Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy
Abstract
1. Introduction
2. PACAP in the Pancreas
3. PACAP in Diabetic Retinopathy—In Vivo Studies
4. In Vitro Protective Effects of PACAP in Retinal Cells Exposed to Hyperglycemia or Other Insults
5. PACAP and Diabetic Keratopathy
6. PACAP in Diabetic Neuropathy
7. PACAP in Diabetic Nephropathy
8. Other Diabetic Complications
9. PACAP and DPPIV
10. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.C.; Hashimoto, H.; Galas, L.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol. Rev. 2009, 61, 283–357. [Google Scholar] [CrossRef]
- Lu, J.; Piper, S.J.; Zhao, P.; Miller, L.J.; Wootten, D.; Sexton, P.M. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int. J. Mol. Sci. 2022, 23, 8069. [Google Scholar] [CrossRef]
- Rajbhandari, A.K.; Barson, J.R.; Gilmartin, M.R.; Hammack, S.E.; Chen, B.K. The Functional Heterogeneity of PACAP: Stress, Learning, and Pathology. Neurobiol. Learn. Mem. 2023, 203, 107792. [Google Scholar] [CrossRef]
- Liao, C.; May, V.; Li, J. PAC1 Receptors: Shapeshifters in Motion. J. Mol. Neurosci. 2019, 68, 331–339. [Google Scholar] [CrossRef]
- Liao, C.; de Molliens, M.P.; Schneebeli, S.T.; Brewer, M.; Song, G.; Chatenet, D.; Braas, K.M.; May, V.; Li, J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr. Top. Med. Chem. 2019, 19, 1399–1417. [Google Scholar] [CrossRef]
- Tasma, Z.; Hay, D.L. Decoding PACAP Signaling: Splice Variants, Pathways and Designer Drugs. Cephalalgia 2025, 45, 3331024251363560. [Google Scholar] [CrossRef] [PubMed]
- Langer, I.; Jeandriens, J.; Couvineau, A.; Sanmukh, S.; Latek, D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Shintani, N.; Tanaka, K.; Mori, W.; Hirose, M.; Matsuda, T.; Sakaue, M.; Miyazaki, J.; Niwa, H.; Tashiro, F.; et al. Altered Psychomotor Behaviors in Mice Lacking Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP). Proc. Natl. Acad. Sci. USA 2001, 98, 13355–13360. [Google Scholar] [CrossRef] [PubMed]
- Seligowski, A.V.; Clancy, K.J.; Akman, E.; Lewis, M.; May, V.; Ravichandran, C.; Jobson, S.A.; Bradford, D.E.; Hammack, S.E.; Carlezon, W.A.; et al. Associations between PACAP Levels and Psychophysiological Indicators of Fear and Arousal in Adults with Posttraumatic Stress Symptoms. J. Mood Anxiety Disord. 2025, 11, 100128. [Google Scholar] [CrossRef]
- Singh, A.; Shim, P.; Naeem, S.; Rahman, S.; Lutfy, K. Pituitary Adenylyl Cyclase-Activating Polypeptide Modulates the Stress Response: The Involvement of Different Brain Areas and Microglia. Front. Psychiatry 2025, 15, 1495598. [Google Scholar] [CrossRef]
- Shintani, Y.; Hayata-Takano, A.; Takasaki, I.; Kurihara, T.; Miyata, A.; Yamano, Y.; Ikuta, M.; Takeshita, R.; Murata, K.; Oguri, T.; et al. Rapid and Long-Lasting Antidepressant-like Effects of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor Antagonist PA-915 in Chronic Stress Mouse Models. Mol. Psychiatry 2025. [Google Scholar] [CrossRef]
- Ciranna, L.; Costa, L. Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Hippocampal Synaptic Transmission and Plasticity: New Therapeutic Suggestions for Fragile X Syndrome. Front. Cell. Neurosci. 2019, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Garami, A.; Pakai, E.; Rumbus, Z.; Solymar, M. The Role of PACAP in the Regulation of Body Temperature. In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP; Current Topics in Neurotoxicity; Reglodi, D., Tamas, A., Eds.; Springer: Cham, Germany, 2016; Volume 11, pp. 239–257. [Google Scholar]
- Tóth, D.; Simon, G.; Reglődi, D. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Sudden Infant Death Syndrome: A Potential Model for Investigation. Int. J. Mol. Sci. 2023, 24, 15063. [Google Scholar] [CrossRef]
