Inflammatory and Oxidative Biological Profiles in Mental Disorders: Perspectives on Diagnostics and Personalized Therapy
Abstract
1. Introduction
2. Balance of Pro- and Anti-Inflammatory Cytokines as a Pathobiological Axis in Affective, Anxiety, and Schizophrenic Disorders
2.1. Pro-Inflammatory Cytokines in the Pathophysiology of Psychiatric Disorders
2.2. Anti-Inflammatory and Immunoregulatory Cytokines in Neuropsychiatry
3. Immunological Balance Indicators in Personalized Psychiatry
3.1. Principles of Constructing Cytokine Indicators
3.2. Prospects and Challenges in the Use of Immunological Indicators in Psychiatry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bajbouj, M. Transformation towards precision psychiatry. Exp. Neurol. 2022, 349, 113955. [Google Scholar] [CrossRef] [PubMed]
- Venegas, C.F.; Espinoza, L.F.V.; Matta, C.R.; Cañas, B.B.; Maldonado, M.A.; Oñate, A.S. New Developments in Psychiatric Classification: A Transdiagnostic Approach. Cureus 2025, 17, e84580. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Corrales, A.; Trisno, R.; Dodd, S.; Yatham, L.N.; Vieta, E.; McIntyre, R.S.; Suppes, T.; Agustini, B. Bipolar II disorder: A state-of-the-art review. World Psychiatry 2025, 24, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Lack, C.W. Anxiety Disorders: Diagnoses, Clinical Features, and Epidemiology. Psychiatr. Clin. N. Am. 2024, 47, 613–622. [Google Scholar] [CrossRef]
- Tirpack, A.K.; Buttar, D.G.; Kaur, M. Advancement in utilization of magnetic resonance imaging and biomarkers in the understanding of schizophrenia. World J. Clin. Cases 2025, 13, 96578. [Google Scholar] [CrossRef]
- Hsu, J.W.; Lin, W.C.; Bai, Y.M.; Tsai, S.J.; Chen, M.H. Appetite Hormone Regulation Biotypes of Major Affective Disorders in Proinflammatory Cytokines and Executive Function. J. Clin. Psychiatry 2025, 86, 24m15561. [Google Scholar] [CrossRef]
- Liu, C.; Gershon, E.S. Endophenotype 2.0: Updated definitions and criteria for endophenotypes of psychiatric disorders, incorporating new technologies and findings. Transl. Psychiatry 2024, 14, 502. [Google Scholar] [CrossRef]
- Ostojic, D.; Lalousis, P.A.; Donohoe, G.; Morris, D.W. The challenges of using machine learning models in psychiatric research and clinical practice. Eur. Neuropsychopharmacol. 2024, 88, 53–65. [Google Scholar] [CrossRef]
- Bhattacharyya, U.; John, J.; Lencz, T.; Lam, M. Dissecting Schizophrenia Biology Using Pleiotropy with Cognitive Genomics. Biol. Psychiatry 2025, 98, 670–678. [Google Scholar] [CrossRef]
- Kolobaric, A.; Andreescu, C.; Jašarević, E.; Hong, C.H.; Roh, H.W.; Cheong, J.Y.; Kim, Y.K.; Shin, T.S.; Kang, C.S.; Kwon, C.O.; et al. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol. Psychiatry 2024, 29, 3064–3075. [Google Scholar] [CrossRef]
- Lugenbühl, J.F.; Viho, E.M.G.; Binder, E.B.; Daskalakis, N.P. Stress Molecular Signaling in Interaction with Cognition. Biol. Psychiatry 2025, 97, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Isik, C.M.; Bayyurt, E.B.T.; Sahin, N.O. The MNK-SYNGAP1 axis in specific learning disorder: Gene expression pattern and new perspectives. Eur. J. Pediatr. 2025, 184, 260. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, L.; Niu, M.; Kong, D.; Jiang, Y.; Poudel, S.; Shieh, A.W.; Cheng, L.; Giase, G.; Grennan, K.; et al. Genetic regulation of human brain proteome reveals proteins implicated in psychiatric disorders. Mol. Psychiatry 2024, 29, 3330–3343. [Google Scholar] [CrossRef] [PubMed]
- Krivinko, J.M.; Fan, P.; Sui, Z.; Happe, C.; Hensler, C.; Gilardi, J.; Ikonomovic, M.D.; McKinney, B.C.; Newman, J.; Ding, Y.; et al. Age-related loss of large dendritic spines in the precuneus is statistically mediated by proteins which are predicted targets of existing drugs. Mol. Psychiatry 2025, 30, 2059–2067. [Google Scholar] [CrossRef]
- Chen, X.M.; Zhang, S.; Gao, S.Q.; Xu, M. Interleukin-6 in epilepsy and its neuropsychiatric comorbidities: How to bridge the gap. World J. Psychiatry 2025, 15, 100297. [Google Scholar] [CrossRef]
- Nagy, T.; Baksa, D.; Petschner, P.; Gonda, X.; Gal, Z.; Juhasz, G.; Bagdy, G. Investigating the Role of TNF-Alpha through Blood-Brain Barrier Integrity in Stress-Induced Depression. Neuropsychopharmacol. Hung. 2024, 26, 197–203. [Google Scholar]
- Karampas, A.; Leontaritis, G.; Markozannes, G.; Asimakopoulos, A.; Archimandriti, D.T.; Spyrou, P.; Georgiou, G.; Plakoutsis, M.; Kotsis, K.; Voulgari, P.V.; et al. Adiponectin, resistin, interleukin-4 and TGF-beta2 levels in treatment resistant schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2025, 136, 111221. [Google Scholar] [CrossRef]
- Wen, W.; Zhou, J.; Zhan, C.; Wang, J. Microglia as a Game Changer in Epilepsy Comorbid Depression. Mol. Neurobiol. 2024, 61, 4021–4037. [Google Scholar] [CrossRef]
