Erythrocytes as a Source of Exerkines
Abstract
1. Introduction
2. Erythrocyte-Derived Exerkines
2.1. ATP
2.2. Nitric Oxide/Cyclic Guanosine Monophosphate
2.3. Sphingosine-1-Phosphate
2.4. Lactate
2.5. Extracellular Vesicles (EVs) and microRNA
2.6. Reactive Oxygen Species
3. Erythrocyte Receptors for Exerkines
4. Current Uncertainties and Research Challenges
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Safdar, A.; Saleem, A.; Tarnopolsky, M.A. The Potential of Endurance Exercise-Derived Exosomes to Treat Metabolic Diseases. Nat. Rev. Endocrinol. 2016, 12, 504–517. [Google Scholar] [CrossRef]
- Magliulo, L.; Bondi, D.; Pini, N.; Marramiero, L.; Di Filippo, E.S. The Wonder Exerkines-Novel Insights: A Critical State-of-the-Art Review. Mol. Cell. Biochem. 2022, 477, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Novelli, G.; Calcaterra, G.; Casciani, F.; Pecorelli, S.; Mehta, J.L. ‘Exerkines’: A Comprehensive Term for the Factors Produced in Response to Exercise. Biomedicines 2024, 12, 1975. [Google Scholar] [CrossRef] [PubMed]
- Eckel, J. Myokines in Metabolic Homeostasis and Diabetes. Diabetologia 2019, 62, 1523–1528. [Google Scholar] [CrossRef]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef]
- Kirchner, H.; Weisner, L.; Wilms, B. When Should I Run—The Role of Exercise Timing in Metabolic Health. Acta Physiol. 2023, 237, e13953. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, Exercise and Obesity: Skeletal Muscle as a Secretory Organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef]
- Haugen, F.; Norheim, F.; Lian, H.; Wensaas, A.J.; Dueland, S.; Berg, O.; Funderud, A.; Skålhegg, B.S.; Raastad, T.; Drevon, C.A. IL-7 Is Expressed and Secreted by Human Skeletal Muscle Cells. Am. J. Physiol. Cell Physiol. 2010, 298, C807–C816. [Google Scholar] [CrossRef]
- Stanford, K.I.; Lynes, M.D.; Takahashi, H.; Baer, L.A.; Arts, P.J.; May, F.J.; Lehnig, A.C.; Middelbeek, R.J.W.; Richard, J.J.; So, K.; et al. 12,13-diHOME: An Exercise-Induced Lipokine That Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab. 2018, 27, 1111–1120. [Google Scholar] [CrossRef]
- Otaka, N.; Shibata, R.; Ohashi, K.; Uemura, Y.; Kambara, T.; Enomoto, T.; Ogawa, H.; Ito, M.; Kawanishi, H.; Maruyama, S.; et al. Myonectin Is an Exercise-Induced Myokine That Protects the Heart From Ischemia-Reperfusion Injury. Circ. Res. 2018, 123, 1326–1338. [Google Scholar] [CrossRef]
- Hjorth, M.; Pourteymour, S.; Görgens, S.W.; Langleite, T.M.; Lee, S.H.; Holen, T.; Gulseth, H.L.; Birkeland, K.I.; Jensen, J.; Drevon, C.A.; et al. Myostatin in Relation to Physical Activity and Dysglycaemia and Its Effect on Energy Metabolism in Human Skeletal Muscle Cells. Acta Physiol. 2016, 217, 45–60. [Google Scholar] [CrossRef] [PubMed]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of Skeletal Muscle Mass in Mice by a New TGF-β Superfamily Member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.R.; Long, J.Z.; White, J.P.; Svensson, K.J.; Lou, J.; Lokurkar, I.; Jedrychowski, M.P.; Ruas, J.L.; Wrann, C.D.; Lo, J.C.; et al. Meteorin-like Is a Hormone That Regulates Immune-Adipose Interactions to Increase Beige Fat Thermogenesis. Cell 2014, 157, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Pourteymour, S.; Eckardt, K.; Holen, T.; Langleite, T.; Lee, S.; Jensen, J.; Birkeland, K.I.; Drevon, C.A.; Hjorth, M. Global mRNA Sequencing of Human Skeletal Muscle: Search for Novel Exercise-Regulated Myokines. Mol. Metab. 2017, 6, 352–365. [Google Scholar] [CrossRef]
- Kanzleiter, T.; Rath, M.; Gorgens, S.W.; Jensen, J.; Tangen, D.S.; Kolnes, A.J.; Kolnes, K.J.; Lee, S.; Eckel, J.; Schurmann, A.; et al. The Myokine Decorin Is Regulated by Contraction and Involved in Muscle Hypertrophy. Biochem. Biophys. Res. Commun. 2014, 450, 1089–1094. [Google Scholar] [CrossRef]
- Lee, S.; Norheim, F.; Gulseth, H.L.; Langleite, T.M.; Kolnes, K.J.; Tangen, D.S.; Stadheim, H.K.; Gilfillan, G.D.; Holen, T.; Birkeland, K.I.; et al. Interaction between Plasma Fetuin-A and Free Fatty Acids Predicts Changes in Insulin Sensitivity in Response to Long-Term Exercise. Physiol. Rep. 2017, 5, e13183. [Google Scholar] [CrossRef]