- Incognito, A.V.; Barioni, N.O.; Sharkey, K.A.; Wilson, R.J.A. Carotid Body Stress and Inflammatory Mediators Uniformly Excite Autonomic Output. Circ. Res. 2025, 136, 1510–1512. [Google Scholar] [CrossRef]
- Barrett, K.T.; Hasan, S.U.; Scantlebury, M.H.; Wilson, R.J.A. Impaired Cardiorespiratory Responses to Hypercapnia in Neonatal Mice Lacking PAC1 but Not VPAC2 Receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R116–R128. [Google Scholar] [CrossRef]
- Rácz, K.; Segal, Y.; Lénárt, K.; Fillér, C.; Tóth, A.; Szegeczki, V.; Gergely, P.; Zákány, R.; Reglődi, D.; Juhász, T. Cartilage Degradation Is Followed by PAC1 Receptor Reduction in Articular Cartilage of Human Knee Joints. Geroscience 2025. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.-P.; Wu, S.-P.; Liang, C.-D.; Zhao, C.-X.; Sun, B.-Y. The Synovial Fluid Neuropeptide PACAP May Act as a Protective Factor during Disease Progression of Primary Knee Osteoarthritis and Is Increased Following Hyaluronic Acid Injection. Innate Immun. 2019, 25, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C. PACAP and Migraine. Brain 2025, 148, 2646–2649. [Google Scholar] [CrossRef]
- Reglodi, D.; Tamas, A.; Jungling, A.; Vaczy, A.; Rivnyak, A.; Fulop, B.D.; Szabo, E.; Lubics, A.; Atlasz, T. Protective Effects of Pituitary Adenylate Cyclase Activating Polypeptide against Neurotoxic Agents. Neurotoxicology 2018, 66, 185–194. [Google Scholar] [CrossRef]
- Reglodi, D.; Kiss, P.; Lubics, A.; Tamas, A. Review on the Protective Effects of PACAP in Models of Neurodegenerative Diseases In Vitro and In Vivo. Curr. Pharm. Des. 2011, 17, 962–972. [Google Scholar] [CrossRef]
- Reglodi, D.; Kiss, P.; Szabadfi, K.; Atlasz, T.; Gabriel, R.; Horvath, G.; Szakaly, P.; Sandor, B.; Lubics, A.; Laszlo, E.; et al. PACAP Is an Endogenous Protective Factor—Insights from PACAP-Deficient Mice. J. Mol. Neurosci. 2012, 48, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Falluel-Morel, A.; Aubert, N.; Vaudry, D.; Desfeux, A.; Allais, A.; Burel, D.; Basille, M.; Vaudry, H.; Laudenbach, V.; Gonzalez, B.J. Interactions of PACAP and Ceramides in the Control of Granule Cell Apoptosis During Cerebellar Development. J. Mol. Neurosci. 2008, 36, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Abad, C.; Tan, Y.-V. Immunomodulatory Roles of PACAP and VIP: Lessons from Knockout Mice. J. Mol. Neurosci. 2018, 66, 102–113. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Yi, P.-Q.; Xu, C.; Su, J.; Chen, P.-Z.; Li, M.; Chen, J.-Y. Pituitary Adenylate Cyclase-Activating Polypeptide Ameliorates Radiation-Induced Cardiac Injury. Am. J. Transl. Res. 2019, 11, 6585–6599. [Google Scholar] [CrossRef]
- Gomariz, R.P.; Juarranz, Y.; Abad, C.; Arranz, A.; Leceta, J.; Martinez, C. VIP–PACAP System in Immunity. Ann. New York Acad. Sci. 2006, 1070, 51–74. [Google Scholar] [CrossRef]
- Tang, Y.; Lv, B.; Wang, H.; Xiao, X.; Zuo, X. PACAP Inhibit the Release and Cytokine Activity of HMGB1 and Improve the Survival during Lethal Endotoxemia. Int. Immunopharmacol. 2008, 8, 1646–1651. [Google Scholar] [CrossRef]
- Mori, H.; Nakamachi, T.; Ohtaki, H.; Yofu, S.; Sato, A.; Endo, K.; Iso, Y.; Suzuki, H.; Takeyama, Y.; Shintani, N.; et al. Cardioprotective Effect of Endogenous Pituitary Adenylate Cyclase-Activating Polypeptide on Doxorubicin-Induced Cardiomyopathy in Mice. Circ. J. 2010, 74, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.; Vu, J.P.; Germano, P.M.; Pisegna, J.R. The Role of Neuropeptides in Mouse Models of Colitis. J. Mol. Neurosci. 2016, 59, 203–210. [Google Scholar] [CrossRef]
