Characterization of Steroid Metabolic Pathways in Established Human and Mouse Cell Models
Abstract
1. Introduction
2. Results
2.1. Adrenal Cell Models
2.1.1. Human H295R Cells
2.1.2. Human H295A Cells
2.1.3. Mouse Y-1 Cells
2.1.4. Mouse OS-3 Cells
2.2. Placenta Cell Models
2.2.1. Human BeWo Cells
2.2.2. Human JEG-3 Cells
2.3. Gonadal Cell Model—Mouse MA-10 Cells
2.4. Non-Steroidogenic Cell Models
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cells
4.3. Steroid Metabolism
4.4. Steroid Extraction, Separation and Quantification
4.5. Data Processing
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durrer, I.; Ackermann, D.; Klossner, R.; Grössl, M.; Vögel, C.; Du Toit, T.; Vogt, B.; Jamin, H.; Mohaupt, M.G.; Gennari-Moser, C. No extra-adrenal aldosterone production in various human cell lines. J. Mol. Endocrinol. 2024, 72, e230100. [Google Scholar] [CrossRef]
- Du Toit, T.; Bloem, L.M.; Quanson, J.L.; Ehlers, R.; Serafin, A.M.; Swart, A.C. Profiling adrenal 11β-hydroxyandrostenedione metabolites in prostate cancer cells, tissue and plasma: UPC(2)-MS/MS quantification of 11β-hydroxytestosterone, 11keto-testosterone and 11keto-dihydrotestosterone. J. Steroid Biochem. Mol. Biol. 2017, 166, 54–67. [Google Scholar] [CrossRef]
- Samandari, E.; Kempná, P.; Nuoffer, J.M.; Hofer, G.; Mullis, P.E.; Flück, C.E. Human adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A cells and differ in 3beta-hydroxysteroid dehydrogenase type 2 and 17,20 lyase activities. J. Endocrinol. 2007, 195, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Naamneh Elzenaty, R.; du Toit, T.; Flück, C.E. Basics of androgen synthesis and action. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101665. [Google Scholar] [CrossRef]
- Andrieu, T.; du Toit, T.; Vogt, B.; Mueller, M.D.; Groessl, M. Parallel targeted and non-targeted quantitative analysis of steroids in human serum and peritoneal fluid by liquid chromatography high-resolution mass spectrometry. Anal. Bioanal. Chem. 2022, 414, 7461–7472. [Google Scholar] [CrossRef]
- Karakus, E.; Schmid, A.; Schäffler, A.; Wudy, S.A.; Geyer, J. Intracrine Formation of Steroid Hormones in Breast Cancer, Epidermal Keratinocyte, Dermal Fibroblast, and Adipocyte Cell Lines Measured by LC-MS/MS. Int. J. Mol. Sci. 2025, 26, 1188. [Google Scholar] [CrossRef]
- O’Shaughnessy, P.J.; Antignac, J.P.; Le Bizec, B.; Morvan, M.L.; Svechnikov, K.; Soder, O.; Savchuk, I.; Monteiro, A.; Soffientini, U.; Johnston, Z.C.; et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 2019, 17, e3000002. [Google Scholar] [CrossRef]
- Swart, A.C.; Schloms, L.; Storbeck, K.H.; Bloem, L.M.; Toit, T.; Quanson, J.L.; Rainey, W.E.; Swart, P. 11β-hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by 5α-reductase yielding 11β-hydroxy-5α-androstanedione. J. Steroid Biochem. Mol. Biol. 2013, 138, 132–142. [Google Scholar] [CrossRef]
- Lin, Y.C.; Cheung, G.; Zhang, Z.; Papadopoulos, V. Mitochondrial cytochrome P450 1B1 is involved in pregnenolone synthesis in human brain cells. J. Biol. Chem. 2023, 299, 105035. [Google Scholar] [CrossRef] [PubMed]
