The Diagnostic Potential of Urinary Titin Fragment in Neuromuscular Diseases
Abstract
1. Introduction
1.1. Biomarkers
1.2. Biomarkers in Neuromuscular Disorders
1.2.1. Biomarkers of Muscle Mass, Sarcopenia and Injury
1.2.2. Biomarkers of Acute Muscle Damage
1.3. Titin Structure and Function
1.4. Sarcomere Structure and Titin’s Role
1.5. Development of Urinary Titin-Fragment Diagnostics
1.5.1. Discovery of Urinary Titin Fragments
1.5.2. Development of ELISA for Urinary Titin Determination
2. Overview Urinary Titin-N-Fragment Diagnostics in Neuromuscular Diseases
2.1. Urinary Titin-N Fragment in Muscular Dystrophies
2.2. Duchenne Muscular Dystrophy
2.3. Becker Muscular Dystrophy (BMD)
2.4. Limb-Girdle Muscular Dystrophy (LGMD)
2.5. Fukuyama Congenital Muscular Dystrophy (FCMD)
2.6. Myotonic Dystrophy Type 1 (DM1)
2.7. Urinary Titin-N Fragment in Sarcopenia
2.8. Urinary Titin-N Fragment in Acute Conditions
2.8.1. Intensive Care Unit-Acquired Weakness (ICU-AW)
2.8.2. Urinary Titin-N Fragment in Acute Skeletal Muscle Injury
2.8.3. Urinary Titin After Exercise
2.8.4. Exercise Type and Urinary Titin Response
2.8.5. Urinary Titin in Amyotrophic Lateral Sclerosis (ALS)
2.9. Urinary Titin-N Fragment in Cardiomyopathy
2.10. Comparison of Serum CK and UTN Levels in Biomarker Studies
3. Discussion
3.1. Advantages of Urinary Titin Fragments
- Supporting the diagnosis of Neuromuscular Disorders
- Monitoring Disease Progression
- Critical illness and Intensive care monitoring
- Sports Medicine and Overtraining Syndrome
- Cardiac Disorders
3.2. Challenges and Opportunities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under curve |
BMD | Becker muscular dystrophy |
BMI | Body mass index |
CK | Creatine kinase |
CTD | Connective tissue disorders |
DCM | Dilatative cardiomyopathy |
DMD | Duchenne muscular dystrophy |
DM1 | Myotonic dystrophy type 1 |
DOMS | Delayed-onset muscle soreness |
ELISA | Enzyme-linked immunosorbent assay |
FCMD | Fukuyama congenital muscular dystrophy |
ICU-AW | Intensive care unit-acquired weakness |
IIM | Idiopathic inflammatory myopathy |
ILD | Interstitial lung disease |
LGMD | Limb-girdle muscular dystrophy |
MDX | Muscular dystrophy X-linked |
MVC | Maximum voluntary contraction |
ROM | Range of motion |
T2DM | Type-2 diabetes mellitus |
UTN | Urinary titin-N fragment |
References
- Ou, F.-S.; Michiels, S.; Shyr, Y.; Adjei, A.A.; Oberg, A.L. Biomarker Discovery and Validation: Statistical Considerations. J. Thorac. Oncol. 2021, 16, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, S.; Liu, S.; Wang, O.; Che, X.; Wu, G. Frontiers in sarcopenia: Advancements in diagnostics, molecular mechanisms, and therapeutic strategies. Mol. Asp. Med. 2024, 97, 101270. [Google Scholar] [CrossRef] [PubMed]