- Ohtaki, H.; Nakamachi, T.; Dohi, K.; Shioda, S. Role of PACAP in Ischemic Neural Death. J. Mol. Neurosci. 2008, 36, 16–25. [Google Scholar] [CrossRef]
- Marzagalli, R.; Scuderi, S.; Drago, F.; Waschek, J.A.; Castorina, A. Emerging Role of PACAP as a New Potential Therapeutic Target in Major Diabetes Complications. Int. J. Endocrinol. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Wen, S.; Yuan, Y.; Li, Y.; Xu, C.; Chen, L.; Ren, Y.; Wang, C.; He, Y.; Li, X.; Gong, M.; et al. The Effects of Non-Insulin Anti-Diabetic Medications on the Diabetic Microvascular Complications: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. BMC Endocr. Disord. 2025, 25, 179. [Google Scholar] [CrossRef]
- Kiss, P.; Banki, E.; Gaszner, B.; Nagy, D.; Helyes, Z.; Pal, E.; Reman, G.; Toth, G.; Tamas, A.; Reglodi, D. Protective Effects of PACAP in a Rat Model of Diabetic Neuropathy. Int. J. Mol. Sci. 2021, 22, 10691. [Google Scholar] [CrossRef]
- Szabadfi, K.; Atlasz, T.; Kiss, P.; Reglodi, D.; Szabo, A.; Kovacs, K.; Szalontai, B.; Setalo, G.; Banki, E.; Csanaky, K.; et al. Protective Effects of the Neuropeptide PACAP in Diabetic Retinopathy. Cell Tissue Res. 2012, 348, 37–46. [Google Scholar] [CrossRef]
- Szabadfi, K.; Szabo, A.; Kiss, P.; Reglodi, D.; Setalo, G.; Kovacs, K.; Tamas, A.; Toth, G.; Gabriel, R. PACAP Promotes Neuron Survival in Early Experimental Diabetic Retinopathy. Neurochem. Int. 2014, 64, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Szabadfi, K.; Reglodi, D.; Szabo, A.; Szalontai, B.; Valasek, A.; Setalo, G.; Kiss, P.; Tamas, A.; Wilhelm, M.; Gabriel, R. Pituitary Adenylate Cyclase Activating Polypeptide, A Potential Therapeutic Agent for Diabetic Retinopathy in Rats: Focus on the Vertical Information Processing Pathway. Neurotox. Res. 2016, 29, 432–446. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.G.; Maugeri, G.; Reitano, R.; Bucolo, C.; Saccone, S.; Drago, F.; D’Agata, V. PACAP Modulates Expression of Hypoxia-Inducible Factors in Streptozotocin-Induced Diabetic Rat Retina. J. Mol. Neurosci. 2015, 57, 501–509. [Google Scholar] [CrossRef]
- D’Amico, A.G.; Maugeri, G.; Magrì, B.; Lombardo, C.; Saccone, S.; Federico, C.; Cavallaro, P.; Giunta, S.; Bucolo, C.; D’Agata, V. PACAP-ADNP Axis Prevents Outer Retinal Barrier Breakdown and Choroidal Neovascularization by Interfering with VEGF Secreted from Retinal Pigmented Epitelium Cells. Peptides 2023, 168, 171065. [Google Scholar] [CrossRef]
- D’Amico, A.G.; Maugeri, G.; Rasà, D.M.; Bucolo, C.; Saccone, S.; Federico, C.; Cavallaro, S.; D’Agata, V. Modulation of IL-1β and VEGF Expression in Rat Diabetic Retinopathy after PACAP Administration. Peptides 2017, 97, 64–69. [Google Scholar] [CrossRef]
- Pöstyéni, E.; Szabadfi, K.; Sétáló, G.; Gabriel, R. A Promising Combination: PACAP and PARP Inhibitor Have Therapeutic Potential in Models of Diabetic and Hypertensive Retinopathies. Cells 2021, 10, 3470. [Google Scholar] [CrossRef]
- Giunta, S.; Castorina, A.; Bucolo, C.; Magro, G.; Drago, F.; D’Agata, V. Early Changes in Pituitary Adenylate Cyclase-Activating Peptide, Vasoactive Intestinal Peptide and Related Receptors Expression in Retina of Streptozotocin-Induced Diabetic Rats. Peptides 2012, 37, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Patko, E.; Szabo, E.; Molitor, D.; Meresz, B.; Reglodi, D.; Varga, A.; Denes, D.; Dai, L.; Wang, H.; et al. The Protective Effect of Topical PACAP38 in Retinal Morphology and Function of Type 2 Diabetic Retinopathy. Int. J. Mol. Sci. 2025, 26, 3753. [Google Scholar] [CrossRef]