- Catoire, M.; Alex, S.; Paraskevopulos, N.; Mattijssen, F.; Evers-van Gogh, I.; Schaart, G.; Jeppesen, J.; Kneppers, A.; Mensink, M.; Voshol, P.J.; et al. Fatty Acid-Inducible ANGPTL4 Governs Lipid Metabolic Response to Exercise. Proc. Natl. Acad. Sci. USA 2014, 111, E1043–E1052. [Google Scholar] [CrossRef]
- Bian, X.; Wang, Q.; Wang, Y.; Lou, S. The Function of Previously Unappreciated Exerkines Secreted by Muscle in Regulation of Neurodegenerative Diseases. Front. Mol. Neurosci. 2024, 16, 1305208. [Google Scholar] [CrossRef]
- Muhammad, M.; Ahmed, N.; El-shaer, N. Exercise Rescues Cognitive Deterioration in Naturally Aged Rats via PGC1α/FNDC5/Irisin/AMPK Signaling Pathway to Restore Redox, Endothelial, and Neuronal Homeostasis. Bull. Egypt. Soc. Physiol. Sci. 2024, 44, 106–120. [Google Scholar] [CrossRef]
- Rody, T.; Amorim, J.A.D.; Felice, F.G.D. The Emerging Neuroprotective Roles of Exerkines in Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 965190. [Google Scholar] [CrossRef]
- Ahmadi Hekmatikar, A.; Nelson, A.; Petersen, A. Highlighting the Idea of Exerkines in the Management of Cancer Patients with Cachexia: Novel Insights and a Critical Review. BMC Cancer 2023, 23, 889. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Smith, J.A.; Alm, P.S.; Chibalin, A.V.; Alhusen, J.; Arner, E.; Zierath, J.R. Distinctive exercise-induced inflammatory response and exerkine induction in skeletal muscle of people with type 2 diabetes. Sci. Adv. 2022, 8, eabo3192. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, L.S.; Dorsey, E.R. The Benefits of Exercise in Parkinson’s Disease. JAMA Neurol. 2013, 70, 156. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Cho, C.; Lee, S. Acute Effect of Exercise Intensity on Circulating FGF-21, FSTL-1, Cathepsin B, and BDNF in Young Men. J. Exerc. Sci. Fit. 2024, 22, 51–58. [Google Scholar] [CrossRef]
- Ataeinosrat, A.; Saeidi, A.; Abednatanzi, H.; Rahmani, H.; Daloii, A.A.; Pashaei, Z.; Hojati, V.; Basati, G.; Mossayebi, A.; Laher, I.; et al. Intensity-Dependent Effects of Interval Resistance Training on Myokines and Cardiovascular Risk Factors in Males with Obesity. Front. Endocrinol. 2022, 13, 895512. [Google Scholar] [CrossRef]
- Vints, W.A.; Levin, O.; Fujiyama, H.; Verbunt, J.; Masiulis, N. Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front. Neuroendocrinol. 2022, 66, 100993. [Google Scholar] [CrossRef]
- Bergfeld, G.R.; Forrester, T. Release of ATP from Human Erythrocytes in Response to a Brief Period of Hypoxia and Hypercapnia. Cardiovasc. Res. 1992, 26, 40–47. [Google Scholar] [CrossRef]
- Dietrich, H.H.; Ellsworth, M.L.; Sprague, R.S.; Dacey, R.G. Red Blood Cell Regulation of Microvascular Tone through Adenosine Triphosphate. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1294–H1298. [Google Scholar] [CrossRef]
- Ellsworth, M.L.; Ellis, C.G.; Goldman, D.; Stephenson, A.H.; Dietrich, H.H.; Sprague, R.S. Erythrocytes: Oxygen Sensors and Modulators of Vascular Tone. Physiology 2009, 24, 107–116. [Google Scholar] [CrossRef]
- Sprague, R.S.; Ellsworth, M.L. Erythrocyte-Derived ATP and Perfusion Distribution: Role of Intracellular and Intercellular Communication. Microcirculation 2012, 19, 430–439. [Google Scholar] [CrossRef]
- Richardson, K.J.; Kuck, L.; Simmonds, J. Beyond Oxygen Transport: Active Role of Erythrocytes in the Regulation of Blood Flow. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H866–H872. [Google Scholar] [CrossRef] [PubMed]
- Sprague, R.S.; Ellsworth, M.L.; Stephenson, A.H.; Lonigro, A.J. ATP: The Red Blood Cell Link to NO and Local Control of the Pulmonary Circulation. Am. J. Physiol. Heart Circ. Physiol. 1996, 271, H2717–H2722. [Google Scholar] [CrossRef] [PubMed]
- Morera, D.; MacKenzie, S.A. Is There a Direct Role for Erythrocytes in the Immune Response? Vet. Res. 2011, 42, 89. [Google Scholar] [CrossRef] [PubMed]
- Neote, K.; Darbonne, W.; Ogez, J.; Horuk, R.; Schall, T.J. Identification of a Promiscuous Inflammatory Peptide Receptor on the Surface of Red Blood Cells. J. Biol. Chem. 1993, 268, 12247–12249. [Google Scholar] [CrossRef]
- Thangaraju, K.; Neerukonda, S.N.; Katneni, U.; Buehler, P.W. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. Int. J. Mol. Sci. 2020, 22, 153. [Google Scholar] [CrossRef]