- Mareschal, J.; Achamrah, N.; Norman, K.; Genton, L. Clinical Value of Muscle Mass Assessment in Clinical Conditions Associated with Malnutrition. J. Clin. Med. 2019, 8, 1040. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Levey, A.S.; Ballew, S.H. Serum creatinine and serum cystatin C levels are indices of muscle mass in adults. Curr. Opin. Nephrol. Hypertens. 2024, 33, 557–565. [Google Scholar] [CrossRef]
- Sinha, U.; Sinha, S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024, 10, 1411–1438. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, S52–S69. [Google Scholar] [CrossRef]
- Khan, S.F. Rhabdomyolysis. In Current Diagnosis & Treatment: Nephrology & Hypertension, 2nd ed.; The McGraw-Hill Companies: Columbus, OH, USA, 2018; pp. 143–148. [Google Scholar]
- Goldstein, R.A. Skeletal Muscle Injury Biomarkers: Assay Qualification Efforts and Translation to the Clinic. Toxicol. Pathol. 2017, 45, 943–951. [Google Scholar] [CrossRef]
- Trombitas, K.; Redkar, A.; Centner, T.; Wu, Y.; Labeit, S.; Granzier, H. Extensibility of isoforms of cardiac titin: Variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys. J. 2000, 79, 3226–3234. [Google Scholar] [CrossRef]
- Hidalgo, C.; Granzier, H. Tuning the molecular giant titin through phosphorylation-role in health and disease. Trends Cardiovasc. Med. 2013, 23, 165–171. [Google Scholar] [CrossRef]
- Kellermayer, D.; Kiss, B.; Tordai, H.; Oláh, A.; Granzier, H.L.; Merkely, B.; Kellermayer, M.; Radovits, T. Increased Expression of N2BA Titin Corresponds to More Compliant Myofibrils in Athlete’s Heart. Int. J. Mol. Sci. 2021, 22, 11110. [Google Scholar] [CrossRef]
- Neagoe, C.; Kulke, M.; del Monte, F.; Gwathmey, J.K.; de Tombe, P.P.; Hajjar, R.J.; Linke, W.A. Titin isoform switch in ischemic human heart disease. Circulation 2002, 106, 1333–1341. [Google Scholar] [CrossRef]
- Loescher, C.M.; Hobbach, A.J.; Linke, W.A. Titin (TTN): From molecule to modifications, mechanics, and medical significance. Cardiovasc. Res. 2022, 118, 2903–2918. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Xiang, F.; Yakovenko, A.; Vihola, A.; Hackman, P.; Rostkova, E.; Kristensen, J.; Brandmeier, B.; Franzen, G.; Hedberg, B.; et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005, 308, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Bogomolovas, J.; Fleming, J.R.; Franke, B.; Manso, B.; Simon, B.; Gasch, A.; Markovic, M.; Brunner, T.; Knöll, R.; Chen, J.; et al. Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO Rep. 2021, 22, e48018. [Google Scholar] [CrossRef] [PubMed]
- Rouillon, J.; Zocevic, A.; Leger, T.; Garcia, C.; Camadro, J.M.; Udd, B.; Wong, B.; Servais, L.; Voit, T.; Svinartchouk, F. Proteomics profiling of urine reveals specific titin fragments as biomarkers of Duchenne muscular dystrophy. Neuromuscul. Disord. 2014, 24, 563–573. [Google Scholar] [CrossRef]
- Maruyama, N.; Asai, T.; Abe, C.; Inada, A.; Kawauchi, T.; Miyashita, K.; Maeda, M.; Matsuo, M.; Nabeshima, Y.I. Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine. Sci. Rep. 2016, 6, 39375. [Google Scholar] [CrossRef]