- Perry, B.I.; Upthegrove, R.; Kappelmann, N.; Jones, P.B.; Burgess, S.; Khandaker, G.M. Associations of immunological proteins/traits with schizophrenia, major depression and bipolar disorder: A bi-directional two-sample mendelian randomization study. Brain Behav. Immun. 2021, 97, 176–185. [Google Scholar] [CrossRef]
- Goodman, E.J.; Biltz, R.G.; Packer, J.M.; DiSabato, D.J.; Swanson, S.P.; Oliver, B.; Quan, N.; Sheridan, J.F.; Godbout, J.P. Enhanced fear memory after social defeat in mice is dependent on interleukin-1 receptor signaling in glutamatergic neurons. Mol. Psychiatry. 2024, 29, 2321–2334. [Google Scholar] [CrossRef]
- Tyrtyshnaia, A.; Manzhulo, I.; Egoraeva, A.; Ivashkevich, D. Cognitive and affective dysregulation in neuropathic pain: Associated hippocampal remodeling and microglial activation. Int. J. Mol. Sci. 2025, 26, 6460. [Google Scholar] [CrossRef]
- Zanella, C.A.; Marques, N.; Junqueira, S.; Prediger, R.D.; Tasca, C.I.; Cimarosti, H.I. Guanosine increases global SUMO1-ylation in the hippocampus of young and aged mice and improves the short-term memory of young mice. J. Neurochem. 2024, 168, 1503–1513. [Google Scholar] [CrossRef]
- Suliman, M.; Schmidtke, M.W.; Greenberg, M.L. The role of the UPR pathway in the pathophysiology and treatment of bipolar disorder. Front. Cell. Neurosci. 2021, 15, 735622. [Google Scholar] [CrossRef]
- Yuan, M.; Yuan, B. Antidepressant-like effects of Rehmannioside A on rats induced by chronic unpredictable mild stress through inhibition of endoplasmic reticulum stress and apoptosis of hippocampus. J. Chem. Neuroanat. 2022, 125, 102157. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Russo, S.J. Neurobiological basis of stress resilience. Neuron 2024, 112, 1911–1929. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, N.P.; Iatrou, A.; Chatzinakos, C.; Jajoo, A.; Snijders, C.; Wylie, D.; DiPietro, C.P.; Tsatsani, I.; Chen, C.Y.; Pernia, C.D.; et al. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024, 384, eadh3707. [Google Scholar] [CrossRef]
- Zhao, M.; Ren, Z.; Zhao, A.; Tang, Y.; Kuang, J.; Li, M.; Chen, T.; Wang, S.; Wang, J.; Zhang, H.; et al. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab. 2024, 36, 1000–1012.e6. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xie, X.; Deng, Z.; Wang, W.; Xiang, D.; Yao, L.; Kang, L.; Xu, S.; Wang, H.; Wang, G.; et al. A machine learning analysis of big metabolomics data for classifying depression: Model development and validation. Biol. Psychiatry 2024, 96, 44–56. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-omics integration in biomedical research—A metabolomics-centric review. Anal. Chim. Acta. 2021, 1141, 144–162. [Google Scholar] [CrossRef]
- Li, Z.; Lai, J.; Zhang, P.; Ding, J.; Jiang, J.; Liu, C.; Huang, H.; Zhen, H.; Xi, C.; Sun, Y.; et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol. Psychiatry 2022, 27, 4123–4135. [Google Scholar] [CrossRef]
- Qureshi, I.A.; Mehler, M.F. Frontiers in neuroepigenetics. Neurobiol. Dis. 2021, 153, 105333. [Google Scholar] [CrossRef]
- Koromina, M.; Ravi, A.; Panagiotaropoulou, G.; Schilder, B.M.; Humphrey, J.; Braun, A.; Bidgeli, T.; Chatzinakos, C.; Coombes, B.J.; Kim, J.; et al. Fine-mapping genomic loci refines bipolar disorder risk genes. Nat. Neurosci. 2025, 28, 1393–1403. [Google Scholar] [CrossRef]
- Dhieb, D.; Bastaki, K. Pharmaco-Multiomics: A New Frontier in Precision Psychiatry. Int. J. Mol. Sci. 2025, 26, 1082. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Han, Y.; Liu, B.; Chen, S.; Ye, Z.; Li, J.; Xie, L.; Wu, X. Integrated Analysis of Gut Microbiome, Inflammation, and Neuroimaging Features Supports the Role of Microbiome-Gut-Brain Crosstalk in Schizophrenia. Schizophr. Bull. Open 2024, 5, sgae026. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, B.; Xin, H.; Qi, Q.; Wang, Y.; Lin, L.; Xie, Y.; Huang, C.; Lu, J.; Qin, W.; et al. Volumetric Integrated Classification Index: An Integrated Voxel-Based Morphometry and Machine Learning Interpretable Biomarker for Post-Traumatic Stress Disorder. J. Imaging. Inform. Med. 2025, 38, 1924–1934. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Gao, Y.; Yuan, J.; Chen, F.; Xu, P.; Liu, W. The Role of Gut Microbiota in Modulating Brain Structure and Psychiatric Disorders: A Mendelian Randomization Study. Neuroimage 2025, 315, 121292. [Google Scholar] [CrossRef] [PubMed]