- González-Alonso, J. ATP as a Mediator of Erythrocyte-Dependent Regulation of Skeletal Muscle Blood Flow and Oxygen Delivery in Humans. J. Physiol. 2012, 590, 5001–5013. [Google Scholar] [CrossRef]
- Ellsworth, M.L.; Ellis, C.G.; Sprague, R.S. Role of Erythrocyte-Released ATP in the Regulation of Microvascular Oxygen Supply in Skeletal Muscle. Acta Physiol. 2016, 216, 265–276. [Google Scholar] [CrossRef]
- Rifkind, J.M.; Mohanty, J.G.; Nagababu, E.; Salgado, M.T.; Cao, Z. Potential Modulation of Vascular Function by Nitric Oxide and Reactive Oxygen Species Released from Erythrocytes. Front Physiol. 2018, 9, 690. [Google Scholar] [CrossRef]
- Wang, G.R.; Zhu, Y.; Halushka, P.V.; Lincoln, T.M.; Mendelsohn, M.E. Mechanism of platelet inhibition by nitric oxide: In vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 1998, 95, 4888–4893. [Google Scholar] [CrossRef]
- Yang, J.; Sundqvist, M.L.; Zheng, X.; Jiao, T.; Collado, A.; Tratsiakovich, Y.; Mahdi, A.; Tengbom, J.; Mergia, E.; Catrina, S.B.; et al. Hypoxic Erythrocytes Mediate Cardioprotection through Activation of Soluble Guanylate Cyclase and Release of Cyclic GMP. J. Clin. Investig. 2023, 133, e167693. [Google Scholar] [CrossRef]
- Cartier, A.; Hla, T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2019, 366, eaar5551. [Google Scholar] [CrossRef]
- Yang, L.; Huang, S.; Zhang, Z.; Liu, Z.; Zhang, L. Roles and Applications of Red Blood Cell-Derived Extracellular Vesicles in Health and Diseases. Int. J. Mol. Sci. 2022, 23, 5927. [Google Scholar] [CrossRef]
- Geekiyanage, H.; Rayatpisheh, S.; Wohlschlegel, J.A.; Brown, R.; Ambros, V. Extracellular micrornas in human circulation are associated with mirisc complexes that are accessible to anti-ago2 antibody and can bind target mimic oligonucleotides. Proc. Natl. Acad. Sci. USA 2020, 117, 24213–24223. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sahu, N.; Jawaid, T.; Jayasingh Chellammal, H.S.; Upadhyay, P. Dual role of lactate in human health and disease. Front. Physiol. 2025, 16, 1621358. [Google Scholar] [CrossRef] [PubMed]
- Bettiol, A.; Galora, S.; Argento, F.R.; Fini, E.; Emmi, G.; Mattioli, I.; Bagni, G.; Fiorillo, C.; Becatti, M. Erythrocyte oxidative stress and thrombosis. Expert Rev. Mol. Med. 2022, 24, e31. [Google Scholar] [CrossRef] [PubMed]
- Kirby, B.S.; Crecelius, A.R.; Richards, J.C.; Dinenno, F.A. Sources of Intravascular ATP during Exercise in Humans: Critical Role for Skeletal Muscle Perfusion. Exp. Physiol. 2013, 98, 988–998. [Google Scholar] [CrossRef]
- Mairbäurl, H. Red Blood Cells in Sports: Effects of Exercise and Training on Oxygen Supply by Red Blood Cells. Front. Physiol. 2013, 4, 332. [Google Scholar] [CrossRef]
- Jagger, J.E.; Bateman, R.M.; Ellsworth, M.L.; Ellis, C.G.; Justin, E.; Ells-, M.L. Role of Erythrocyte in Regulating Local O2 Delivery Mediated by Hemoglobin Oxygenation. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H2833–H2839. [Google Scholar] [CrossRef]
- Stamler, J.S.; Jia, L.; Eu, J.P.; McMahon, T.J.; Demchenko, I.T.; Bonaventura, J.; Gernert, K.; Piantadosi, C.A. Blood Flow Regulation by S-Nitrosohemoglobin in the Physiological Oxygen Gradient. Science 1997, 276, 2034–2037. [Google Scholar] [CrossRef]
- Sluyter, R. P2X and P2Y Receptor Signaling in Red Blood Cells. Front. Mol. Biosci. 2015, 2, 60. [Google Scholar] [CrossRef]
- Sprague, R.S.; Goldman, D.; Bowles, E.A.; Achilleus, D.; Stephenson, A.H.; Ellis, C.G.; Ellsworth, M.L. Divergent Effects of Low-O2 Tension and Iloprost on ATP Release from Erythrocytes of Humans with Type 2 Diabetes: Implications for O2 Supply to Skeletal Muscle. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H566–H573. [Google Scholar] [CrossRef] [PubMed]
- Sprague, R.S.; Stephenson, A.H.; Ellsworth, M.L.; Keller, C.; Lonigro, A.J. Impaired Release of ATP from Red Blood Cells of Humans with Primary Pulmonary Hypertension. Exp. Biol. Med. 2001, 226, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Olearczyk, J.J.; Stephenson, A.H.; Lonigro, A.J.; Sprague, R.S. Receptor-Mediated Activation of the Heterotrimeric G-Protein Gs Results in ATP Release from Erythrocytes. Med. Sci. Monit. 2001, 7, 669–674. [Google Scholar] [PubMed]
- Olearczyk, J.J.; Stephenson, A.H.; Lonigro, A.J.; Sprague, R.S. Heterotrimeric G Protein Gi Is Involved in a Signal Transduction Pathway for ATP Release from Erythrocytes. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H940–H945. [Google Scholar] [CrossRef]
