Discovery of Galloyl–Flavonoid Conjugates as SARS-CoV-2 3CLpro Inhibitors: Understanding Binding Interactions Through Computational Approaches
Abstract
1. Introduction
2. Results and Discussion
2.1. FMO Analysis of SARS-CoV-2 3CLpro—Inhibitor Complex
2.2. Isolation of Natural Flavonoids and Synthesis of Flavone Scaffolds
2.3. Syntheses of Flavonoid Derivatives
2.4. Enzymatic Assay
2.5. Structure–Activity Relationships (SARs)
2.6. Molecular Docking
2.7. Molecular Dynamics Simulation
3. Materials and Methods
3.1. Chemistry
3.2. Spectroscopy
3.3. Isolation of Flavonoids
3.4. Synthesis of Flavonoid Derivatives
3.5. Enzymatic Assay
3.6. Molecular Docking
3.7. Molecular Dynamics Simulation
3.8. Interaction Free Energy Calculation
3.9. Fragment Molecular Orbital (FMO) Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534, Correction in Lancet Infect Dis. 2020, 20, e215. [Google Scholar] [CrossRef]
- Singh, D.; Yi, S.V. On the origin and evolution of SARS-CoV-2. Exp. Mol. Med. 2021, 53, 537–547. [Google Scholar] [CrossRef]
- Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis. 2020, 94, 44–48. [Google Scholar] [CrossRef]
- Bou-Hamad, I.; Hoteit, R.; Harajli, D.; Reykowska, D. Personal Economic Worries in Response to COVID-19 Pandemic: A Cross Sectional Study. Front. Psychol. 2022, 13, 871209. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, H.; Sharifi, A.; Damanbagh, S.; Nazarnia, H.; Nazarnia, M. Impacts of the COVID-19 pandemic on the social sphere and lessons for crisis management: A literature review. Nat. Hazards 2023, 117, 2139–2164. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiao, Z.; Ye, K.; He, X.; Sun, B.; Qin, Z.; Yu, J.; Yao, J.; Wu, Q.; Bao, Z.; et al. SARS-CoV-2: Characteristics and current advances in research. Virol. J. 2020, 17, 117. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Denison, M.R.; Graham, R.L.; Donaldson, E.F.; Eckerle, L.D.; Baric, R.S. Coronaviruses. RNA Biol. 2011, 8, 270–279. [Google Scholar] [CrossRef]
- Fehr, A.R.; Perlman, S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In Coronaviruses: Methods and Protocols; Maier, H.J., Bickerton, E., Britton, P., Eds.; Springer: New York, NY, USA, 2015; pp. 1–23. [Google Scholar]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef]
- Abdelrahman, Z.; Li, M.; Wang, X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses. Front. Immunol. 2020, 11, 552909. [Google Scholar] [CrossRef]
- Zakeri, A.; Jadhav, A.P.; Sullenger, B.A.; Nimjee, S.M. Ischemic stroke in COVID-19-positive patients: An overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. J. Neurointerv. Surg. 2021, 13, 202–206. [Google Scholar] [CrossRef]
- Boopathi, S.; Poma, A.B.; Kolandaivel, P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn. 2021, 39, 3409–3418. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, L.; Zhuang, Z.; Cai, S.; Zhao, Z.; Zhou, L.; Zhang, J.; Wang, P.-H.; Zhao, J.; Cui, J. Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduct. Target. Ther. 2020, 5, 221. [Google Scholar] [CrossRef]
- Suárez, D.; Díaz, N. SARS-CoV-2 main protease: A molecular dynamics study. J. Chem. Inf. Model. 2020, 60, 5815–5831. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, D.A.; Hajjo, R.; Bardaweel, S.K.; Zhong, H.A. An updated review on SARS-CoV-2 main proteinase (MPro): Protein structure and small-molecule inhibitors. Curr. Top. Med. Chem. 2021, 21, 442–460. [Google Scholar] [CrossRef] [PubMed]