- Singh Solorzano, C.; Festari, C.; Mirabelli, P.; Mombelli, E.; Coppola, L.; Luongo, D.; Naviglio, D.; Soricelli, A.; Quattrini, G.; Salvatore, M.; et al. Association Between Cognitive Functioning and Microbiota-Gut-Brain Axis Mediators in a Memory Clinic Population. Front. Cell. Neurosci. 2025, 19, 1550333. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sastre, P.; Gómez-Sánchez-Lafuente, C.; Martín-Martín, J.; Herrera-Imbroda, J.; Mayoral-Cleries, F.; Santos-Amaya, I.; de Fonseca, F.R.; Guzmán-Parra, J.; Rivera, P.; Suárez, J. Pharmacotherapeutic value of inflammatory and neurotrophic biomarkers in bipolar disorder: A systematic review. Prog. Neuro-Psychopharmacol. 2024, 134, 111056. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, Z.; Yang, Z.; Liu, X.; Qian, X.; Zhu, J.; Hu, X.; Jiang, P.; Cui, T.; Wang, Y.; et al. Alterations in fecal microbiota composition and cytokine expression profiles in adolescents with depression: A case-control study. Sci. Rep. 2025, 15, 12177. [Google Scholar] [CrossRef]
- Malau, I.A.; Chang, J.P.; Lin, Y.W.; Chang, C.C.; Chiu, W.C.; Su, K.P. Omega-3 Fatty Acids and Neuroinflammation in Depression: Targeting Damage-Associated Molecular Patterns and Neural Biomarkers. Cells 2024, 13, 1791. [Google Scholar] [CrossRef]
- Sălcudean, A.; Bodo, C.R.; Popovici, R.A.; Cozma, M.M.; Păcurar, M.; Crăciun, R.E.; Crisan, A.I.; Enatescu, V.R.; Marinescu, I.; Cimpian, D.M.; et al. Neuroinflammation—A Crucial Factor in the Pathophysiology of Depression—A Comprehensive Review. Biomolecules 2025, 15, 502. [Google Scholar] [CrossRef]
- Guo, X.; Kong, L.; Wen, Y.; Chen, L.; Hu, S. Impact of second-generation antipsychotics monotherapy or combined therapy in cytokine, lymphocyte subtype, and thyroid antibodies for schizophrenia: A retrospective study. BMC Psychiatry 2024, 24, 695. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Wang, Y.; Kapczinski, F.; Frey, B.N.; Wollenhaupt-Aguiar, B. Peripheral protein inflammatory biomarkers in bipolar disorder and major depressive disorder: A systematic review and meta-analysis. J. Affect. Disord. 2025, 376, 149–168. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, Q.; Yao, Y.; Song, S.; Zhou, X.; Liu, H.; Zhang, K. Role of HOMA-IR and IL-6 as screening markers for the metabolic syndrome in patients with chronic schizophrenia: A psychiatric hospital-based cross-sectional study. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1063–1070. [Google Scholar] [CrossRef]
- Yin, M.; Zhou, H.; Li, J.; Wang, L.; Zhu, M.; Wang, N.; Yang, P.; Yang, Z. The change of inflammatory cytokines after antidepressant treatment and correlation with depressive symptoms. J. Psychiatr. Res. 2025, 184, 418–423. [Google Scholar] [CrossRef]
- Kathuria, A.; Lopez-Lengowski, K.; Roffman, J.L.; Karmacharya, R. Distinct effects of interleukin-6 and interferon-γ on differentiating human cortical neurons. Brain Behav. Immun. 2022, 103, 97–108. [Google Scholar] [CrossRef]
- Gao, W.; Gao, Y.; Xu, Y.; Liang, J.; Sun, Y.; Zhang, Y.; Shan, F.; Ge, J.; Xia, Q. Effect of duloxetine on changes in serum proinflammatory cytokine levels in patients with major depressive disorder. BMC Psychiatry 2024, 24, 449. [Google Scholar] [CrossRef]
- Bravi, B.; Melloni, E.M.T.; Paolini, M.; Palladini, M.; Calesella, F.; Servidio, L.; Agnoletto, E.; Poletti, S.; Lorenzi, C.; Colombo, C.; et al. Choroid plexus volume is increased in mood disorders and associates with circulating inflammatory cytokines. Brain Behav. Immun. 2024, 116, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Hu, X.; Jin, X. IL-4 as a potential biomarker for differentiating major depressive disorder from bipolar depression. Medicine 2023, 102, e33439. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liang, J.; Sun, Y.; Zhang, Y.; Shan, F.; Ge, J.; Xia, Q. Serum cytokines-based biomarkers in the diagnosis and monitoring of therapeutic response in patients with major depressive disorder. Int. Immunopharmacol. 2023, 118, 110108. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Jiang, W. Immune biomarkers alterations in post-traumatic stress disorder: A systematic review and meta-analysis. J. Affect. Disord. 2020, 268, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Song, Y.; Liu, Y.; Miao, Y.; Guo, Y.; Chai, H. TNF-alpha/TNFR1 activated astrocytes exacerbate depression-like behavior in CUMS mice. Cell Death Discov. 2024, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Zazula, R.; Dodd, S.; Dean, O.M.; Berk, M.; Bortolasci, C.C.; Verri, W.A., Jr.; Vargas, H.O.; Nunes, S.O.V. Cognition-immune interactions between executive function and working memory, tumour necrosis factor-alpha (TNF-α) and soluble TNF receptors (sTNFR1 and sTNFR2) in bipolar disorder. World J. Biol. Psychiatry 2022, 23, 67–77. [Google Scholar] [CrossRef]
- Raffaele, S.; Lombardi, M.; Verderio, C.; Fumagalli, M. TNF production and release from microglia via extracellular vesicles: Impact on brain functions. Cells 2020, 9, 2145. [Google Scholar] [CrossRef]
- Heir, R.; Abbasi, Z.; Komal, P.; Altimimi, H.F.; Franquin, M.; Moschou, D.; Chambon, J.; Stellwagen, D. Astrocytes are the source of TNF mediating homeostatic synaptic plasticity. J. Neurosci. 2024, 44, e2278222024. [Google Scholar] [CrossRef]