- Robertson, A.R.; Majchrzak, M.J.; Smith, C.M.; Gagnon, R.C.; Devidze, N.; Banks, G.B.; Little, S.C.; Nabbie, F.; Bounous, D.I.; DiPiero, J.; et al. Dramatic elevation in urinary amino terminal titin fragment excretion quantified by immunoassay in Duchenne muscular dystrophy patients and in dystrophin deficient rodents. Neuromuscul. Disord. 2017, 27, 635–645. [Google Scholar] [CrossRef]
- Matsuo, M.; Awano, H.; Maruyama, N.; Nishio, H. Titin fragment in urine: A noninvasive biomarker of muscle degradation. Adv. Clin. Chem. 2019, 90, 1–23. [Google Scholar]
- Shirakawa, T.; Ikushima, A.; Maruyama, N.; Nambu, Y.; Awano, H.; Osawa, K.; Nirasawa, K.; Negishi, Y.; Nishio, H.; Fukushima, S.; et al. A sandwich ELISA kit reveals marked elevation of titin N-terminal fragment levels in the urine of mdx mice. Animal Model Exp. Med. 2022, 5, 48–55. [Google Scholar] [CrossRef]
- Awano, H.; Matsumoto, M.; Nagai, M.; Shirakawa, T.; Maruyama, N.; Iijima, K.; Nabeshima, Y.I.; Matsuo, M. Diagnostic and clinical significance of the titin fragment in urine of Duchenne muscular dystrophy patients. Clin. Chim. Acta. 2018, 476, 111–116. [Google Scholar] [CrossRef]
- Awano, H.; Nambu, Y.; Osawa, K.; Shirakawa, T.; Matsumura, T.; Wakisaka, A.; Kuru, S.; Funato, M.; Takeshima, Y.; Ishigaki, K.; et al. Urinary titin reflects the severity of walking ability, muscle strength, and muscle and cardiac damage in patients with Becker muscular dystrophy. Clin. Chim. Acta. 2025, 566, 120053. [Google Scholar] [CrossRef]
- Sato, T.; Awano, H.; Ishiguro, K.; Shichiji, M.; Murakami, T.; Shirakawa, T.; Matsuo, M.; Nagata, S.; Ishigaki, K. Urinary titin as a biomarker in Fukuyama congenital muscular dystrophy. Neuromuscul. Disord. 2021, 31, 194–197. [Google Scholar] [CrossRef]
- Varga, D.; Perecz, B.; Fülöp, K.; Sipos, A.; Janszky, J.V.; Hajdú, N.; Pál, E. Urinary titin in myotonic dystrophy type 1. Muscle Nerve. 2023, 68, 215–218. [Google Scholar] [CrossRef]
- Miyoshi, K.; Shimoda, M.; Udo, R.; Oshiro, Y.; Suzuki, S. Urinary titin N-terminal fragment concentration is an indicator of preoperative sarcopenia and nutritional status in patients with gastrointestinal tract and hepatobiliary pancreatic malignancies. Nutrition 2020, 79–80, 110957. [Google Scholar] [CrossRef]
- Takiguchi, Y.; Tsutsumi, R.; Shimabukuro, M.; Tanabe, H.; Kawakami, A.; Hyodo, M.; Shiroma, K.; Saito, H.; Matsuo, M.; Sakaue, H.J. Urinary titin as a biomarker of sarcopenia in diabetes: A propensity score matching analysis. Endocrinol. Investig. 2025, 48, 1041–1056. [Google Scholar] [CrossRef] [PubMed]