- Arimura, A.; Li, M.; Batuman, V. Treatment of Renal Failure Associated with Multiple Myeloma and Other Diseases by PACAP-38. Ann. N. Y. Acad. Sci. 2006, 1070, 1–4. [Google Scholar] [CrossRef]
- Li, M.; Maderdrut, J.L.; Lertora, J.J.L.; Arimura, A.; Batuman, V. Renoprotection by Pituitary Adenylate Cyclase-Activating Polypeptide in Multiple Myeloma and Other Kidney Diseases. Regul. Pept. 2008, 145, 24–32. [Google Scholar] [CrossRef]
- Banki, E.; Degrell, P.; Kiss, P.; Kovacs, K.; Kemeny, A.; Csanaky, K.; Duh, A.; Nagy, D.; Toth, G.; Tamas, A.; et al. Effect of PACAP Treatment on Kidney Morphology and Cytokine Expression in Rat Diabetic Nephropathy. Peptides 2013, 42, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Banki, E.; Kovacs, K.; Nagy, D.; Juhasz, T.; Degrell, P.; Csanaky, K.; Kiss, P.; Jancso, G.; Toth, G.; Tamas, A.; et al. Molecular Mechanisms Underlying the Nephroprotective Effects of PACAP in Diabetes. J. Mol. Neurosci. 2014, 54, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Amato, R.; Biagioni, M.; Cammalleri, M.; Dal Monte, M.; Casini, G. VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3066. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, G.; D’Amico, A.G.; Gagliano, C.; Saccone, S.; Federico, C.; Cavallaro, S.; D’Agata, V. VIP Family Members Prevent Outer Blood Retinal Barrier Damage in a Model of Diabetic Macular Edema. J. Cell. Physiol. 2017, 232, 1079–1085. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Saccone, S.; Federico, C.; Cavallaro, S.; D’Agata, V. PACAP and VIP Inhibit HIF-1α-mediated VEGF Expression in a Model of Diabetic Macular Edema. J. Cell. Physiol. 2017, 232, 1209–1215. [Google Scholar] [CrossRef]
- Scuderi, S.; D’Amico, A.G.; Castorina, A.; Imbesi, R.; Carnazza, M.L.; D’Agata, V. Ameliorative Effect of PACAP and VIP against Increased Permeability in a Model of Outer Blood Retinal Barrier Dysfunction. Peptides 2013, 39, 119–124. [Google Scholar] [CrossRef]
- Bao, Y.; Li, B. Protective Effects of Pituitary Adenylate Cyclase-Activating Peptide (PACAP) on High Glucose-Induced Damage in Human Corneal Epithelial Cell. BMC Ophthalmol. 2025, 25, 462. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Magrì, B.; Giunta, S.; Saccone, S.; Federico, C.; Bucolo, C.; Musumeci, G.; D’Agata, V. Protective Effect of Pituitary Adenylate Cyclase Activating Polypeptide in Diabetic Keratopathy. Peptides 2023, 170, 171107. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Palmeri, N.; Pricoco, E.; Brancato, D.; Federico, C.; D’Agata, V. Protective Effects of PACAP against High Glucose-Induced Inflammation on Air-Liquid Interface Corneal Epithelium Barrier. Peptides 2025, 192, 171432. [Google Scholar] [CrossRef] [PubMed]
- Ferencz, S.; Reglodi, D.; Kaszas, B.; Bardosi, A.; Toth, D.; Vekony, Z.; Vicena, V.; Karadi, O.; Kelemen, D. PACAP and PAC1 Receptor Expression in Pancreatic Ductal Carcinoma. Oncol. Lett. 2019, 18, 5725–5730. [Google Scholar] [CrossRef]
- Muroi, M.; Shioda, S.; Yada, T.; Zhou, C.J.; Nakai, Y.; Nakajo, S.; Arimura, A. Distribution and Ultrastructural Localization of PACAP Receptors in the Rat Pancreatic Islets. Ann. N. Y. Acad. Sci. 1998, 865, 438–440. [Google Scholar] [CrossRef]
- Li, W.; Yu, G.; Liu, Y.; Sha, L. Intrapancreatic Ganglia and Neural Regulation of Pancreatic Endocrine Secretion. Front. Neurosci. 2019, 13, 21. [Google Scholar] [CrossRef]
- Winzell, M.S.; Ahrén, B. G-Protein-Coupled Receptors and Islet Function—Implications for Treatment of Type 2 Diabetes. Pharmacol. Ther. 2007, 116, 437–448. [Google Scholar] [CrossRef]
- Ferencz, S.; Toth, D.; Kaszas, B.; Bardosi, S.; Vicena, V.; Karadi, O.; Reglodi, D.; Kelemen, D. PACAP and PAC1 Receptor Expression in Human Insulinomas. Int. J. Pept. Res. Ther. 2021, 27, 1719–1728. [Google Scholar] [CrossRef]