- Pantovic-Stefanovic, M.; Velimirovic, M.; Jurisic, V.; Puric, M.; Gostiljac, M.; Dodic, S.; Minic, I.; Nesic, M.; Nikolic, T.; Petronijevic, N.; et al. Exploring the role of TNF-alpha, TGF-beta, and IL-6 serum levels in categorical and non-categorical models of mood and psychosis. Sci. Rep. 2024, 14, 23117. [Google Scholar] [CrossRef]
- Gray-Gaillard, E.F.; Shah, A.A.; Bingham, C.O., III; Elisseeff, J.H.; Murray, J.; Brahmer, J.; Forde, P.; Anagnostou, V.; Mammen, J.; Cappelli, L.C. Higher levels of VEGF-A and TNFα in patients with immune checkpoint inhibitor-induced inflammatory arthritis. Arthritis Res. Ther. 2025, 27, 74. [Google Scholar] [CrossRef]
- Kuzior, H.; Fiebich, B.L.; Yousif, N.M.; Saliba, S.W.; Ziegler, C.; Nickel, K.; Maier, S.J.; Süß, P.; Runge, K.; Matysik, M.; et al. Increased IL-8 concentrations in the cerebrospinal fluid of patients with unipolar depression. Compr. Psychiatry 2020, 102, 152196. [Google Scholar] [CrossRef]
- Sitaru, S.; Budke, A.; Bertini, R.; Sperandio, M. Therapeutic inhibition of CXCR1/2: Where do we stand? Intern. Emerg. Med. 2023, 18, 1647–1664. [Google Scholar] [CrossRef]
- Brisch, R.; Wojtylak, S.; Saniotis, A.; Steiner, J.; Gos, T.; Kumaratilake, J.; Henneberg, M.; Wolf, R. The role of microglia in neuropsychiatric disorders and suicide. Eur. Arch. Psychiatry Clin. Neurosci. 2022, 272, 929–945. [Google Scholar] [CrossRef]
- Kruse, J.L.; Olmstead, R.; Hellemann, G.; Breen, E.C.; Tye, S.J.; Brooks, J.O., 3rd; Wade, B.; Congdon, E.; Espinoza, R.; Narr, K.L.; et al. Interleukin-8 and lower severity of depression in females, but not males, with treatment-resistant depression. J. Psychiatr. Res. 2021, 140, 350–356. [Google Scholar] [CrossRef]
- Tsai, S.J. Role of interleukin 8 in depression and other psychiatric disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 106, 110173. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Tang, Y.; Cao, G.; Mai, Y.; Fu, Y.; Ren, Z.; Li, W.; Hou, J.; Sun, S.; Chen, B.; et al. Lateral habenula IL-10 controls GABA(A) receptor trafficking and modulates depression susceptibility after maternal separation. Brain Behav. Immun. 2024, 122, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Campanari, D.D.; Cipriano, U.G.; Fraga-Silva, T.F.C.; Ramalho, L.N.Z.; Ovidio, P.P.; JordãoJúnior, A.A.; Bonato, V.L.D.; Ferriolli, E. Effect of dietary supplementation with omega-3 fatty acid on the generation of regulatory T lymphocytes and on antioxidant parameters and markers of oxidative stress in the liver tissue of IL-10 knockout mice. Nutrients 2024, 16, 634. [Google Scholar] [CrossRef] [PubMed]
- Poletti, S.; Zanardi, R.; Mandelli, A.; Aggio, V.; Finardi, A.; Lorenzi, C.; Borsellino, G.; Carminati, M.; Manfredi, E.; Tomasi, E.; et al. Low-dose interleukin 2 antidepressant potentiation in unipolar and bipolar depression: Safety, efficacy, and immunological biomarkers. Brain Behav. Immun. 2024, 118, 52–68. [Google Scholar] [CrossRef]
- Ren, Z.; Li, T.; Liu, X.; Zhang, Z.; Chen, X.; Chen, W.; Li, K.; Sheng, J. Transforming growth factor-beta 1 enhances discharge activity of cortical neurons. Neural Regen. Res. 2025, 20, 548–556. [Google Scholar] [CrossRef]
- Damri, O.; Agam, G. Lithium, inflammation and neuroinflammation with emphasis on bipolar disorder—A narrative review. Int. J. Mol. Sci. 2024, 25, 13277. [Google Scholar] [CrossRef]
- Marciante, A.B.; Tadjalli, A.; Nikodemova, M.; Burrowes, K.A.; Oberto, J.; Luca, E.K.; Seven, Y.B.; Watters, J.J.; Baker, T.L.; Mitchell, G.S. Microglia regulate motor neuron plasticity via reciprocal fractalkine and adenosine signaling. Nat. Commun. 2024, 15, 10349. [Google Scholar] [CrossRef]
- Ermakov, E.A.; Mednova, I.A.; Boiko, A.S.; Buneva, V.N.; Ivanova, S.A. Chemokine dysregulation and neuroinflammation in schizophrenia: A systematic review. Int. J. Mol. Sci. 2023, 24, 2215. [Google Scholar] [CrossRef]
- Cadenhead, K.S.; Mirzakhanian, H.; Achim, C.; Reyes-Madrigal, F.; de la Fuente-Sandoval, C. Peripheral and central biomarkers associated with inflammation in antipsychotic naïve first episode psychosis: Pilot studies. Schizophr. Res. 2024, 264, 39–48. [Google Scholar] [CrossRef]
- Miranda, D.O.; Anatriello, E.; Azevedo, L.R.; Santos, J.C.; Cordeiro, J.F.C.; Peria, F.M.; Flória-Santos, M.; Pereira-Da-Silva, G. Fractalkine (C-X3-C motif chemokine ligand 1) as a potential biomarker for depression and anxiety in colorectal cancer patients. Biomed. Rep. 2017, 7, 188–192. [Google Scholar] [CrossRef]
- Lee, M.; Lee, Y.; Song, J.; Lee, J.; Chang, S.Y. Tissue-specific role of CX3CR1 expressing immune cells and their relationships with human disease. Immune Netw. 2018, 18, e5. [Google Scholar] [CrossRef] [PubMed]