- Świderek, K.; Moliner, V. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/MM computational methods. Chem. Sci. 2020, 11, 10626–10630. [Google Scholar] [CrossRef] [PubMed]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef]
- Banerjee, R.; Perera, L.; Tillekeratne, L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today 2021, 26, 804–816. [Google Scholar] [CrossRef]
- Su, H.-X.; Yao, S.; Zhao, W.-F.; Li, M.-J.; Liu, J.; Shang, W.-J.; Xie, H.; Ke, C.-Q.; Hu, H.-C.; Gao, M.-N.; et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 2020, 41, 1167–1177. [Google Scholar] [CrossRef]
- Azad, G.K.; Tomar, R.S. Ebselen, a promising antioxidant drug: Mechanisms of action and targets of biological pathways. Mol. Biol. Rep. 2014, 41, 4865–4879. [Google Scholar] [CrossRef]
- Amporndanai, K.; Meng, X.; Shang, W.; Jin, Z.; Rogers, M.; Zhao, Y.; Rao, Z.; Liu, Z.-J.; Yang, H.; Zhang, L.; et al. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun. 2021, 12, 3061. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef]
- Hashemian, S.M.R.; Sheida, A.; Taghizadieh, M.; Memar, M.Y.; Hamblin, M.R.; Bannazadeh Baghi, H.; Sadri Nahand, J.; Asemi, Z.; Mirzaei, H. Paxlovid (Nirmatrelvir/Ritonavir): A new approach to COVID-19 therapy? Biomed. Pharmacother. 2023, 162, 114367. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Batool, M.; Ain, Q.U.; Kim, M.S.; Choi, S. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int. J. Mol. Sci. 2021, 22, 9124. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, S. Paxlovid: Antiviral combination for the treatment of COVID-19. J. Infect. Dev. Ctries. 2022, 33, 31–33. [Google Scholar] [CrossRef]
- Patel, N.K.; Jaiswal, G.; Bhutani, K.K. A review on biological sources, chemistry and pharmacological activities of pinostrobin. Nat. Prod. Res. 2016, 30, 2017–2027. [Google Scholar] [CrossRef]
- Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: A novel natural compound with versatile pharmacological and biological activities. BioMed Res. Int. 2013, 2013, 379850. [Google Scholar] [CrossRef]
- Gonçalves, L.M.; Valente, I.M.; Rodrigues, J.A. An overview on cardamonin. J. Med. Food 2014, 17, 633–640. [Google Scholar] [CrossRef]
- Kuzikov, M.; Costanzi, E.; Reinshagen, J.; Esposito, F.; Vangeel, L.; Wolf, M.; Ellinger, B.; Claussen, C.; Geisslinger, G.; Corona, A.; et al. Identification of inhibitors of SARS-CoV-2 3CL-Pro enzymatic activity using a small molecule in vitro repurposing screen. ACS Pharmacol. Transl. Sci. 2021, 4, 1096–1110. [Google Scholar] [CrossRef]
- Su, H.; Yao, S.; Zhao, W.; Zhang, Y.; Liu, J.; Shao, Q.; Wang, Q.; Li, M.; Xie, H.; Shang, W.; et al. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nat. Commun. 2021, 12, 3623. [Google Scholar] [CrossRef]
- Krüger, N.; Kronenberger, T.; Xie, H.; Rocha, C.; Pöhlmann, S.; Su, H.; Xu, Y.; Laufer, S.A.; Pillaiyar, T. Discovery of polyphenolic natural products as SARS-CoV-2 Mpro inhibitors for COVID-19. Pharmaceuticals 2023, 16, 190. [Google Scholar] [CrossRef] [PubMed]