- Cavestro, C. Metabolic Dysfunction and Dietary Interventions in Migraine Management: The Role of Insulin Resistance and Neuroinflammation—A Narrative and Scoping Review. Brain Sci. 2025, 15, 474. [Google Scholar] [CrossRef] [PubMed]
- Filipsson, K.; Kvist-Reimer, M.; Ahrén, B. The Neuropeptide Pituitary Adenylate Cyclase–Activating Polypeptide and Islet Function. Diabetes 2001, 50, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Filipsson, K.; Tornøe, K.; Holst, J.; Ahrén, B. Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Insulin and Glucagon Secretion in Humans. J. Clin. Endocrinol. Metab. 1997, 82, 3093–3098. [Google Scholar] [CrossRef]
- Winzell, M.S.; Ahrén, B. Role of VIP and PACAP in Islet Function. Peptides 2007, 28, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Nakata, M.; Yada, T. Physiological and Therapeutic Roles of PACAP in Glucose Metabolism and Diabetes. Folia Pharmacol. Jpn. 2004, 123, 267–273. [Google Scholar] [CrossRef]
- Sanlioglu, A.D.; Karacay, B.; Balci, M.K.; Griffith, T.S.; Sanlioglu, S. Therapeutic Potential of VIP vs PACAP in Diabetes. J. Mol. Endocrinol. 2012, 49, R157–R167. [Google Scholar] [CrossRef]
- Moody, T.W.; Ito, T.; Osefo, N.; Jensen, R.T. VIP and PACAP: Recent Insights into Their Functions/Roles in Physiology and Disease from Molecular and Genetic Studies. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Green, B.D.; Irwin, N.; Flatt, P.R. Pituitary Adenylate Cyclase-Activating Peptide (PACAP): Assessment of Dipeptidyl Peptidase IV Degradation, Insulin-Releasing Activity and Antidiabetic Potential. Peptides 2006, 27, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Persson-Sjögren, S.; Forsgren, S.; Lindström, P. Vasoactive Intestinal Polypeptide and Pituitary Adenylate Cyclase Activating Polypeptide: Effects on Insulin Release in Isolated Mouse Islets in Relation to Metabolic Status and Age. Neuropeptides 2006, 40, 283–290. [Google Scholar] [CrossRef]
- Yada, T.; Sakurada, M.; Ihida, K.; Nakata, M.; Murata, F.; Arimura, A.; Kikuchi, M. Pituitary Adenylate Cyclase Activating Polypeptide Is an Extraordinarily Potent Intra-Pancreatic Regulator of Insulin Secretion from Islet Beta-Cells. J. Biol. Chem. 1994, 269, 1290–1293. [Google Scholar] [CrossRef]
- Bertrand, G.; Puech, R.; Maisonnasse, Y.; Bockaert, J.; Loubatières-Mariani, M.M. Comparative Effects of PACAP and VIP on Pancreatic Endocrine Secretions and Vascular Resistance in Rat. Br. J. Pharmacol. 1996, 117, 764–770. [Google Scholar] [CrossRef]
- Green, B.D.; Irwin, N.; Cassidy, R.S.; Gault, V.A.; Flatt, P.R. Long-Term Administration of PACAP Receptor Antagonist, PACAP(6-27), Impairs Glucose Tolerance and Insulin Sensitivity in Obese Diabetic Ob/Ob Mice. Peptides 2006, 27, 2343–2349. [Google Scholar] [CrossRef]
- Borboni, P.; Porzio, O.; Pierucci, D.; Cicconi, S.; Magnaterra, R.; Federici, M.; Sesti, G.; Lauro, D.; D’Agata, V.; Cavallaro, S.; et al. Molecular and Functional Characterization of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP-38)/Vasoactive Intestinal Polypeptide Receptors in Pancreatic β-Cells and Effects of PACAP-38 on Components of the Insulin Secretory System. Endocrinology 1999, 140, 5530–5537. [Google Scholar] [CrossRef] [PubMed]
- Yokota, C.; Kawai, K.; Ohashi, S.; Watanabe, Y.; Yamashita, K. PACAP Stimulates Glucose Output from the Perfused Rat Liver. Peptides 1995, 16, 55–60. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Kasai, K.; Hasegawa, K.; Suzuki, Y.; Shimoda, S.-I. Glycogenolytic Activity of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) in Vivo and in Vitro. Life Sci. 1994, 55, 1219–1228. [Google Scholar] [CrossRef]