- Jäger, M.C.; Patt, M.; González-Ruiz, V.; Boccard, J.; Wey, T.; Winter, D.V.; Rudaz, S.; Odermatt, A. Extended steroid profiling in H295R cells provides deeper insight into chemical-induced disturbances of steroidogenesis: Exemplified by prochloraz and anabolic steroids. Mol. Cell. Endocrinol. 2023, 570, 111929. [Google Scholar] [CrossRef]
- Wróbel, T.M.; Sharma, K.; Mannella, I.; Oliaro-Bosso, S.; Nieckarz, P.; Du Toit, T.; Voegel, C.D.; Rojas Velazquez, M.N.; Yakubu, J.; Matveeva, A.; et al. Exploring the Potential of Sulfur Moieties in Compounds Inhibiting Steroidogenesis. Biomolecules 2023, 13, 1349. [Google Scholar] [CrossRef] [PubMed]
- Bahn, R.S.; Worsham, A.; Speeg, K.V., Jr.; Ascoli, M.; Rabin, D. Characterization of Steroid Production in Cultured Human Choriocarcinoma Cells. J. Clin. Endocrinol. Metab. 1981, 52, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Berthois, Y.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 1986, 83, 2496–2500. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, F.; Magagnoli, M.; Mezzullo, M.; Lispi, M.; Limoncella, S.; Tommasini, A.; Pelusi, C.; Santi, D.; Simoni, M.; Pagotto, U.; et al. Exploring the human chorionic gonadotropin induced steroid secretion profile of mouse Leydig tumor cell line 1 by a 20 steroid LC-MS/MS panel. J. Steroid Biochem. Mol. Biol. 2023, 229, 106270. [Google Scholar] [CrossRef]
- Kurlbaum, M.; Sbiera, S.; Kendl, S.; Fassnacht, M.M.; Kroiss, M. Steroidogenesis in the NCI-H295 Cell Line Model is Strongly Affected by Culture Conditions and Substrain. Exp. Clin. Endocrinol. Diabetes 2020, 128, 672–680, Erratum in Exp. Clin. Endocrinol. Diabetes 2020, 128, e3. https://doi.org/10.1055/a-1169-5951. [Google Scholar] [CrossRef]
- Ahmed, K.E.M.; Frøysa, H.G.; Karlsen, O.A.; Sagen, J.V.; Mellgren, G.; Verhaegen, S.; Ropstad, E.; Goksøyr, A.; Kellmann, R. LC-MS/MS based profiling and dynamic modelling of the steroidogenesis pathway in adrenocarcinoma H295R cells. Toxicol. Vitr. 2018, 52, 332–341. [Google Scholar] [CrossRef]
- Hirsch, A.; Hahn, D.; Kempná, P.; Hofer, G.; Nuoffer, J.M.; Mullis, P.E.; Flück, C.E. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology 2012, 153, 4354–4366. [Google Scholar] [CrossRef]
- Christenson, L.K.; Strauss, J.F. Steroidogenic Acute Regulatory Protein: An Update on Its Regulation and Mechanism of Action. Arch. Med. Res. 2001, 32, 576–586. [Google Scholar] [CrossRef]
- Domalik, L.J.; Chaplin, D.D.; Kirkman, M.S.; Wu, R.C.; Liu, W.W.; Howard, T.A.; Seldin, M.F.; Parker, K.L. Different isozymes of mouse 11 beta-hydroxylase produce mineralocorticoids and glucocorticoids. Mol. Endocrinol. 1991, 5, 1853–1861. [Google Scholar] [CrossRef]
- Rainey, W.E.; Saner, K.; Schimmer, B.P. Adrenocortical cell lines. Mol. Cell. Endocrinol. 2004, 228, 23–38. [Google Scholar] [CrossRef]
- Wang, T.; Rainey, W.E. Human adrenocortical carcinoma cell lines. Mol. Cell. Endocrinol. 2012, 351, 58–65. [Google Scholar] [CrossRef]
