| Strategy | Chemical Modification | Example Product(s) | Intended Benefit | Main Limitation(s) | Clinical Status |
|---|---|---|---|---|---|
| Polymerization | Glutaraldehyde, glycoaldehyde | Hemopure (HBOC-201) | ↑ size, ↓ extravasation, ↑ half-life | NO scavenging leading to vasoconstriction, hypertension | Approved in South Africa; veterinary use in the US |
| Cross-linking | 3,5-dibromosalicyl fumarate α–α cross-link at Lys99 | DCLHb (HemAssist) | Stabilize tetramer, prevent renal clearance | Loss of cooperativity, hypertension, ↑ mortality | Phase III terminated, development stopped |
| Conjugation | Hb + antioxidant enzymes, PEGylation | PEG-Hb, enzyme-linked Hb | Antioxidant protection, ↑ size | Oxidative stress, inflammation, MI, death | Development stopped |
| Hybrids | Combined approaches (poly + crosslink, etc.) | Experimental only | Combine benefits | No clinical success to date | Experimental |
| Product | Company | Description of Product-Source | Molecular Weight [kDa] |
|---|---|---|---|
| HemAssist | Baxter (Deerfield, IL, USA) | Diaspirin Cross-linked Human Hb | 64 |
| Hemopure | Biopure (Cambridge, MA, USA) | Glutaraldehyde cross-linked bovine Hb | Polymeric, 150 |
| Hemolink | Hemosol (Mississauga, ON, Canada) | Raffinose cross-linked Human Hb | Polymeric, >120 |
| PolyHeme | Northfield (Evanston, IL, USA) | Pyridoxilated, glutaraldehyde cross-linked human Hb | Polymeric, >120 |
| Optro | Baxter (Deerfield, IL, USA) /Sommatogen (Boulder, CO, USA) | Recombinant human Hb, rHb1.1 | 64 |
| Hemospan | Sangart (San Diego, CA, USA) | Pegylated human Hb | About 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzegorzewski, W.; Czerniecka-Kubicka, A.; Gołda, K.; Niedźwiedzka, A.; Wollocko, H.; Majewski, M.S.; Wojtkiewicz, J. Hemoglobin-Based Oxygen Carriers: Selected Advances and Challenges in the Design of Safe Oxygen Therapeutics (A Focused Review). Int. J. Mol. Sci. 2025, 26, 9775. https://doi.org/10.3390/ijms26199775
Grzegorzewski W, Czerniecka-Kubicka A, Gołda K, Niedźwiedzka A, Wollocko H, Majewski MS, Wojtkiewicz J. Hemoglobin-Based Oxygen Carriers: Selected Advances and Challenges in the Design of Safe Oxygen Therapeutics (A Focused Review). International Journal of Molecular Sciences. 2025; 26(19):9775. https://doi.org/10.3390/ijms26199775
Chicago/Turabian StyleGrzegorzewski, Waldemar, Anna Czerniecka-Kubicka, Katarzyna Gołda, Alicja Niedźwiedzka, Hanna Wollocko, Michał S. Majewski, and Joanna Wojtkiewicz. 2025. "Hemoglobin-Based Oxygen Carriers: Selected Advances and Challenges in the Design of Safe Oxygen Therapeutics (A Focused Review)" International Journal of Molecular Sciences 26, no. 19: 9775. https://doi.org/10.3390/ijms26199775
APA StyleGrzegorzewski, W., Czerniecka-Kubicka, A., Gołda, K., Niedźwiedzka, A., Wollocko, H., Majewski, M. S., & Wojtkiewicz, J. (2025). Hemoglobin-Based Oxygen Carriers: Selected Advances and Challenges in the Design of Safe Oxygen Therapeutics (A Focused Review). International Journal of Molecular Sciences, 26(19), 9775. https://doi.org/10.3390/ijms26199775