- Carbone, E. TRPC5: A New Entry to the Chromaffin Cell’s Palette of Ion Channels That Control Adrenal Response to Hypoglycemia. EMBO J. 2024, 43, 5784–5787. [Google Scholar] [CrossRef]
- Khodai, T.; Nunn, N.; Worth, A.A.; Feetham, C.H.; Belle, M.D.C.; Piggins, H.D.; Luckman, S.M. PACAP Neurons in the Ventromedial Hypothalamic Nucleus Are Glucose Inhibited and Their Selective Activation Induces Hyperglycaemia. Front. Endocrinol. 2018, 9, 632. [Google Scholar] [CrossRef]
- Meng, A.; Ameroso, D.; Rios, M. MGluR5 in Astrocytes in the Ventromedial Hypothalamus Regulates Pituitary Adenylate Cyclase-Activating Polypeptide Neurons and Glucose Homeostasis. J. Neurosci. 2023, 43, 5918–5935. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.-X.; Sun, N.; Ackermans, M.T.; Alkemade, A.; Foppen, E.; Shi, J.; Serlie, M.J.; Buijs, R.M.; Fliers, E.; Kalsbeek, A. Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats. Diabetes 2010, 59, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Portela-Gomes, G.M.; Lukinius, A.; Ljungberg, O.; Efendic, S.; Ahrén, B.; Abdel-Halim, S.M. PACAP Is Expressed in Secretory Granules of Insulin and Glucagon Cells in Human and Rodent Pancreas. Regul. Pept. 2003, 113, 31–39. [Google Scholar] [CrossRef]
- Yu, R.; Wang, J.; Li, J.; Wang, Y.; Zhang, H.; Chen, J.; Huang, L.; Liu, X. A Novel Cyclopeptide from the Cyclization of PACAP(1–5) with Potent Activity towards PAC1 Attenuates STZ-Induced Diabetes. Peptides 2010, 31, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Fang, S.; Zhao, S.; Wang, X.; Wang, D.; Ma, M.; Luo, T.; Hong, A. A Recombinant Slow-Release PACAP-Derived Peptide Alleviates Diabetes by Promoting Both Insulin Secretion and Actions. Biomaterials 2015, 51, 80–90. [Google Scholar] [CrossRef]
- Sakuma, Y.; Ricordi, C.; Miki, A.; Yamamoto, T.; Mita, A.; Barker, S.; Damaris, R.M.; Pileggi, A.; Yasuda, Y.; Yada, T.; et al. Effect of Pituitary Adenylate Cyclase–Activating Polypeptide in Islet Transplantation. Transplant. Proc. 2009, 41, 343–345. [Google Scholar] [CrossRef]
- Prevost, G.; Arabo, A.; Jian, L.; Quelennec, E.; Cartier, D.; Hassan, S.; Falluel-Morel, A.; Tanguy, Y.; Gargani, S.; Lihrmann, I.; et al. The PACAP-Regulated Gene Selenoprotein T Is Abundantly Expressed in Mouse and Human β-Cells and Its Targeted Inactivation Impairs Glucose Tolerance. Endocrinology 2013, 154, 3796–3806. [Google Scholar] [CrossRef]
- Firdos, F.; Pramanik, T.; Mittal, A. Temporal Effects of a Viral Peptide on Glucose-Stimulated Insulin Secretion. ACS Infect. Dis. 2025, 11, 1167–1179. [Google Scholar] [CrossRef]
- Sakurai, Y.; Inoue, H.; Shintani, N.; Arimori, A.; Hamagami, K.; Hayata-Takano, A.; Baba, A.; Hashimoto, H. Compensatory Recovery of Blood Glucose Levels in KKAy Mice Fed a High-Fat Diet: Insulin-Sparing Effects of PACAP Overexpression in β Cells. J. Mol. Neurosci. 2012, 48, 647–653. [Google Scholar] [CrossRef]
- Tomimoto, S.; Hashimoto, H.; Shintani, N.; Yamamoto, K.; Kawabata, Y.; Hamagami, K.-I.; Yamagata, K.; Miyagawa, J.-I.; Baba, A. Overexpression of Pituitary Adenylate Cyclase-Activating Polypeptide in Islets Inhibits Hyperinsulinemia and Islet Hyperplasia in Agouti Yellow Mice. J. Pharmacol. Exp. Ther. 2004, 309, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Hashimoto, H.; Tomimoto, S.; Shintani, N.; Miyazaki, J.; Tashiro, F.; Aihara, H.; Nammo, T.; Li, M.; Yamagata, K.; et al. Overexpression of PACAP in Transgenic Mouse Pancreatic β-Cells Enhances Insulin Secretion and Ameliorates Streptozotocin-Induced Diabetes. Diabetes 2003, 52, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Tsunekawa, S.; Miura, Y.; Yamamoto, N.; Itoh, Y.; Ariyoshi, Y.; Senda, T.; Oiso, Y.; Niki, I. Systemic Administration of Pituitary Adenylate Cyclase-Activating Polypeptide Maintains Beta-Cell Mass and Retards Onset of Hyperglycaemia in Beta-Cell-Specific Calmodulin-Overexpressing Transgenic Mice. Eur. J. Endocrinol. 