- Fujii, H.; Tamamori-Adachi, M.; Uchida, K.; Susa, T.; Nakakura, T.; Hagiwara, H.; Iizuka, M.; Okinaga, H.; Tanaka, Y.; Okazaki, T. Marked Cortisol Production by Intracrine ACTH in GIP-Treated Cultured Adrenal Cells in Which the GIP Receptor Was Exogenously Introduced. PLoS ONE 2014, 9, e110543. [Google Scholar] [CrossRef] [PubMed]
- Udhane, S.; Kempna, P.; Hofer, G.; Mullis, P.E.; Flück, C.E. Differential Regulation of Human 3β-Hydroxysteroid Dehydrogenase Type 2 for Steroid Hormone Biosynthesis by Starvation and Cyclic Amp Stimulation: Studies in the Human Adrenal NCI-H295R Cell Model. PLoS ONE 2013, 8, e68691. [Google Scholar] [CrossRef] [PubMed]
- Kempná, P.; Hirsch, A.; Hofer, G.; Mullis, P.E.; Flück, C.E. Impact of Differential P450c17 Phosphorylation by cAMP Stimulation and by Starvation Conditions on Enzyme Activities and Androgen Production in NCI-H295R Cells. Endocrinology 2010, 151, 3686–3696. [Google Scholar] [CrossRef] [PubMed]
- Drwal, E.; Rak, A.; Gregoraszczuk, E. Co-culture of JEG-3, BeWo and syncBeWo cell lines with adrenal H295R cell line: An alternative model for examining endocrine and metabolic properties of the fetoplacental unit. Cytotechnology 2018, 70, 285–297. [Google Scholar] [CrossRef]
- Pattillo, R.A.; Gey, G.O. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 1968, 28, 1231–1236. [Google Scholar]
- Pattillo, R.A.; Gey, G.O.; Delfs, E.; Huang, W.Y.; Hause, L.; Garancis, J.; Knoth, M.; Amatruda, J.; Bertino, J.; Friesen, H.G.; et al. The hormone-synthesizing trophoblastic cell in vitro: A model for cancer research and placental hormone synthesis. Ann. New York Acad. Sci. 1971, 172, 288–298. [Google Scholar] [CrossRef]
- Kohler, P.O.; Bridson, W.E. Isolation of Hormone-Producing Clonal Lines of Human Choriocarcinoma. J. Clin. Endocrinol. Metab. 1971, 32, 683–687. [Google Scholar] [CrossRef]
- Pavek, P.; Cerveny, L.; Svecova, L.; Brysch, M.; Libra, A.; Vrzal, R.; Nachtigal, P.; Staud, F.; Ulrichova, J.; Fendrich, Z.; et al. Examination of Glucocorticoid Receptor α-Mediated Transcriptional Regulation of P-glycoprotein, CYP3A4, and CYP2C9 Genes in Placental Trophoblast Cell Lines. Placenta 2007, 28, 1004–1011. [Google Scholar] [CrossRef]
- Kruger, L.; Yue, G.; Mettu, V.S.; Paquette, A.; Sathyanarayana, S.; Prasad, B. Differential proteomics analysis of JEG-3 and JAR placental cell models and the effect of androgen treatment. J. Steroid Biochem. Mol. Biol. 2022, 222, 106138. [Google Scholar] [CrossRef]
- Karahoda, R.; Kallol, S.; Groessl, M.; Ontsouka, E.; Anderle, P.; Fluck, C.; Staud, F.; Albrecht, C. Revisiting Steroidogenic Pathways in the Human Placenta and Primary Human Trophoblast Cells. Int. J. Mol. Sci. 2021, 22, 1704. [Google Scholar] [CrossRef] [PubMed]
- Engeli, R.T.; Fürstenberger, C.; Kratschmar, D.V.; Odermatt, A. Currently available murine Leydig cell lines can be applied to study early steps of steroidogenesis but not testosterone synthesis. Heliyon 2018, 4, e00527. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.R.; Stocco, D.M. The Role of Specific Mitogen-Activated Protein Kinase Signaling Cascades in the Regulation of Steroidogenesis. J. Signal Transduct. 2011, 2011, 821615. [Google Scholar] [CrossRef] [PubMed]