- Oglodek, E. The role of PON-1, GR, IL-18, and OxLDL in depression with and without post-traumatic stress disorder. Pharmacol. Rep. 2017, 69, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 2017, 42, 254–270. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, F.; Cioni, R.M.; Callovini, T.; Cavaleri, D.; Crocamo, C.; Carrà, G. The kynurenine pathway in schizophrenia and other mental disorders: Insight from meta-analyses on the peripheral blood levels of tryptophan and related metabolites. Schizophr. Res. 2021, 232, 61–62. [Google Scholar] [CrossRef]
- Fellendorf, F.T.; Gostner, J.M.; Lenger, M.; Platzer, M.; Birner, A.; Maget, A.; Queissner, R.; Tmava-Berisha, A.; Pater, C.A.; Ratzenhofer, M.; et al. Tryptophan Metabolism in Bipolar Disorder in a Longitudinal Setting. Antioxidants 2021, 10, 1795. [Google Scholar] [CrossRef]
- Chen, L.M.; Bao, C.H.; Wu, Y.; Liang, S.H.; Wang, D.; Wu, L.Y.; Huang, Y.; Liu, H.R.; Wu, H.G. Tryptophan-kynurenine metabolism: A link between the gut and brain for depression in inflammatory bowel disease. J. Neuroinflammation 2021, 18, 135. [Google Scholar] [CrossRef]
- Sipahi, H.; Mat, A.F.; Ozhan, Y.; Aydin, A. The Interrelation between Oxidative Stress, Depression and Inflammation through the Kynurenine Pathway. Curr. Top. Med. Chem. 2023, 23, 415–425. [Google Scholar] [CrossRef]
- Suhee, F.I.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Elevated Serum IL-2 Levels are Associated with Major Depressive Disorder: A Case-Control Study. Clin. Pathol. 2023, 16, 2632010X231180797. [Google Scholar] [CrossRef]
- Buspavanich, P.; Adli, M.; Himmerich, H.; Berger, M.; Busche, M.; Schlattmann, P.; Bopp, S.; Bschor, T.; Richter, C.; Steinacher, B.; et al. Faster speed of onset of the depressive episode is associated with lower cytokine serum levels (IL-2, -4, -6, -10, TNF-alpha and IFN-gamma) in patients with major depression. J. Psychiatr. Res. 2021, 141, 287–292. [Google Scholar] [CrossRef]
- Miyano, T.; Hirouchi, M.; Yoshimura, N.; Hattori, K.; Mikkaichi, T.; Kiyosawa, N. Plasma microRNAs associate positive, negative, and cognitive symptoms with inflammation in schizophrenia. Int. J. Mol. Sci. 2024, 25, 13522. [Google Scholar] [CrossRef] [PubMed]
- Hoprekstad, G.E.; Kjelby, E.; Gjestad, R.; Fathian, F.; Larsen, T.K.; Reitan, S.K.; Rettenbacher, M.; Torsvik, A.; Skrede, S.; Johnsen, E.; et al. Depression trajectories and cytokines in schizophrenia spectrum disorders—A longitudinal observational study. Schizophr. Res. 2023, 252, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Massip, E.; Delaunay, E.; Trauet, J.; Dendooven, A.; Esnault, S.; Staumont-Sallé, D.; Lefevre, G.; Dezoteux, F. Refining cytokine-based diagnostics in DRESS: A two-color IFN-gamma/IL-4 ELISpot approach. World Allergy Organ J. 2025, 18, 101049. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, Z.; Hu, Z.; Peng, T.; Niu, R.; Sun, P.; Wang, X.; Zhang, J. OM85 ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting Notch expression and modulating the IFN-gamma/IL-4 ratio. Sci. Rep. 2025, 15, 5436. [Google Scholar] [CrossRef]
- Hanuscheck, N.; Thalman, C.; Domingues, M.; Schmaul, S.; Muthuraman, M.; Hetsch, F.; Ecker, M.; Endle, H.; Oshaghi, M.; Martino, G.; et al. Interleukin-4 receptor signaling modulates neuronal network activity. J. Exp. Med. 2022, 219, e20211887. [Google Scholar] [CrossRef]
- Bernstein, Z.J.; Shenoy, A.; Chen, A.; Heller, N.M.; Spangler, J.B. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol. Rev. 2023, 320, 29–57. [Google Scholar] [CrossRef]
- Margiani, G.; Castelli, M.P.; Pintori, N.; Frau, R.; Ennas, M.G.; Zottola, A.C.P.; Orrù, V.; Serra, V.; Fiorillo, E.; Fadda, P.; et al. Adolescent self-administration of the synthetic cannabinoid receptor agonist JWH-018 induces neurobiological and behavioral alterations in adult male mice. Psychopharmacology 2022, 239, 3083–3102. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Wi, R.; Chung, Y.C.; Jin, B.K. Interleukin-13 Propagates Prothrombin Kringle-2-Induced Neurotoxicity in Hippocampi In Vivo via Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 3486. [Google Scholar] [CrossRef]
- Mori, S.; Sugama, S.; Nguyen, W.; Michel, T.; Sanna, M.G.; Sanchez-Alavez, M.; Cintron-Colon, R.; Moroncini, G.; Kakinuma, Y.; Maher, P.; et al. Lack of interleukin-13 receptor alpha1 delays the loss of dopaminergic neurons during chronic stress. J. Neuroinflammation 2017, 14, 88. [Google Scholar] [CrossRef]
- Mao, R.; Zhang, C.; Chen, J.; Zhao, G.; Zhou, R.; Wang, F.; Xu, J.; Yang, T.; Su, Y.; Huang, J.; et al. Different levels of pro- and anti-inflammatory cytokines in patients with unipolar and bipolar depression. J. Affect. Disord. 2018, 237, 65–72. [Google Scholar] [CrossRef]