- Hanada, M.; Ishimatu, Y.; Sakamoto, N.; Akiyama, Y.; Kido, T.; Ishimoto, H.; Oikawa, M.; Nagura, H.; Takeuchi, R.; Sato, S.; et al. Urinary titin N-fragment as a predictor of decreased skeletal muscle mass in patients with interstitial lung diseases. Sci. Rep. 2023, 13, 9723. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Nakanishi, N.; Tsutsumi Hara, N.; Machida, K.; Yamamoto, N.; Kanematsu, Y.; Sakaue, H.; Oto, J.; Takagi, Y. Elevated Urinary Titin and its Associated Clinical Outcomes after Acute Stroke. J. Stroke Cerebrovasc. Dis. 2021, 30, 105561. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Hashimoto, H.; Mochizuki, M.; Naraba, H.; Takahashi, Y.; Sonoo, T.; Matsubara, T.; Yamakawa, K.; Nakamura, K. Urine Titin N-Fragment as a Biomarker of Muscle Injury for Critical Illness Myopathy. Am. J. Respir. Crit. Care Med. 2021, 203, 515–518. [Google Scholar] [CrossRef]
- Nakanishi, N.; Tsutsumi, R.; Hara, K.; Takashima, T.; Nakataki, E.; Itagaki, T.; Matsuo, M.; Oto, J.; Sakaue, H. Urinary Titin Is a Novel Biomarker for Muscle Atrophy in Nonsurgical Critically Ill Patients: A two-center, prospective observational study. Crit. Care Med. 2020, 48, 1327–1333. [Google Scholar] [CrossRef]
- Sun, J.; Ye, S.; Yin, G.; Xie, Q. The diagnostic value of urinary N-terminal fragment of titin for skeletal muscle damage in idiopathic inflammatory myopathy. Rheumatology 2023, 62, 3742–3748. [Google Scholar] [CrossRef]
- Nakano, H.; Hashimoto, H.; Mochizuki, M.; Naraba, H.; Takahashi, Y.; Sonoo, T.; Matsuishi, Y.; Ogawa, Y.; Shimojo, N.; Inoue, Y.; et al. Urinary Titin N-Fragment Evaluation in a Randomized Controlled Trial of Beta-Hydroxy-Beta-Methylbutyrate for Acute Mild Trauma in Older Adults. Nutrients 2021, 13, 899. [Google Scholar] [CrossRef] [PubMed]
- Kanda, K.; Sakuma, J.; Akimoto, T.; Kawakami, Y.; Suzuki, K. Detection of titin fragments in urine in response to exercise-induced muscle damage. PLoS ONE 2017, 12, e0181623. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Suzuki, K.; Inami, T.; Kanda, K.; Hanye, Z.; Okada, J. Changes in Urinary Titin N-terminal Fragment Concentration after Concentric and Eccentric Exercise. J. Sports Sci. Med. 2020, 19, 121–129. [Google Scholar] [PubMed]
- Lee, M.; Goral, K.; Flis, D.J.; Skrobot, W.; Cieminski, K.; Olek, R.A.; Akimoto, T.; Ziolkowski, W. Changes in Urinary Titin Fragment in Response to Different Types of Dynamic Eccentric Exercises. Int. J. Sports Med. 2021, 42, 432–440. [Google Scholar] [CrossRef]
- Tanabe, Y.; Akazawa, N.; Nishimaki, M.; Shimizu, K.; Fujii, N.; Takahashi, H. Effects of 6-(Methylsulfinyl)hexyl Isothiocyanate Ingestion on Muscle Damage after Eccentric Exercise in Healthy Males: A Pilot Placebo-Controlled Double-Blind Crossover Study. J. Diet. Suppl. 2022, 19, 656–667. [Google Scholar] [CrossRef]
- Barenie, M.J.; Escalera, A.; Carter, S.J.; Grange, H.E.; Paris, H.L.; Krinsky, D.; Sogard, A.S.; Schlader, Z.J.; Fly, A.D.; Mickleborough, T.D. Grass-Fed and Non-Grass-Fed Whey Protein Consumption Do Not Attenuate Exercise-Induced Muscle Damage and Soreness in Resistance-Trained Individuals: A Randomized, Placebo-Controlled Trial. J. Diet. Suppl. 2024, 21, 344–373. [Google Scholar] [CrossRef]