- Praetorius, H.A.; Leipziger, J. ATP Release from Non-Excitable Cells. Purinergic Signal. 2009, 5, 433–446. [Google Scholar] [CrossRef]
- Li, C.; Ramjeesingh, M.; Bear, C.E. Purified Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Does Not Function as an ATP Channel. J. Biol. Chem. 1996, 271, 11623–11626. [Google Scholar] [CrossRef]
- Sprague, R.S.; Ellsworth, M.L.; Stephenson, A.H.; Kleinhenz, M.E.; Lonigro, A.J. Deformation-Induced ATP Release from Red Blood Cells Requires CFTR Activity. Am. J. Physiol. Heart Circ. Physiol. 1998, 275, H1726–H1732. [Google Scholar] [CrossRef]
- Sridharan, M.; Adderley, S.P.; Bowles, E.A.; Egan, T.M.; Stephenson, A.H.; Ellsworth, M.L.; Sprague, R.S. Pannexin 1 Is the Conduit for Low Oxygen Tension-Induced ATP Release from Human Erythrocytes. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1146–H1152. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, X.; Zhao, G.; Wolin, M.S.; Sessa, W.; Hintze, T.H. Nitric Oxide Production and NO Synthase Gene Expression Contribute to Vascular Regulation during Exercise. Med. Sci. Sports Exerc. 1995, 27, 1125–1134. [Google Scholar] [CrossRef]
- Kleinbongard, P.; Schulz, R.; Rassaf, T.; Lauer, T.; Dejam, A.; Jax, T.; Kumara, I.; Gharini, P.; Kabanova, S.; Özüyaman, B.; et al. Red Blood Cells Express a Functional Endothelial Nitric Oxide Synthase. Blood 2006, 107, 2943–2951. [Google Scholar] [CrossRef]
- LoBue, A.; Heuser, S.K.; Lindemann, M.; Li, J.; Rahman, M.; Kelm, M.; Stegbauer, J.; Cortese-Krott, M.M. Red Blood Cell Endothelial Nitric Oxide Synthase: A Major Player in Regulating Cardiovascular Health. Br. J. Pharmacol. 2023, 1–17. [Google Scholar] [CrossRef]
- Schechter, A.N.; Gladwin, M.T. Hemoglobin and the Paracrine and Endocrine Functions of Nitric Oxide. N. Engl. J. Med. 2003, 348, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, M.T.; Crawford, J.H.; Patel, R.P. The Biochemistry of Nitric Oxide, Nitrite, and Hemoglobin: Role in Blood Flow Regulation. Free Radic. Biol. Med. 2004, 36, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Baskurt, O.K.; Ulker, P.; Meiselman, H.J. Nitric Oxide, Erythrocytes and Exercise. Clin. Hemorheol. Microcirc. 2025, 49, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Suhr, F.; Brenig, J.; Müller, R.; Behrens, H.; Bloch, W.; Grau, M. Moderate Exercise Promotes Human RBC-NOS Activity, NO Production and Deformability through Akt Kinase Pathway. PLoS ONE 2012, 7, e45982. [Google Scholar] [CrossRef]
- Carelli-Alinovi, C.; Pirolli, D.; Giardina, B.; Misiti, F. Protein Kinase C Mediates Caspase 3 Activation: A Role for Erythrocyte Morphology Changes. Clin. Hemorheol. Microcirc. 2015, 59, 345–354. [Google Scholar] [CrossRef]
- Jiao, T.; Collado, A.; Mahdi, A.; Tengbom, J.; Tratsiakovich, Y.; Milne, G.T.; Alvarsson, M.; Lundberg, J.O.; Zhou, Z.; Yang, J.; et al. Stimulation of Erythrocyte Soluble Guanylyl Cyclase Induces cGMP Export and Cardioprotection in Type 2 Diabetes. JACC Basic Transl. Sci. 2023, 8, 907–918. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M.; Mergia, E.; Kramer, C.M.; Lückstädt, W.; Yang, J.; Wolff, G.; Panknin, C.; Bracht, T.; Sitek, B.; Pernow, J.; et al. Identification of a soluble guanyate cyclase in RBCs: Preserved activity in patients with coronary artery disease. Redox Biol. 2018, 14, 328–337. [Google Scholar] [CrossRef]
- Li, H.Z.; Pike, A.C.W.; Chang, Y.N.; Prakaash, D.; Gelova, Z.; Stanka, J.; Moreau, C.; Scott, H.C.; Wunder, F.; Wolf, G.; et al. Transport and Inhibition of the Sphingosine-1-Phosphate Exporter SPNS2. Nat. Commun. 2025, 16, 721. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Principles of Sphingolipid Synthesis and Degradation: From Genes to Lipids to Disease. Physiol. Rev. 2008, 88, 643–677. [Google Scholar]
- Baranowski, M.; Błachnio-Zabielska, A.U.; Charmas, M.; Helge, J.W.; Dela, F.; Książek, M.; Długołęcka, B.; Klusiewicz, A.; Chabowski, A.; Górski, J. Exercise Increases Sphingoid Base-1-Phosphate Levels in Human Blood and Skeletal Muscle in a Time- and Intensity-Dependent Manner. Eur. J. Appl. Physiol. 2015, 115, 993–1003. [Google Scholar] [CrossRef]