- Charoensri, S.; Rege, J.; Lee, C.; Marko, X.; Sherk, W.; Sholinyan, J.; Rainey, W.E.; Turcu, A.F. Human Gonads Do Not Contribute to the Circulating Pool of 11-Oxygenated Androgens. J. Clin. Endocrinol. Metab. 2025, 110, 1398–1403. [Google Scholar] [CrossRef]
- Auer, M.K.; Hawley, J.M.; Lottspeich, C.; Bidlingmaier, M.; Sappl, A.; Nowotny, H.F.; Tschaidse, L.; Treitl, M.; Reincke, M.; Keevil, B.G.; et al. 11-Oxygenated androgens are not secreted by the human ovary: In-vivo data from four different cases of hyperandrogenism. Eur. J. Endocrinol. 2022, 187, K47–K53. [Google Scholar] [CrossRef]
- Zirkin, B.R.; Papadopoulos, V. Leydig cells: Formation, function, and regulation. Biol. Reprod. 2018, 99, 101–111. [Google Scholar] [CrossRef]
- Bell, J.B.; Vinson, G.P.; Lacy, D. Biosynthesis of steroids in rat testis semininferous tubules. Biochem. J. 1968, 110, 58p–59p. [Google Scholar] [CrossRef]
- Roelofs, M.J.; van den Berg, M.; Bovee, T.F.; Piersma, A.H.; van Duursen, M.B. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. Toxicology 2015, 329, 10–20. [Google Scholar] [CrossRef]
- Samson, M.; Labrie, F.; Luu-The, V. Specific estradiol biosynthetic pathway in choriocarcinoma (JEG-3) cell line. J. Steroid Biochem. Mol. Biol. 2009, 116, 154–159. [Google Scholar] [CrossRef]
- Gibb, W.; Riopel, L.; Lavoie, J.-C. Primary Culture of Cells from Human Chorion Laeve: Steroid Metabolism and Properties of Cells Grown in Defined Media Supplemented with 0.1% or 10% Fetal Calf Serum. J. Clin. Endocrinol. Metab. 1986, 62, 1124–1129. [Google Scholar] [CrossRef]
- Milo, G.E.; Malarkey, W.B.; Powell, J.E.; Blakeslee, J.R.; Yohn, D.S. Effects of steroid hormones in fetal bovine serum on plating and cloning of human cells in vitro. In Vitro 1976, 12, 23–30. [Google Scholar] [CrossRef]
- Sedelaar, J.P.M.; Isaacs, J.T. Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone. Prostate 2009, 69, 1724–1729. [Google Scholar] [CrossRef]
- Sikora, M.J.; Johnson, M.D.; Lee, A.V.; Oesterreich, S. Endocrine Response Phenotypes Are Altered by Charcoal-Stripped Serum Variability. Endocrinology 2016, 157, 3760–3766. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.M.; Sharifi, N. Structure-dependent retention of steroid hormones by common laboratory materials. J. Steroid Biochem. Mol. Biol. 2020, 198, 105572. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, H.; Hum, D.W.; Staels, B.; Miller, W.L. Transcription of the human genes for cytochrome P450scc and P450c17 is regulated differently in human adrenal NCI-H295 cells than in mouse adrenal Y1 cells. J. Clin. Endocrinol. Metab. 1997, 82, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Voutilainen, R.; Tapanainen, J.; Chung, B.C.; Matteson, K.J.; Miller, W.L. Hormonal regulation of P450scc (20,22-desmolase) and P450c17 (17 alpha-hydroxylase/17,20-lyase) in cultured human granulosa cells. J. Clin. Endocrinol. Metab. 1986, 63, 202–207. [Google Scholar] [CrossRef]
- Veliça, P.; Davies, N.J.; Rocha, P.P.; Schrewe, H.; Ride, J.P.; Bunce, C.M. Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: Implications for modelling human cancers. Mol. Cancer 2009, 8, 121, Erratum in Mol. Cancer 2010, 9, 21. [Google Scholar] [CrossRef]