- Tominaga, T.; Ma, S.; Sugama, K.; Kanda, K.; Omae, C.; Choi, W.; Hashimotom, S.; Aoyama, K.; Yoshikai, Y.; Suzuki, K. Changes in Urinary Biomarkers of Organ Damage, Inflammation, Oxidative Stress, and Bone Turnover Following a 3000-m Time Trial. Antioxidants 2021, 10, 79. [Google Scholar] [CrossRef]
- Yamada, S.; Hashizume, A.; Hijikata, Y.; Ito, D.; Kishimoto, Y.; Iida, M.; Koike, H.; Hirakawa, A.; Katsuno, M. Ratio of urinary N-terminal titin fragment to urinary creatinine is a novel biomarker for amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiat 2021, 92, 1072–1079. [Google Scholar] [CrossRef]
- Tanihata, J.; Minamisawa, S. Urinary titin is not an early biomarker of skeletal muscle atrophy induced by muscle denervation in mice. PLoS ONE 2023, 18, e0289185. [Google Scholar] [CrossRef]
- Yoshihisa, A.; Kiko, T.; Sato, T.; Oikawa, T.; Kobayashi, A.; Takeishi, Y. Urinary N-terminal fragment of titin is a marker to diagnose muscular dystrophy in patients with cardiomyopathy. Clin. Chim. Acta. 2018, 484, 226–230. [Google Scholar] [CrossRef]
- Yoshihisa, A.; Kimishima, Y.; Kiko, T.; Sato, Y.; Watanabe, S.; Kanno, Y.; Abe, S.; Miyata, M.; Sato, T.; Suzuki, S.; et al. Usefulness of Urinary N-Terminal Fragment of Titin to Predict Mortality in Dilated Cardiomyopathy. Am. J. Cardiol. 2018, 121, 1260–1265. [Google Scholar] [CrossRef]
- Misaka, T.; Yoshihisa, A.; Takeishi, Y. Titin in muscular dystrophy and cardiomyopathy: Urinary titin as a novel marker. Clin. Chim. Acta. 2019, 495, 123–128. [Google Scholar] [CrossRef]
Author | Year | Disease | UTNp | UTNHC | AUC |
---|---|---|---|---|---|
Robertson et al. [18] | 2017 | DMD (n = 7) | 365.4 ± 65.0 * | 1.0 ± 0.4 ng/mL * (n = 7) | n.a. |
Matsuo et al. [19] | 2018 | DMD (n = 4) | 1240.5 ** | 1.8 ** (n = 100) | 1.0 |
Awano et al. [21] | 2018 | DMD (n = 113) | 965.8 ± 1011.9 *** [735.5] ** | 1.4 ± 0.8 *** (n = 9) | 1.0 |
BMD (n = 36) | 171.2 ± 272.7 *** [43.2] ** | 0.881 | |||
Awano et al. [22] | 2025 | BMD (n = 123) | 72.6 ** | Compared to previous data (control ≤ 12) | n.a. |
Sato et al. [23] | 2021 | FCMD (n = 18) | 455.5 ± 243.9 *** | Compared to previous data | n.a. |
Varga et al. [24] | 2023 | DM1 (n = 29) | 39.3 ± 26.5 # | 6.7 ± 5.2 # (n = 30) | 0.989 |
Authors | Year | Type of Exercise | (n) | UTN (pmol/mg of Creatinine) |
---|---|---|---|---|
Kanda et al. [33] | 2016 | Eccentric | 9 | 5.1 (pre); 77.6 (post—exercise, 96 h) |
Yamaguchi et al. [34] | 2020 | Eccentric, concentric | 9 | Increased after eccentric, but not after concentric exercise |
Lee et al. [35] | 2020 | Eccentric | 18 | Increased (non-significant) |
Tanabe et al. [36] | 2021 | Eccentric | 28 | 2.1 (pre); 215.4 (post—exercise, 96 h) |
Tominaga et al. [38] | 2021 | Endurance | 10 | No significant change |
Author | (n) | UTN (pmol/mg Cr) | |
---|---|---|---|
Yoshihisa et al. [41] | DCM | 199 | 4.3 (2.4–8.9) |