- Sager, R.E.H.; Walker, A.K.; Middleton, F.A.; Robinson, K.; Webster, M.J.; Gentile, K.; Wong, M.L.; Weickert, C.S. Changes in cytokine and cytokine receptor levels during postnatal development of the human dorsolateral prefrontal cortex. Brain Behav. Immun. 2023, 111, 186–201. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, S.; Tang, X.; Wang, J.; Liu, L.; Hu, W.; Huang, Y.; Hu, J.; Xing, X.; Zhang, Y.; et al. Development and validation of machine learning-based prediction model for severe pneumonia: A multicenter cohort study. Heliyon 2024, 10, e37367. [Google Scholar] [CrossRef]
- Young, A.H.; Juruena, M.F. The Neurobiology of Bipolar Disorder. Curr. Top. Behav. Neurosci. 2021, 48, 1–20. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Deng, J.; Liu, H.M.; Wei, J.Y.; Fan, H.T.; Liu, M.; Xu, T.; Chen, T.F.; He, J.Y.; Sun, W.M.; et al. Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats. J. Neuroinflammation 2022, 19, 144. [Google Scholar] [CrossRef]
- Lin, D.; Zhong, C.; Jiang, Q.; Huang, A.; Liu, Y. Serum interleukin-6 levels are increased in post-herpetic neuralgia: A single-center retrospective study. Ann. Bras. Dermatol. 2023, 98, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Juruena, M.F.; Jelen, L.A.; Young, A.H.; Cleare, A.J. New Pharmacological Interventions in Bipolar Disorder. Curr. Top. Behav. Neurosci. 2021, 48, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Sempach, L.; Doll, J.P.K.; Limbach, V.; Marzetta, F.; Schaub, A.C.; Schneider, E.; Kettelhack, C.; Mählmann, L.; Schweinfurth-Keck, N.; Ibberson, M.; et al. Examining immune-inflammatory mechanisms of probiotic supplementation in depression: Secondary findings from a randomized clinical trial. Transl. Psychiatry 2024, 14, 305. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, W.; Xu, Q.; Chen, P.; Wang, X. Early Th1-Th2 cytokine imbalance as a predictor for post-stroke depression at 3 months. J. Affect. Disord. 2025, 389, 119650. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, K.; Meng, C.; Li, J.; Lu, Q.; Zhou, X.; Yan, D.; Li, D.; Pei, C.; Lu, Y.; et al. Relationship between sleep and serum inflammatory factors in patients with major depressive disorder. Psychiatry Res. 2023, 329, 115528. [Google Scholar] [CrossRef]
- Mariani, N.; Everson, J.; Pariante, C.M.; Borsini, A. Modulation of microglial activation by antidepressants. J. Psychopharmacol. 2022, 36, 131–150. [Google Scholar] [CrossRef]
- Companys-Alemany, J.; Turcu, A.L.; Vázquez, S.; Pallàs, M.; Griñán-Ferré, C. Glial cell reactivity and oxidative stress prevention in Alzheimer’s disease mice model by an optimized NMDA receptor antagonist. Sci. Rep. 2022, 12, 17908. [Google Scholar] [CrossRef]
- Shanazz, K.; Nalloor, R.; Lucas, R.; Vazdarjanova, A. Neuroinflammation is a susceptibility factor in developing a PTSD-like phenotype. Front. Behav. Neurosci. 2023, 17, 1112837. [Google Scholar] [CrossRef]
- Wang, B.; He, T.; Qiu, G.; Li, C.; Xue, S.; Zheng, Y.; Wang, T.; Xia, Y.; Yao, L.; Yan, J.; et al. Altered synaptic homeostasis: A key factor in the pathophysiology of depression. Cell Biosci. 2025, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rivera, D.; Beltrán, S.; Muñoz-Carvajal, F.; Ahumada-Montalva, P.; Abarzúa, L.; Gomez, L.; Hernandez, F.; Bergmann, C.A.; Labrador, L.; Calegaro-Nassif, M.; et al. The autophagy protein RUBCNL/PACER represses RIPK1 kinase-dependent apoptosis and necroptosis. Autophagy 2024, 20, 2444–2459. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, E.; Sampogna, G.; Boiano, A.; Della Rocca, B.; Di Vincenzo, M.; Lapadula, M.V.; Martinelli, F.; Lucci, F.; Luciano, M. Biological correlates of treatment resistant depression: A review of peripheral biomarkers. Front. Psychiatry 2023, 14, 1291176. [Google Scholar] [CrossRef] [PubMed]
- Lyubashina, O.A.; Sivachenko, I.B.; Panteleev, S.S. Supraspinal mechanisms of intestinal hypersensitivity. Cell. Mol. Neurobiol. 2022, 42, 389–417. [Google Scholar] [CrossRef]
- Almeida, H.S.; Mitjans, M.; Arias, B.; Vieta, E.; Ríos, J.; Benabarre, A. Genetic differences between bipolar disorder subtypes: A systematic review focused in bipolar disorder type II. Neurosci. Biobehav. Rev. 2020, 118, 623–630. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, S.; Chen, G.; Zhong, S.; Zhong, H.; Sun, S.; Chen, P.; Tang, X.; Yang, H.; Jia, Y.; et al. Disruption of the gut microbiota-inflammation-brain axis in unmedicated bipolar disorder II depression. Transl. Psychiatry 2024, 14, 495. [Google Scholar] [CrossRef]
- Malashenkova, I.K.; Ushakov, V.L.; Zakharova, N.V.; Krynskiy, S.A.; Ogurtsov, D.P.; Hailov, N.A.; Chekulaeva, E.I.; Ratushnyy, A.Y.; Kartashov, S.I.; Kostyuk, G.P.; et al. Neuro-Immune Aspects of Schizophrenia with Severe Negative Symptoms: New Diagnostic Markers of Disease Phenotype. Sovrem. Tekhnol. Med. 2021, 13, 24–33. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.S.; Li, H.H.; Wang, H.J.; Zou, R.S.; Lu, X.J.; Wang, J.; Nie, B.B.; Wu, J.F.; Li, S.; et al. Microglia-dependent excessive synaptic pruning leads to cortical underconnectivity and behavioral abnormality following chronic social defeat stress in mice. Brain Behav. Immun. 2023, 109, 23–36. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, H.J.; Lee, J.Y.; Kim, J.W.; Kim, H.; Jhon, M.; Kim, S.W.; Shin, I.S. Differentiating subtypes of major depressive disorder using serum biomarkers. J. Clin. Psychiatry 2025, 86, 25m15828. [Google Scholar] [CrossRef]