- Flück, C.E.; Martens, J.W.; Conte, F.A.; Miller, W.L. Clinical, genetic, and functional characterization of adrenocorticotropin receptor mutations using a novel receptor assay. J. Clin. Endocrinol. Metab. 2002, 87, 4318–4323. [Google Scholar] [CrossRef]
- Öztürk, S.; Sarac, B.E.; Odabaş, S.; Karaaslan, C.; Süloğlu, A.K. Establishment of a tri co-culture model for human feto-placental steroidogenesis and investigation of the antidepressant vortioxetine. Mol. Cell. Endocrinol. 2025, 602, 112537. [Google Scholar] [CrossRef]
- Pietrowski, D.; Grgic, M.; Haslinger, I.; Marschalek, J.; Schneeberger, C. Co-cultivation of human granulosa cells with ovarian cancer cells leads to a significant increase in progesterone production. Arch. Gynecol. Obstet. 2023, 307, 1593–1597. [Google Scholar] [CrossRef]
- Ishida, T.; Koyanagi-Aoi, M.; Yamamiya, D.; Onishi, A.; Sato, K.; Uehara, K.; Fujisawa, M.; Aoi, T. Differentiation of Human Induced Pluripotent Stem Cells Into Testosterone-Producing Leydig-like Cells. Endocrinology 2021, 162, bqab202. [Google Scholar] [CrossRef]
- Feely, S.; Mullen, N.; Donlon, P.T.; Reidy, E.; Challapalli, R.S.; Hassany, M.; Sorushanova, A.; Martinez, E.R.; Owens, P.; Quinn, A.M.; et al. Development and Characterization of 3-Dimensional Cell Culture Models of Adrenocortical Carcinoma. Endocrinology 2024, 166, bqae159. [Google Scholar] [CrossRef]
Tissue of Origin | Cell Models | Classification | Steroid Class | Total Steroid Output (nmol/g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Non-Steroidogenic | Steroidogenic | Non-Steroidogenic | Steroidogenic | Progestogens | Mineralocorticoids | Glucocorticoids | Androgens | ||||
+Serum | −Serum | −8BrcAMP | +8BrcAMP | ||||||||
Adrenal | H295R | ✓ | ✓ | 611.8 | 2586.6 | ||||||
H295A | ✓ | ✓ | 342.6 | 823.1 | |||||||
Y-1 | ✓ | ✓ | 71.5 | 528.3 | |||||||
OS-3 | ✓ | ✓ | 73.5 | 1934.7 | |||||||
Gonadal | KGN | ✓ | ✓ | 0.2 | 0.2 | ||||||
OVCAR-3 | ✓ | ✓ | 0.9 | 0.8 | |||||||
MA-10 | ✓ | ✓ | 1475.5 | 71,486.9 | |||||||
Placenta | BeWo | ✓ | ✓ ↓ | 75.0 | 106.0 | ||||||
JEG-3 | ✓ | ✓ ↓ | 29.1 | 55.2 | |||||||
HTR-8/SVneo | ✓ | ✓ | 0.0 | 0.0 |
Tissue of Origin | Specie | Cell Line | Cell Type | Normal/Diseased |
---|---|---|---|---|
Adrenal | Human | NCI: H295R (ATCC®CRL-2128TM) | Epithelial | Carcinoma |
H295A | Epithelial | Carcinoma | ||
Mouse | OS-3 | Epithelial | Carcinoma | |
Y-1 (ATCC®CCL-79TM) | Epithelial | Carcinoma | ||
Gonadal | Human ovary | NIH: OVCAR-3 (ATCC®HTB-161TM) | Epithelial | Adenocarcinoma |
KGN | Granulosa-like | Carcinoma | ||
Mouse testicular (Leydig) | MA-10 (ATCC®CRL-3050TM) | Epithelial-like | Carcinoma | |
Placental | Human | JEG-3 (ATCC®HTB-36TM) | Epithelial | Choriocarcinoma |
HTR-8/SVneo (ATCC®CRL-3271TM) | Epithelial | Normal | ||
BeWo (ATCC®CCL-98TM) | Epithelial trophoblast-like | Choriocarcinoma |
Cell Line [Passage Number From Stock 1st; Passage Number From Stock 2nd] | Culture Media (Total Volume: 500 mL) |
---|---|