- Hodun, K.; Chabowski, A.; Baranowski, M. Sphingosine-1-Phosphate in Acute Exercise and Training. Scand. J. Med. Sci. Sports 2021, 31, 945–955. [Google Scholar] [CrossRef]
- Cordeiro, A.V.; Silva, V.R.R.; Pauli, J.R.; da Silva, A.S.R.; Cintra, D.E.; Moura, L.P.; Ropelle, E.R. The Role of Sphingosine-1-Phosphate in Skeletal Muscle: Physiology, Mechanisms, and Clinical Perspectives. J. Cell. Physiol. 2019, 234, 10047–10059. [Google Scholar] [CrossRef]
- Hänel, P.; Andréani, P.; Gräler, M.H. Erythrocytes Store and Release Sphingosine 1-Phosphate in Blood. FASEB J. 2007, 21, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Bode, C.; Sensken, S.C.; Peest, U.; Beutel, G.; Thol, F.; Levkau, B.; Li, Z.; Bittman, R.; Huang, T.; Tölle, M.; et al. Erythrocytes Serve as a Reservoir for Cellular and Extracellular Sphingosine 1-Phosphate. J. Cell. Biochem. 2010, 109, 1232–1243. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Kawasaki-Nishi, S.; Otsuka, M.; Hisano, Y.; Yamaguchi, A.; Nishi, T. MFSD2B Is a Sphingosine 1-Phosphate Transporter in Erythroid Cells. Sci. Rep. 2018, 8, 4969. [Google Scholar] [CrossRef] [PubMed]
- Camerer, E.; Regard, J.B.; Cornelissen, I.; Srinivasan, Y.; Duong, D.N.; Palmer, D.; Pham, T.H.; Wong, J.S.; Pappu, R.; Coughlin, S.R. Sphingosine-1-Phosphate in the Plasma Compartment Regulates Basal and Inflammation-Induced Vascular Leak in Mice. J. Clin. Investig. 2009, 119, 1871–1879. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, Y.; D’Alessandro, A.; Nemkov, T.; Song, A.; Wu, H.; Liu, H.; Adebiyi, M.; Huang, A.; Wen, Y.E.; et al. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nat. Commun. 2016, 7, 12086. [Google Scholar] [CrossRef]
- Yoshida, Y.; Sugiura, M. Sphingosine Kinase 1 and Sphingosine-1-Phosphate in the Regulation of Red Blood Cell Deformability and Metabolism. Arch. Biochem. Biophys. 2012, 528, 1–8. [Google Scholar]
- Kunkel, S.L.; S1P, S. Sphingosine-1-Phosphate Transporter and Related Molecules. Trends Biochem. Sci. 2014, 39, 253–260. [Google Scholar]
- Tukijan, F.; Chandrakanthan, M.; Nguyen, L.N. The signalling roles of sphingosine-1-phosphate derived from red blood cells and platelets. Br. J. Pharmacol. 2018, 175, 3741–3746. [Google Scholar] [CrossRef]
- Wilkerson, B.A.; Argraves, K.M. The role of sphingosine-1-phosphate in endothelial barrier function. Biochim. Biophys. Acta. 2014, 1841, 1403–1412. [Google Scholar] [CrossRef]
- Baranowski, M.; Charmas, M.; Długołęcka, B.; Górski, J. Exercise increases plasma levels of sphingoid base-1 phosphates in humans. Acta Physiol 2011, 203, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.R.; Secomb, T.W. Red Blood Cell Deformability and the Microcirculation. Microcirculation 2014, 21, 468–478. [Google Scholar]
- Huwiler, A.; Pfeilschifter, J. Sphingosine 1-Phosphate and Endothelial Cells: Signaling and Function. Cell. Mol. Life Sci. 2006, 63, 1435–1447. [Google Scholar]
- Gazit, S.L.; Mariko, B.; Thérond, P.; Decouture, B.; Xiong, Y.; Couty, L.; Bonnin, P.; Baudrie, V.; Le Gall, S.M.; Dizier, B.; et al. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. Circ Res. 2016, 119, e110-26. [Google Scholar] [CrossRef]
- Misiti, F.; Diotaiuti, P.; Lombardo, G.E.; Tellone, E. Sphingosine-1-Phosphate Decreases Erythrocyte Dysfunction Induced by β-Amyloid. Int. J. Mol. Sci. 2024, 25, 5184. [Google Scholar] [CrossRef]
- Brooks, G.A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef]
- Brooks, G.A.; Osmond, A.D.; Arevalo, J.A.; Duong, J.J.; Curl, C.C.; Moreno-Santillan, D.D.; Leija, R.G. Lactate as a Myokine and Exerkine: Drivers and Signals of Physiology and Metabolism. J. Appl. Physiol. 2023, 134, 529–548. [Google Scholar] [CrossRef]
- Ross, M.; Kargl, C.K.; Ferguson, R.; Gavin, T.P.; Hellsten, Y. Exercise-Induced Skeletal Muscle Angiogenesis: Impact of Age, Sex, Angiocrines and Cellular Mediators. Eur. J. Appl. Physiol. 2023, 123, 1415–1432. [Google Scholar] [CrossRef]
- Opitz, D.; Kreutz, T.; Lenzen, E.; Dillkofer, B.; Wahl, P.; Montiel-Garcia, G.; Graf, C.; Bloch, W.; Brixius, K. Strength Training Alters MCT1-Protein Expression and Exercise-Induced Translocation in Erythrocytes of Men with Non-Insulin-Dependent Type-2 Diabetes. Can. J. Physiol. Pharmacol. 2014, 92, 259–262. [Google Scholar] [CrossRef]