2005, 152, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Yada, T.; Sakurada, M.; Filippson, K.; Kikuchi, M.; Ahrén, B. Intraperitoneal PACAP Administration Decreases Blood Glucose in GK Rats, and in Normal and High Fat Diet Mice. Ann. N. Y. Acad. Sci. 2000, 921, 259–263. [Google Scholar] [CrossRef]
- Gray, S.L.; Cummings, K.J.; Jirik, F.R.; Sherwood, N.M. Targeted Disruption of the Pituitary Adenylate Cyclase-Activating Polypeptide Gene Results in Early Postnatal Death Associated with Dysfunction of Lipid and Carbohydrate Metabolism. Mol. Endocrinol. 2001, 15, 1739–1747. [Google Scholar] [CrossRef]
- Adams, B.A.; Gray, S.L.; Isaac, E.R.; Bianco, A.C.; Vidal-Puig, A.J.; Sherwood, N.M. Feeding and Metabolism in Mice Lacking Pituitary Adenylate Cyclase-Activating Polypeptide. Endocrinology 2008, 149, 1571–1580. [Google Scholar] [CrossRef]
- Bozadjieva-Kramer, N.; Ross, R.A.; Johnson, D.Q.; Fenselau, H.; Haggerty, D.L.; Atwood, B.; Lowell, B.; Flak, J.N. The Role of Mediobasal Hypothalamic PACAP in the Control of Body Weight and Metabolism. Endocrinology 2021, 162, bqab012. [Google Scholar] [CrossRef]
- Tomimoto, S.; Ojika, T.; Shintani, N.; Hashimoto, H.; Hamagami, K.; Ikeda, K.; Nakata, M.; Yada, T.; Sakurai, Y.; Shimada, T.; et al. Markedly Reduced White Adipose Tissue and Increased Insulin Sensitivity in Adcyap1-Deficient Mice. J. Pharmacol. Sci. 2008, 107, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Reglodi, D.; Jungling, A.; Longuespée, R.; Kriegsmann, J.; Casadonte, R.; Kriegsmann, M.; Juhasz, T.; Bardosi, S.; Tamas, A.; Fulop, B.D.; et al. Accelerated Pre-Senile Systemic Amyloidosis in PACAP Knockout Mice—A Protective Role of PACAP in Age-Related Degenerative Processes. J. Pathol. 2018, 245, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Jamen, F.; Persson, K.; Bertrand, G.; Rodriguez-Henche, N.; Puech, R.; Bockaert, J.; Ahrén, B.; Brabet, P. PAC1 Receptor–Deficient Mice Display Impaired Insulinotropic Response to Glucose and Reduced Glucose Tolerance. J. Clin. Invest. 2000, 105, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Splitthoff, P.; Rasbach, E.; Neudert, P.; Bonaterra, G.A.; Schwarz, A.; Mey, L.; Schwarzbach, H.; Eiden, L.E.; Weihe, E.; Kinscherf, R. PAC1 Deficiency Attenuates Progression of Atherosclerosis in ApoE Deficient Mice under Cholesterol-Enriched Diet. Immunobiology 2020, 225, 151930. [Google Scholar] [CrossRef]
- Hawke, Z.; Ivanov, T.R.; Bechtold, D.A.; Dhillon, H.; Lowell, B.B.; Luckman, S.M. PACAP Neurons in the Hypothalamic Ventromedial Nucleus Are Targets of Central Leptin Signaling. J. Neurosci. 2009, 29, 14828–14835. [Google Scholar] [CrossRef] [PubMed]
- Sekar, R.; Wang, L.; Chow, B.K.C. Central Control of Feeding Behavior by the Secretin, PACAP, and Glucagon Family of Peptides. Front. Endocrinol. 2017, 8, 18. [Google Scholar] [CrossRef]
- Feng, J.; Chen, W.; Li, S.; Fang, Q.; Chen, X.; Bai, G.; Tian, M.; Huang, Y.; Xu, P.; Wang, Z.; et al. PACAP Ameliorates Obesity-induced Insulin Resistance through FAIM /Rictor/ AKT Axis. FEBS J. 2024, 291, 4096–4110. [Google Scholar] [CrossRef]