- Tsai, S.Y.; Sajatovic, M.; Hsu, J.L.; Chung, K.H.; Chen, P.H.; Huang, Y.J. Peripheral inflammatory markers associated with brain volume reduction in patients with bipolar I disorder. Acta Neuropsychiatr. 2022, 34, 191–200. [Google Scholar] [CrossRef]
- Elsayed, O.H.; Ercis, M.; Pahwa, M.; Singh, B. Treatment-Resistant Bipolar Depression: Therapeutic Trends, Challenges and Future Directions. Neuropsychiatr. Dis. Treat. 2022, 18, 2927–2943. [Google Scholar] [CrossRef] [PubMed]
- Keenan, E.L.; Granstein, R.D. Proinflammatory cytokines and neuropeptides in psoriasis, depression, and anxiety. Acta Physiol. 2025, 241, e70019. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Liu, N.; Qi, X.X.; Han, B.; Sun, J.N.; Chen, Z.L.; Wang, M.W.; Wang, Y.Y. Predictive effect of lipopolysaccharide-stimulated inflammatory cytokines on symptoms of generalized anxiety disorder. World J. Psychiatry 2024, 14, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Han, Q.Q.; Gong, W.Q.; Pan, D.H.; Wang, L.Z.; Hu, W.; Yang, M.; Li, B.; Yu, J.; Liu, Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J. Neuroinflammation 2018, 15, 21. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Wirowski, N.; Souza, P.B.; Lobato, A.S.; Jansen, K.; de Azevedo Cardoso, T.; Mondin, T.C.; Oses, J.P.; Kapczinski, F.; Souza, L.D.M.; et al. Childhood trauma, inflammatory biomarkers and the presence of a current depressive episode: Is there a relationship in subjects from a population study? J. Psychiatr. Res. 2023, 158, 255–260. [Google Scholar] [CrossRef]
- Cavaleri, D.; Bartoli, F. Biomolecular Research on Electroconvulsive Therapy for Mental Disorders: State of the Art and Future Directions. Alpha Psychiatry 2022, 23, 57–58. [Google Scholar] [CrossRef]
- Oglodek, E.; Szota, A.; Araszkiewicz, A. Electroconvulsive therapy in a patient with drug-resistant depression and thyroid hormone imbalance. Aust. N. Z. J. Psychiatry 2014, 48, 96–97. [Google Scholar] [CrossRef]
- Pedraz-Petrozzi, B.; Insan, S.; Spangemacher, M.; Reinwald, J.; Lamadé, E.K.; Gilles, M.; Deuschle, M.; Sartorius, A. Association between rTMS-induced changes in inflammatory markers and improvement in psychiatric diseases: A systematic review. Ann. Gen. Psychiatry 2024, 23, 31. [Google Scholar] [CrossRef]
- Xiang, S.; Xu, D.; Jin, Y.; Wang, R.; Wen, C.; Ding, X. The role of inflammatory biomarkers in the association between rheumatoid arthritis and depression: A Mendelian randomization study. Inflammopharmacology 2023, 31, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Comai, S.; Manchia, M.; Bosia, M.; Miola, A.; Poletti, S.; Benedetti, F.; Nasini, S.; Ferri, R.; Rujescu, D.; Leboyer, M.; et al. Moving toward precision and personalized treatment strategies in psychiatry. Int. J. Neuropsychopharmacol. 2025, 28, pyaf025. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M.; Whitfield-Gabrieli, S. Neuroimaging for precision medicine in psychiatry. Neuropsychopharmacology 2024, 50, 246–257. [Google Scholar] [CrossRef]
- Linley, H.; Ogden, A.; Jaigirdar, S.; Buckingham, L.; Cox, J.; Priestley, M.; Saunders, A. CD200R1 promotes interleukin-17 production by group 3 innate lymphoid cells by enhancing signal transducer and activator of transcription 3 activation. Mucosal Immunol. 2023, 16, 167–179. [Google Scholar] [CrossRef]
- Rajan, S.; Schwarz, E. Network-based artificial intelligence approaches for advancing personalized psychiatry. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2024, 195, e32997. [Google Scholar] [CrossRef]
- Imperio, C.G.; Levin, F.R.; Martinez, D. The neurocircuitry of substance use disorder, treatment, and change: A resource for clinical psychiatrists. Am. J. Psychiatry 2024, 181, 958–972. [Google Scholar] [CrossRef]
- Kishi, T.; Miyake, N.; Okuya, M.; Sakuma, K.; Iwata, N. N-acetylcysteine as an adjunctive treatment for bipolar depression and major depressive disorder: A systematic review and meta-analysis of double-blind, randomized placebo-controlled trials. Psychopharmacology 2020, 237, 3481–3487. [Google Scholar] [CrossRef]
- Gauld, C.; D’Incau, E.; Espi, P.; Fourneret, P.; McGonigal, A.; Micoulaud-Franchi, J.A. Accepting multiple conditions in psychiatry: From comorbidity to multimorbidity. Encephale 2025, 51, 212–215. [Google Scholar] [CrossRef]
- Wang, G.; Cao, L.; Li, S.; Zhang, M.; Li, Y.; Duan, J.; Li, Y.; Hu, Z.; Wu, J.; Ni, J.; et al. Gut microbiota dysbiosis-mediated ceramides elevation contributes to corticosterone-induced depression by impairing mitochondrial function. npj Biofilms Microbiomes 2024, 10, 111. [Google Scholar] [CrossRef]