HCM | 86 | 3.4 (2.1–6.1) | |
Sarcoidosis | 18 | 3.1 (1.9–4.5) | |
Amyloidosis | 15 | 5.5 (3.1–11.7) | |
Fabry Disease | 6 | 3.9 (2.0–8.6) | |
Muscular Dystrophy | 7 | 21.5 (9.0–28.9) |
Disease | Cut-Off | AUC | Sensitivity | Specificity | Clinical Corr. | Ref. |
---|---|---|---|---|---|---|
DMD | 3.84 | 1.0 | 100 | 100 | CK, age | Matsuo et al. [19] |
DMD/BMD | 3.52 | 0.99 | 98.9 | 100 | DMD/BMD, age | Awano et al. [21] |
BMD | 12.0 | n.p. | n.p. | n.p. | ambulation, TnI | Awano et al. [22] |
Fukuyama | n.p. | n.p. | n.p. | n.p. | CK, GMFM | Sato et al. [23] |
DM1 | 12.2 | 0.989 | 96.6 | 96.7 | MIRS | Varga et al. [24] |
MD + CMP | 8.7 | 0.92 | 100 | 82 | mortality | Yoshihisa et al. [41] |
Sarcopenia | 5.2/10.4 | n.p. | n.p. | n.p. | PMCSA/ESMCSA | Hanada et al. [27] |
ICU-AW | 100 | 0.81 | 61.9 | 89.7 | MRC < 48 | Nakano et al. [29] |
ICU-AW | 64.8 | 0.78 | 78 | 81 | RFCSA | Nakanishi et al. [30] |
Myositis | 89.9 | 0.97 | 87.8 | 100 | CK | Sun et al. [31] |
Condition/Disease | Correlation Strength (CK vs. UTN) | Main Findings | Reference |
---|---|---|---|
Exercise-Induced Muscle Damage | Strong, r = 0.868–0.973 | Strong positive correlation observed 24–144 h. post eccentric exercise; both markers rise | Yamaguchi et al. [34] |
Eccentric exercise | Strong, r = 0.81–0.98 | 48–75 h. post-exercise (calf-raise) | Kanda et al. [33] |
Eccentric exercise | Strong, r = 0.82 | On day 1, post-exercise (elbow isokinetic exercise) | Tanabe et al. [36] |
Idiopathic Inflammatory Myopathies | Strong, r = 0.907 | Both biomarkers rise | Sun et al. [31] |
Duchenne Muscular Dystrophy | Strong, r = 0.497 | Both biomarkers rise | Awano et al. [21] |
Becker muscular dystrophy | Not reported | UTN is a more accurate marker for muscle damage than CK | Awano et al. [22] |
Myotonic Dystrophy type 1 | No (r not reported) | Varga et al. [24] | |
Amyotrophic lateral sclerosis | Yes, (r not reported) | log CK/log UTN | Yamada et al. [39] |
Sarcopenia | No (r = 0.02) | Miyoshi et al. [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipos, A.; Varga, D.; Pál, E. The Diagnostic Potential of Urinary Titin Fragment in Neuromuscular Diseases. Int. J. Mol. Sci. 2025, 26, 9652. https://doi.org/10.3390/ijms26199652
Sipos A, Varga D, Pál E. The Diagnostic Potential of Urinary Titin Fragment in Neuromuscular Diseases. International Journal of Molecular Sciences. 2025; 26(19):9652. https://doi.org/10.3390/ijms26199652
Chicago/Turabian StyleSipos, Andrea, Dávid Varga, and Endre Pál. 2025. "The Diagnostic Potential of Urinary Titin Fragment in Neuromuscular Diseases" International Journal of Molecular Sciences 26, no. 19: 9652. https://doi.org/10.3390/ijms26199652
APA StyleSipos, A., Varga, D., & Pál, E. (2025). The Diagnostic Potential of Urinary Titin Fragment in Neuromuscular Diseases. International Journal of Molecular Sciences, 26(19), 9652. https://doi.org/10.3390/ijms26199652