H295R [17/18; 24] | DMEM/F12 (Gibco 31330-038; containing 2.5 mM L-glutamine, 15 mM HEPES, 17.5 mM dextrose, 8.1 mg/L phenol red, 0.5 mM sodium pyruvate and 1200 mg/L NaHCO3) +NuI-serum I (5%; 25 mL) +Pen-strep (1%; 5 mL) +ITS pre-mix (0.1%; 0.5 mL) |
H295A [25; 25] | RPMI-1640 (Gibco 21875-034; containing 2.1 mM L-glutamine, 11.1 mM dextrose, 5 mg/L phenol red and 2000 mg/L NaHCO3) +FBS (2%; 10 mL) +ITS pre-mix (0.1%; 0.5 mL) +Pen-strep (1%; 5 mL) |
OS-3 [10; 10] | Ham’s F10 (Gibco 31550-023; containing 1 mM L-glutamine, 1.2 mg/L phenol red, 6.1 mM dextrose, 1 mM sodium pyruvate and 1200 mg/L NaHCO3) +HS (15%; 75 mL) +FBS (5%; 25 mL) +Pen-strep (1%; 5 mL) |
Y-1 [17; 18] | DMEM/F12 (Gibco 11320-033; containing 2.5 mM L-glutamine, 8.1 mg/L phenol red, 17.5 mM dextrose and 2438 mg/L NaHCO3) +HS (7.5%; 37.5 mL) +FBS (2.5%; 12.5 mL) +Pen-strep (1%; 5 mL) |
OVCAR-3 [7/10] | RPMI-1640 (Gibco 21875-034; containing 2 mM L-glutamine, 5 mg/L phenol red, 11.1 mM dextrose and 2000 mg/L NaHCO3) +FBS (20%; 100 mL) +Pen-strep (1%; 5 mL) +ITS (0.1%; 0.5 mL) |
KGN [7/9] | DMEM/F12 (Gibco 21331-020; containing no L-glutamine, 8.1 mg/L phenol red, 17.5 mM dextrose, 0.5 mM sodium pyruvate and 2438 mg/L NaHCO3) +FBS (10%; 50 mL) +Pen-strep (1%, 5 mL) +HEPES (15 mM; 7.5 mL) |
MA-10 [8; 14] | DMEM/F12 (Gibco 31330-038; containing 2.5 mM L-glutamine, 8.1 mg/L phenol red, 17.5 mM dextrose, 0.5 mM sodium pyruvate, 15 mM HEPES and 1200 mg/L NaHCO3) +HS (15%; 75 mL) +HEPES (20 mM; 10 mL) +Pen-strep (1%; 5 mL) |
JEG-3 [44/48; 36] | EMEM (Gibco 21090-022; containing 10 mg/L phenol red, 5.6 mM dextrose and 2200 mg/L NaHCO3) +FBS (10%; 50 mL) +Pen-strep (1%; 5 mL) +L-glutamine (1%; 5 mL [2 mM]) |
HTR-8/SVneo [89; 92] | RPMI-1640 (Gibco 21875-034; containing 2.1 mM L-glutamine, 11.1 mM dextrose, 5 mg/L phenol red and 2000 mg/L NaHCO3) +FBS (10%; 50 mL) +Pen-strep (1%; 5 mL) |
BeWo [26/27; 29] | DMEM/F12 (Gibco 11320-033; containing 2.5 mM L-glutamine, 8.1 mg/L phenol red, 17.5 mM dextrose and 2438 mg/L NaHCO3) +FBS (10%; 50 mL) +Pen-strep (1%; 5 mL) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
du Toit, T.; Groessl, M.; Pignatti, E.; Swart, A.C.; Flück, C.E. Characterization of Steroid Metabolic Pathways in Established Human and Mouse Cell Models. Int. J. Mol. Sci. 2025, 26, 9721. https://doi.org/10.3390/ijms26199721
du Toit T, Groessl M, Pignatti E, Swart AC, Flück CE. Characterization of Steroid Metabolic Pathways in Established Human and Mouse Cell Models. International Journal of Molecular Sciences. 2025; 26(19):9721. https://doi.org/10.3390/ijms26199721
Chicago/Turabian Styledu Toit, Therina, Michael Groessl, Emanuele Pignatti, Amanda C. Swart, and Christa E. Flück. 2025. "Characterization of Steroid Metabolic Pathways in Established Human and Mouse Cell Models" International Journal of Molecular Sciences 26, no. 19: 9721. https://doi.org/10.3390/ijms26199721
APA Styledu Toit, T., Groessl, M., Pignatti, E., Swart, A. C., & Flück, C. E. (2025). Characterization of Steroid Metabolic Pathways in Established Human and Mouse Cell Models. International Journal of Molecular Sciences, 26(19), 9721. https://doi.org/10.3390/ijms26199721