- Demeter, D.V.; Greene, D.J. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology 2024, 50, 16–28. [Google Scholar] [CrossRef]
| Cytokine/ Chemokine/ Indicator | MDD | Anxiety Disorders | Bipolar Disorder | Schizophrenia | Clinical Significance | References |
|---|---|---|---|---|---|---|
| IL-6 | ↑ | ↑ | ↑ | ↑ | Marker of chronic inflammation, correlates with symptom severity, target for anti-inflammatory therapy | [15,44,45,46,47,48,49,50] |
| IL-1β | ↑ | ↑ | ↑ | ↑ | Neuroinflammatory inducer, affects neurodegeneration and neuroplasticity | [47,48,50,51] |
| TNF-α | ↑ | ↑ | ↑ | ↑ | Key cytokine in inflammatory response, associated with treatment resistance | [16,52,53,54,55,56,57] |
| IL-8 | ↑ | ↑ | ↑ | ↑ | Pro-inflammatory chemokine, marker of immune cell migration into central nervous system | [58,59,60,61,62] |
| IL-10 | ↓/- | ↓/- | ↓/- | ↓/- | Anti-inflammatory cytokine, a decrease indicates impaired inflammation control | [50,63,64,65] |
| TGF-β | ↓/- | ↓/- | ↓/- | ↓/- | Regulator of immune responses, influences neuroregeneration | [17,56,66,67] |
| CX3CL1 Fractalkine | ↓ | ↓ | ↓ | ↓ | Regulates neuron-microglia communication, disrupted in neuroinflammation | [68,69,70,71,72] |
| IL-18 | ↑ | ↑ | ↑ | ↑ | Strong inflammatory mediator, linked to symptom severity | [73,74] |
| IDO | ↑ | ↑ | ↑ | ↑ | Enzyme related to tryptophan metabolism, influences neurotoxicity and depression | [75,76,77,78] |
| IL-2 | ↑/↓ | ↑/↓ | ↑/↓ | ↑/↓ | Modulator of cellular immune responses, indicator of immune activity | [65,79,80] |
| IFN-γ | ↑ | ↑ | ↑ | ↑ | Th1 cytokine, stimulates inflammatory responses, correlates with negative symptoms of schizophrenia | [19,42,46,57,81,82,83,84] |
| IL-4 | ↓/- | ↓/- | ↓/- | ↓/- | Th2 cytokine, promotes humoral responses, influences the immune balance | [49,85,86] |
| IL-13 | ↓/- | ↓/- | ↓/- | ↓/- | Anti-inflammatory cytokine involved in suppressing inflammatory responses | [86,87,88,89,90,91] |
| IL-23/IL-17A | ↑ | ↑ | ↑ | ↑ | Th17 axis involved in chronic inflammation and neuroinflammatory pathogenesis | [57,83,84] |
| Ratio IL-6/IL-10 | ↑ | ↑ | ↑ | ↑ | Indicator of pro-inflammatory dominance over regulation, aids disease subtype classification | [74] |
| Ratio TNF-α/IL-4 | ↑ | ↑ | ↑ | ↑ | Assessment of pro-inflammatory dominance relative to anti-inflammatory responses | [84] |
| Ratio (IL-6 + TNF-α+IL-1β)/ IL-10 | ↑ | ↑ | ↑ | ↑ | Comprehensive index of the pro- and anti-inflammatory balance | [84] |
| Ratio IFN-γ/IL-4 | ↑ | ↑ | ↑ | ↑ | Indicates Th1/Th2 balance, important for immunological classification of disorders | [57,83,84] |
| Ratio IL-1ra/IL-1β | ↓ | ↓ | ↓ | ↓ | Assessment of ability to inhibit inflammatory signaling, important for disease activity | [92] |
| Immunological Indicator | Clinical Significance | Examples of Cytokines in Ratio | References |
|---|---|---|---|
| IL-6/IL-10 | Assessment of pro-inflammatory dominance over anti-inflammatory regulation | IL-6, IL-10 | [57,83,84,92,124,125] |
| TNF-α/IL-4 | Assessment of pro-inflammatory axis dominance relative to anti-inflammatory response | TNF-α, IL-4 | [125] |
| TNF-α/IL-10 | Assessment of balance between pro- and anti-inflammatory mechanisms | TNF-α, IL-10 | [124] |
| (IL-6 + TNF-α + IL-1β)/ IL-10 | Comprehensive pro- and anti-inflammatory balance index | IL-6, TNF-α, IL-1β, IL-10 | [125] |
| IL-23/IL-17A | Assessment of Th17 axis activity and chronic inflammation | IL-23, IL-17A | [67,125,126,127] |
| IFN-γ/IL-4 | Assessment of Th1/Th2 response balance | IFN-γ, IL-4 | [67,125,126,127] |
| IL-1ra/IL-1β | Assessment of ability to inhibit inflammatory signaling | IL-1ra, IL-1β | [125,128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźny-Rasała, I.; Ogłodek, E.A. Inflammatory and Oxidative Biological Profiles in Mental Disorders: Perspectives on Diagnostics and Personalized Therapy. Int. J. Mol. Sci. 2025, 26, 9654. https://doi.org/10.3390/ijms26199654
Woźny-Rasała I, Ogłodek EA. Inflammatory and Oxidative Biological Profiles in Mental Disorders: Perspectives on Diagnostics and Personalized Therapy. International Journal of Molecular Sciences. 2025; 26(19):9654. https://doi.org/10.3390/ijms26199654
Chicago/Turabian StyleWoźny-Rasała, Izabela, and Ewa Alicja Ogłodek. 2025. "Inflammatory and Oxidative Biological Profiles in Mental Disorders: Perspectives on Diagnostics and Personalized Therapy" International Journal of Molecular Sciences 26, no. 19: 9654. https://doi.org/10.3390/ijms26199654
APA StyleWoźny-Rasała, I., & Ogłodek, E. A. (2025). Inflammatory and Oxidative Biological Profiles in Mental Disorders: Perspectives on Diagnostics and Personalized Therapy. International Journal of Molecular Sciences, 26(19), 9654. https://doi.org/10.3390/ijms26199654