- Liu, C.; Wu, J.; Zhu, J.; Kuei, C.; Yu, J.; Shelton, J.; Sutton, S.W.; Li, X.; Yun, S.J.; Mirzadegan, T.; et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 2009, 284, 2811–2822. [Google Scholar] [CrossRef]
- Wojtaszewski, J.F.; Richter, E.A. Effects of Acute Exercise and Training on Insulin Action and Sensitivity: Focus on Molecular Mechanisms in Muscle. Essays Biochem. 2006, 42, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.Y. Lactate: A Multifunctional Signaling Molecule. Yeungnam Univ. J. Med. 2021, 38, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, Q.; Yang, T.; Ding, W.; Zhao, Y. Cellular metabolism and macrophage functional polarization. Int. Rev. Immunol. 2015, 34, 82–100. [Google Scholar] [CrossRef] [PubMed]
- Colegio, O.R.; Chu, N.Q.; Szabo, A.L.; Chu, T.; Rhebergen, A.M.; Jairam, V.; Cyrus, N.; Brokowski, C.E.; Eisenbarth, S.C.; Phillips, G.M.; et al. Functional Polarization of Tumour-Associated Macrophages by Lactate. Nature 2014, 513, 559–563. [Google Scholar] [CrossRef]
- Yu, X.; Yang, J.; Xu, J.; Pan, H.; Wang, W.; Yu, X.; Shi, S. Histone lactylation: From tumor lactate metabolism to epigenetic regulation. Int. J. Biol. Sci. 2024, 20, 1833–1854. [Google Scholar] [CrossRef]
- Merkuri, F.; Rothstein, M.; Simoes-Costa, M. Histone Lactylation Couples Cellular Metabolism with Developmental Gene Regulatory Networks. Nat. Commun. 2024, 15, 90. [Google Scholar] [CrossRef]
- Ma, S.R.; Xia, H.F.; Gong, P.; Yu, Z.L. Red Blood Cell-Derived Extracellular Vesicles: An Overview of Current Research Progress, Challenges, and Opportunities. Biomedicines 2023, 11, 2798. [Google Scholar] [CrossRef]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef] [PubMed]
- Sangha, G.S.; Weber, C.M.; Sapp, R.M.; Setua, S.; Thangaraju, K.; Pettebone, M.; Rogers, S.C.; Doctor, A.; Buehler, P.W.; Clyne, A.M. Mechanical Stimuli Such as Shear Stress and Piezo1 Stimulation Generate Red Blood Cell Extracellular Vesicles. Front. Physiol. 2023, 14, 1246910. [Google Scholar] [CrossRef] [PubMed]
- Khalyfa, D.; Sanz-Rubio, A. The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction. Indian J. Manag. Sci. 2021, 22, 4301. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.B.; Ly, T.B.T.; Wesseling, M.C.; Hittinger, M.; Torge, A.; Devitt, A.; Perrie, Y.; Bernhardt, I. Characterization of Microvesicles Released from Human Red Blood Cells. Cell. Physiol. Biochem. 2016, 38, 1085–1099. [Google Scholar] [CrossRef]
- Siqueira, I.R.; Palazzo, R.P.; Cechinel, L.R. Circulating Extracellular Vesicles Delivering Beneficial Cargo as Key Players in Exercise Effects. Free Radic. Biol. Med. 2021, 172, 273–285. [Google Scholar] [CrossRef]
- Nederveen, J.P.; Warnier, G.; Di Carlo, A.; Nilsson, M.I.; Tarnopolsky, M.A. Extracellular Vesicles and Exosomes: Insights from Exercise Science. Front. Physiol. 2020, 11, 604274. [Google Scholar] [CrossRef]
- Safdar, A.; Tarnopolsky, M.A. Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029827. [Google Scholar] [CrossRef]
- Nemkov, T.; Skinner, S.C.; Nader, E.; Stefanoni, D.; Robert, M.; Cendali, F.; Stauffer, E.; Cibiel, A.; Boisson, C.; Connes, P.; et al. Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int. J. Mol. Sci. 2021, 22, 896. [Google Scholar] [CrossRef]
- Doss, J.F.; Corcoran, D.L.; Jima, D.D.; Telen, M.J.; Dave, S.S.; Chi, J.T. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genom. 2015, 16, 952. [Google Scholar] [CrossRef]
- Kuo, W.P.; Tigges, J.C.; Toxavidis, V.; Ghiran, I. Red blood cells: A source of extracellular vesicles. Methods Mol. Biol. 2017, 1660, 15–22. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Y.; Niu, B.; Wang, D. Red blood cells as potential repositories of micrornas in the circulatory system. Front. Genet. 2020, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Hansen, K.C.; Eisenmesser, E.Z.; Zimring, J.C. Protect, Repair, Destroy or Sacrifice: A Role of Oxidative Stress Biology in Inter-Donor Variability of Blood Storage? Blood Transfus. 2019, 17, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Rifkind, J.M.; Nagababu, E. Hemoglobin Oxidation and the Generation of Reactive Oxygen Species. Antioxid. Redox Signal. 2013, 18, 2304–2313. [Google Scholar]