- Khamto, N.; Utama, K.; Boontawee, P.; Janthong, A.; Tatieng, S.; Arthan, S.; Choommongkol, V.; Sangthong, P.; Yenjai, C.; Suree, N.; et al. Inhibitory activity of flavonoid scaffolds on SARS-CoV-2 3CLpro: Insights from the computational and experimental investigations. J. Chem. Inf. Model. 2024, 64, 874–891. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, D.-Y.; Scartelli, C.; Xie, H.; Merrill-Skoloff, G.; Yang, M.; Sun, L.; Saeed, M.; Flaumenhaft, R. Plant flavonoid inhibition of SARS-CoV-2 main protease and viral replication. iScience 2023, 26, 107602. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Holloway, G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef]
- Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3, 435–444. [Google Scholar] [CrossRef]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- BIOVIA, D.S. BIOVIA Discovery Studio; Dassault Systèmes: San Diego, CA, USA, 2021. [Google Scholar]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct. Funct. Bioinf. 2004, 55, 383–394. [Google Scholar] [CrossRef]
- Barca, G.M.J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J.E.; Fedorov, D.G.; Gour, J.R.; Gunina, A.O.; Guidez, E.; et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102. [Google Scholar] [CrossRef]
No. | PDB ID | Ligand | Binding Pocket | Resolution (Å) | ΔEint (kcal/mol) 1 |
---|---|---|---|---|---|
1 | 6M2N | baicalein (1) | S1 | 2.20 | −38.16 |
2 | 7DPP | myricetin (2) | S1′ | 2.10 | −63.43 |
3 | 7DPU | 7-O-methylmyricetin (3) | S1′ | 1.75 | −53.56 |
4 | 8HI9 | robinetin (4) | S1′ | 2.28 | −48.24 |
Cpd. No | Name | SARS-CoV-2 3CLpro Inhibition | |
---|---|---|---|
100 µM (%) | IC50 (µM) | ||
6 | pinostrobin | 26.44 ± 2.32 3 | >200 3 |
7 | pinocembrin | 27.18 ± 2.20 3 | >200 3 |
8 | cardamonin | 85.60 ± 2.44 3 | 57.42 3 |
9 | DMC | 84.59 ± 0.84 3 | 27.54 3 |
10 | tectochrysin | 86.39 ± 0.19 3 | 24.00 3 |
11 | chrysin | 87.73 ± 0.66 3 | 32.84 3 |
12 | 5-O-acryloylpinostrobin | 92.57 ± 0.52 3 | ND |
13 | 7-O-acryloylpinocembrin | 79.25 ± 1.52 | ND |
14 | 5,7-O-diacryloylpinocembrin | 76.24 ± 0.97 | ND |
15 | 4′-O-acryloylcardamonin | 66.57 ± 2.05 | ND |
16 | 4′-O-acryloyl-DMC | 52.90 ± 1.17 | ND |
17 | 2′,4′-O-diacryloylcardamonin | 76.85 ± 4.85 | ND |
18 | 2′,4′-O-diacryloyl-DMC | 68.00 ± 3.77 | ND |
19 | 5-O-acryloyltectochrysin | 37.21 ± 2.09 | >100 |
20 | 7-O-acryloylchrysin | 84.01 ± 0.82 | ND |
21 | 5,7-O-diacryloylchrysin | 32.32 ± 4.83 | >100 |
22 | 8-nitropinostrobin | 54.95 ± 3.96 | ND |
23 | 6-nitropinostrobin | 53.45 ± 4.31 | ND |
24 | 6,8-dinitropinostrobin | 40.01 ± 3.27 | >100 |
25 | 8-aminopinostrobin | 38.17 ± 3.74 | >100 |
26 | 6-aminopinostrobin | 14.70 ± 5.85 | >100 |
27 | 5-O-benzoylpinostrobin | 43.37 ± 3.99 | >100 |
28 | 5-O-(O-acetylsalicyloyl)pinostrobin | 89.73 ± 5.92 | ND |
29 | 5-O-(O-acetylvanilloyl)pinostrobin | 84.38 ± 3.91 | ND |
30 | 5-O-(tri-O-acetylgalloyl)pinostrobin | 67.09 ± 2.93 | ND |
31 | 5-O-galloylpinostrobin | 99.82 ± 0.15 | 7.42 |
32 | 7-O-benzoylpinocembrin | 70.77 ± 2.72 | ND |
33 | 7-O-(O-acetylsalicyloyl)pinocembrin | 81.70 ± 0.89 | ND |
34 | 7-O-(O-acetylvanilloyl)pinocembrin | 83.70 ± 3.37 | ND |
35 | 7-O-(tri-O-acetylgalloyl)pinocembrin | 72.97 ± 1.66 | ND |
36 | 7-O-galloylpinocembrin | 99.54 ± 1.34 | 7.53 |
37 | 4′-O-(tri-O-acetylgalloyl)cardamonin | 87.17 ± 3.25 | ND |