- Bor-Kucukat, I.M.; Kucukat, F.; Akalin, F. The Effect of Exercise on Red Blood Cells and Oxidative Stress. In Oxidative Stress in Applied Basic Research and Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2021; pp. 235–251. [Google Scholar]
- Kurganskaia, M.S.; Volkov, N.I. The Erythrocyte and Oxidative Stress in Exercise. Hum. Physiol. 2017, 43, 101–110. [Google Scholar]
- Duranti, G.; Ceci, R.; Patrizio, F.; Sgrò, P.; Di Luigi, L.; Sabatini, S.; Felici, F.; Bazzucchi, I. Chronic consumption of quercetin reduces erythrocytes oxidative damage: Evaluation at resting and after eccentric exercise in humans. Nutr. Res. 2018, 50, 73–81. [Google Scholar] [CrossRef]
- Nikolaidis, M.G.; Jamurtas, A.Z. Blood as a Reactive Species Generator and Redox Status Regulator during Exercise. Arch. Biochem. Biophys. 2009, 490, 77–84. [Google Scholar] [CrossRef]
- Chatzinikolaou, P.N.; Margaritelis, N.V.; Paschalis, V.; Theodorou, A.A.; Moushi, E.; Vrabas, I.S.; Kyparos, A.; Fatouros, I.G.; D’Alessandro, A.; Nikolaidis, M.G. Erythrocyte Glycolytic and Redox Metabolism Affects Muscle Oxygenation and Exercise Performance: A Randomized Double-Blind Crossover Study in Men. Sports Med. 2025. [Google Scholar] [CrossRef]
- Vollaard, N.B.; Shearman, J.P.; Cooper, C.E. Exercise-induced oxidative stress: Myths, realities and physiological relevance. Sports Med. 2005, 35, 1045–1062. [Google Scholar] [CrossRef]
- Powers, S.K.; Jackson, M.J. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative Stress: Relationship with Exercise and Training. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Cendali, F.I.; Lisk, C.; Dzieciatkowska, M.; LaCroix, I.S.; Reisz, J.A.; Harral, J.; Stephenson, D.; Hay, A.M.; Wartchow, E.P.; Darehshouri, A.; et al. Increased exercise tolerance in humanized G6PD-deficient mice. Blood Adv. 2025, 9, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Duarte, J.; Kavazis, A.N.; Talbert, E.E. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp. Physiol. 2010, 95, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Yahata, T.; Sato, Y.; Yamamura, K.; Taniguchi, N. Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Europ. J. Appl. Physiol. 1998, 57, 173–176. [Google Scholar] [CrossRef]
- Radak, Z.; Ishihara, K.; Tekus, E.; Varga, C.; Posa, A.; Balogh, L.; Boldogh, I.; Koltai, E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol. 2017, 2, 285–290. [Google Scholar] [CrossRef]
- Schippinger, G.; Wonisch, W.; Abuja, P.M.; Fankhauser, F.; Winklhofer-Roob, B.M.; Halwachs, G. Lipid peroxidation and antioxidant status in professional American football players during competition. Eur. J. Clin. Investig. 2002, 32, 686–692. [Google Scholar] [CrossRef]
- Cichoń-Woźniak, J.; Ostapiuk-Karolczuk, J.; Cieślicka, M.; Dziewiecka, H.; Basta, P.; Maciejewski, D.; Skarpańska-Stejnborn, A. Effect of 2 weeks rest-pause on oxidative stress and inflammation in female basketball players. Sci. Rep. 2024, 14, 14578. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M.; Rodriguez-Mateos, A.; Sansone, R.; Kuhnle, G.G.; Thasian-Sivarajah, S.; Krenz, T.; Horn, P.; Krisp, C.; Wolters, D.; Heiß, C. Human red blood cells at work: Identification and visualization of erythrocytic eNOS activity in health and disease. Blood 2012, 120, 4229–4237. [Google Scholar] [CrossRef]
- Darbonne, W.C.; Rice, G.C.; Mohler, M.A.; Apple, T.; Hébert, C.A.; Valente, A.J.; Baker, J.B. Red Blood Cells Are a Sink for Interleukin 8, a Leukocyte Chemotaxin. J. Clin. Investig. 1991, 88, 1362–1369. [Google Scholar] [CrossRef]
- Kumar, S.D.; Ghosh, J.; Ghosh, S.; Eswarappa, S.M. Emerging Concepts in the Molecular Cell Biology and Functions of Mammalian Erythrocytes. J. Biol. Chem. 2025, 301, 108331. [Google Scholar] [CrossRef]
- Mariano, A.; Bigioni, I.; Misiti, F.; Fattorini, L.; Scotto D’Abusco, A.; Rodio, A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Curr. Issues Mol. Biol. 2022, 44, 3481–3495. [Google Scholar] [CrossRef]
- Zhu, L.; Bai, C.; Wang, X.; Wei, Z.; Gu, M.; Zhou, X.; Su, G.; Liu, X.; Yang, L.; Li, G. Myostatin Knockout Limits Exercise-Induced Reduction in Bovine Erythrocyte Oxidative Stress by Enhancing the Efficiency of the Pentose Phosphate Pathway. Animals 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Ntumngia, F.; Thomson-Luque, R.; Pires, C.; Adams, J. The role of the human Duffy antigen receptor for chemokines in malaria susceptibility: Current opinions and future treatment prospects. J. Recept. Ligand Channel Res. 2016, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bester, J.; Pretorius, E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 2016, 6, 32188. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Cavaretta, J.; Qu, L.; Stolz, D.B.; Triulzi, D.; Lee, J.S. Red Blood Cell Microparticles Show Altered Inflammatory Chemokine Binding and Release Ligand upon Interaction with Platelets. Transfusion 2011, 51, 610–621. [Google Scholar] [CrossRef]
- Hotz, M.J.; Qing, D.; Shashaty, M.G.S.; Zhang, P.; Faust, H.; Sondheimer, N.; Rivella, S.; Worthen, G.S.; Mangalmurti, N.S. Red Blood Cells Homeostatically Bind Mitochondrial DNA through TLR9 to Maintain Quiescence and to Prevent Lung Injury. Am. J. Respir. Crit. Care Med. 2018, 197, 470–480. [Google Scholar] [CrossRef]
- Lam, L.K.M.; Murphy, S.; Kokkinaki, D.; Venosa, A.; Sherrill-Mix, S.; Casu, C.; Rivella, S.; Weiner, A.; Park, J.; Shin, S.; et al. DNA Binding to TLR9 Expressed by Red Blood Cells Promotes Innate Immune Activation and Anemia. Sci. Transl. Med. 2021, 13, eabj1008. [Google Scholar] [CrossRef]
- Wen, X.; Fan, J.; Duan, X.; Zhu, X.; Bai, J.; Zhang, T. Mitochondrial DNA in Exercise-Mediated Innate Immune Responses. Int. J. Mol. Sci. 2025, 26, 3069. [Google Scholar] [CrossRef]
- Simmons, J.D.; Lee, Y.L.; Pastukh, V.M.; Capley, G.; Muscat, C.A.; Muscat, D.C.; Marshall, M.L.; Brevard, S.B.; Gillespie, M.N. Potential Contribution of Mitochondrial DNA Damage Associated Molecular Patterns in Transfusion Products to the Development of Acute Respiratory Distress Syndrome after Multiple Transfusions. J. Trauma Acute Care Surg. 2017, 82, 1023–1029. [Google Scholar] [CrossRef]
- Lee, Y.L.; King, M.B.; Gonzalez, R.P.; Brevard, S.B.; Frotan, M.A.; Gillespie, M.N.; Simmons, J.D. Blood Transfusion Products Contain Mitochondrial DNA Damage-Associated Molecular Patterns: A Potential Effector of Transfusion-Related Acute Lung Injury. J. Surg. Res. 2014, 191, 286–289. [Google Scholar] [CrossRef]
Exerkines | Molecule Type | Key Tissues Affected |
---|---|---|
ATP | Organic Molecule | blood vessels (microcirculation) [36,37] |
Nitric Oxide (NO) | Inorganic Molecule | smooth muscle cells; platelets [38,39] |
Cyclic guanosine monophosphate (cGMP) | Organic Molecule | heart [40] |
Sphingosine-1-phosphate (S1P) | Organic Molecule | vascular tissues; lymphatic system; heart; liver; lungs; CNS; kidney [41] |
Microparticles or vesicles (RBCEV) | Vesicles | endothelial cells; immune system; lungs; muscle; brain [42] |
MicroRNAs (miRNAs) | RNA | bone marrow; lungs; liver; spleen; kidney [43] |
Lactate | Organic Molecule | muscle; heart; kidney; liver; brain; adipose tissue; immune system [44] |
Reactive oxygen species (ROS) | Inorganic Molecule | microvascular endothelium; platelets [45] |
Exerkines | Receptor |
---|---|
ATP | P2X7/P2Y1 purinergic receptors [50] |
Nitric oxide (NO) | Soluble guanylate cyclase (sGC) [68] |
Lactate | Monocarboxylate transporter (MCT1) [92] |
CXCL8 (IL-8) | Duffy antigen receptor for chemokines (DARC) [34,136] |
CCL2 (MCP-1) | Duffy antigen receptor for chemokines (DARC) [34,136] |
Myostatin (MSTN) | TGF-β RI [133] |
Mitochondrial DNA (mtDNA) | Toll-like receptor 9 (TLR9) [137,138] |
microRNA (c-miRNA) | Argonaute RISC catalytic component 2 (Ago2) [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misiti, F.; Falese, L.; Iannaccone, A.; Diotaiuti, P. Erythrocytes as a Source of Exerkines. Int. J. Mol. Sci. 2025, 26, 9665. https://doi.org/10.3390/ijms26199665
Misiti F, Falese L, Iannaccone A, Diotaiuti P. Erythrocytes as a Source of Exerkines. International Journal of Molecular Sciences. 2025; 26(19):9665. https://doi.org/10.3390/ijms26199665
Chicago/Turabian StyleMisiti, Francesco, Lavinia Falese, Alice Iannaccone, and Pierluigi Diotaiuti. 2025. "Erythrocytes as a Source of Exerkines" International Journal of Molecular Sciences 26, no. 19: 9665. https://doi.org/10.3390/ijms26199665
APA StyleMisiti, F., Falese, L., Iannaccone, A., & Diotaiuti, P. (2025). Erythrocytes as a Source of Exerkines. International Journal of Molecular Sciences, 26(19), 9665. https://doi.org/10.3390/ijms26199665