38 | 4′-O-galloylcardamonin | 99.59 ± 0.41 | 13.34 |
39 | 4′-O-(tri-O-acetylgalloyl)-DMC | 71.95 ± 4.27 | ND |
40 | 4′-O-galloyl-DMC | 99.92 ± 0.11 | 6.85 |
41 | 5-O-(tri-O-acetylgalloyl)tectochrysin | 72.81 ± 2.43 | ND |
42 | 5-O-galloyltectochrysin | 99.79 ± 0.80 | 20.58 |
43 | 7-O-(tri-O-acetylgalloyl)chrysin | 85.75 ± 0.48 | ND |
44 | 7-O-galloylchrysin | 99.46 ± 1.79 | 9.26 |
gallic acid | 1.72 ± 12.05 | >100 | |
baicalein (+) 1 | 62.95 ± 3.10 3 | 86.57 3 | |
nirmatrelvir (+) 2 | 99.92 ± 0.62 | ND |
Cpd. | Free Energy (kcal/mol) 1 | |||||
---|---|---|---|---|---|---|
ΔEvdw | ΔEelec | ΔGpolar | ΔGnonpolar | −TΔS | ΔGint | |
7 | −26.06 ± 3.63 | −7.88 ± 3.41 | 11.39 ± 2.37 | −3.61 ± 0.38 | 19.40 ± 3.58 | −6.75 ± 5.14 |
9 | −40.74 ± 3.14 | −3.33 ± 1.68 | 9.36 ± 1.14 | −4.95 ± 0.25 | 25.21 ± 5.68 | −14.45 ± 6.48 |
31 | −39.62 ± 2.81 | −4.22 ± 3.11 | 10.35 ± 2.60 | −4.51 ± 0.27 | 23.02 ± 3.14 | −14.98 ± 4.16 |
35 | −43.62 ± 3.18 | −7.17 ± 3.06 | 17.23 ± 2.37 | −5.59 ± 0.35 | 23.25 ± 4.12 | −15.90 ± 5.04 |
36 | −40.01 ± 2.57 | −4.46 ± 2.65 | 13.84 ± 1.78 | −5.17 ± 0.27 | 23.12 ± 3.76 | −12.67 ± 4.65 |
40 | −39.92 ± 3.41 | −13.30 ± 2.90 | 17.97 ± 1.88 | −5.78 ± 0.39 | 22.74 ± 3.73 | −18.30 ± 5.05 |
42 | −42.74 ± 3.59 | −2.43 ± 1.96 | 10.84 ± 1.68 | −5.42 ± 0.37 | 23.66 ± 4.37 | −16.09 ± 5.68 |
44 | −39.22 ± 3.30 | −2.67 ± 2.01 | 11.70 ± 1.53 | −5.05 ± 0.32 | 20.37 ± 4.92 | −14.87 ± 5.97 |
Cpd. | Energy (kcal/mol) 1 | |||||
---|---|---|---|---|---|---|
ΔEes | ΔEex | ΔEct+mix | ΔEdi | ΔGsol | ΔEint | |
7 | −12.97 | 28.04 | −13.39 | −41.51 | 3.81 | −36.02 |
9 | −33.70 | 44.30 | −14.83 | −63.85 | 7.28 | −60.80 |
36 | −18.19 | 43.80 | −20.71 | −62.96 | 7.41 | −50.64 |
40 | −25.00 | 48.59 | −20.66 | −69.59 | 5.11 | −61.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamto, N.; Boontawee, P.; Choommongkol, V.; Pruksaphon, K.; Patnin, S.; Suree, N.; Prangkio, P.; Meepowpan, P. Discovery of Galloyl–Flavonoid Conjugates as SARS-CoV-2 3CLpro Inhibitors: Understanding Binding Interactions Through Computational Approaches. Int. J. Mol. Sci. 2025, 26, 9742. https://doi.org/10.3390/ijms26199742
Khamto N, Boontawee P, Choommongkol V, Pruksaphon K, Patnin S, Suree N, Prangkio P, Meepowpan P. Discovery of Galloyl–Flavonoid Conjugates as SARS-CoV-2 3CLpro Inhibitors: Understanding Binding Interactions Through Computational Approaches. International Journal of Molecular Sciences. 2025; 26(19):9742. https://doi.org/10.3390/ijms26199742
Chicago/Turabian StyleKhamto, Nopawit, Panida Boontawee, Vachira Choommongkol, Kritsada Pruksaphon, Suwicha Patnin, Nuttee Suree, Panchika Prangkio, and Puttinan Meepowpan. 2025. "Discovery of Galloyl–Flavonoid Conjugates as SARS-CoV-2 3CLpro Inhibitors: Understanding Binding Interactions Through Computational Approaches" International Journal of Molecular Sciences 26, no. 19: 9742. https://doi.org/10.3390/ijms26199742
APA StyleKhamto, N., Boontawee, P., Choommongkol, V., Pruksaphon, K., Patnin, S., Suree, N., Prangkio, P., & Meepowpan, P. (2025). Discovery of Galloyl–Flavonoid Conjugates as SARS-CoV-2 3CLpro Inhibitors: Understanding Binding Interactions Through Computational Approaches. International Journal of Molecular Sciences, 26(19), 9742. https://doi.org/10.3390/ijms26199742