- Basu, R.; Elmendorf, A.J.; Lorentz, B.; Mahler, C.A.; Lazzaro, O.; App, B.; Zhou, S.; Yamamoto, Y.; Suber, M.; Wann, J.C.; et al. Ventromedial Hypothalamic Nucleus Subset Stimulates Tissue Thermogenesis via Preoptic Area Outputs. Mol. Metab. 2024, 84, 101951. [Google Scholar] [CrossRef]
- Luo, W.; Dai, J.; Liu, J.; Huang, Y.; Zheng, Z.; Xu, P.; Ma, Y. PACAP Attenuates Hepatic Lipid Accumulation through the FAIM/AMPK/IRβ Axis during Overnutrition. Mol. Metab. 2022, 65, 101584. [Google Scholar] [CrossRef]
- Duesman, S.J.; Shetty, S.; Patel, S.; Ogale, N.; Mohamed, F.; Sparman, N.; Rajbhandari, P.; Rajbhandari, A.K. Sexually Dimorphic Role of the Locus Coeruleus PAC1 Receptors in Regulating Acute Stress-Associated Energy Metabolism. Front. Behav. Neurosci. 2022, 16, 995573. [Google Scholar] [CrossRef]
- Bakalar, D.; Gavrilova, O.; Jiang, S.Z.; Zhang, H.; Roy, S.; Williams, S.K.; Liu, N.; Wisser, S.; Usdin, T.B.; Eiden, L.E. Constitutive and Conditional Deletion Reveals Distinct Phenotypes Driven by Developmental versus Neurotransmitter Actions of the Neuropeptide PACAP. J. Neuroendocrinol. 2023, 35, e13286. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamaga, H.; Ohtaki, H.; Hirako, S.; Miyamoto, K.; Nakamura, M.; Yanagisawa, K.; Shimada, T.; Hosono, T.; Hashimoto, H.; et al. Effect of PACAP on Heat Exposure. Int. J. Mol. Sci. 2023, 24, 3992. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, S.; Wang, P.; Xiang, W. Hypothalamic Neuroendocrine Integration of Reproduction and Metabolism in Mammals. J. Endocrinol. 2023, 258, e230079. [Google Scholar] [CrossRef]
- Hurley, M.M.; Anderson, E.M.; Chen, C.; Maunze, B.; Hess, E.M.; Block, M.E.; Patel, N.; Cooper, Z.; McCoy, R.; Dabra, T.; et al. Acute Blockade of PACAP-Dependent Activity in the Ventromedial Nucleus of the Hypothalamus Disrupts Leptin-Induced Behavioral and Molecular Changes in Rats. Neuroendocrinology 2020, 110, 271–281. [Google Scholar] [CrossRef]
- Sayers, S.; Le, N.; Wagner, E.J. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide Neurons in the Hypothalamic Ventromedial Nucleus and the Cognate PAC1 Receptor in the Regulation of Hedonic Feeding. Front. Nutr. 2024, 11, 1437526. [Google Scholar] [CrossRef] [PubMed]
- Vu, J.P.; Luong, L.; Sanford, D.; Oh, S.; Kuc, A.; Pisegna, R.; Lewis, M.; Pisegna, J.R.; Germano, P.M. PACAP and VIP Neuropeptides’ and Receptors’ Effects on Appetite, Satiety and Metabolism. Biology 2023, 12, 1013. [Google Scholar] [CrossRef]
- Martins, A.B.; Brownlow, M.L.; Araújo, B.B.; Garnica-Siqueira, M.C.; Zaia, D.A.M.; Leite, C.M.; Zaia, C.T.B.V.; Uchoa, E.T. Arcuate Nucleus of the Hypothalamus Contributes to the Hypophagic Effect and Plasma Metabolic Changes Induced by Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide. Neurochem. Int. 2022, 155, 105300. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.F. Genetic Variation Screening and Association Studies of the Adenylate Cyclase Activating Polypeptide 1 (ADCYAP1) Gene in Patients with Type 2 Diabetes. Hum. Mutat. 2002, 19, 572–573. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Imai, J.; Izumi, T.; Takahashi, H.; Kawana, Y.; Takahashi, K.; Kodama, S.; Kaneko, K.; Gao, J.; Uno, K.; et al. Neuronal Signals Regulate Obesity Induced β-Cell Proliferation by FoxM1 Dependent Mechanism. Nat. Commun. 2017, 8, 1930. [Google Scholar] [CrossRef]
- Nakata, M.; Shintani, N.; Hashimoto, H.; Baba, A.; Yada, T. Intra-Islet PACAP Protects Pancreatic β-Cells Against Glucotoxicity and Lipotoxicity. J. Mol. Neurosci. 2010, 42, 404–410. [Google Scholar] [CrossRef]
- Onoue, S.; Hanato, J.; Kuriyama, K.; Mizumoto, T.; Yamada, S. Development of PACAP38 Analogue with Improved Stability: Physicochemical and In Vitro/In Vivo Pharmacological Characterization. J. Mol. Neurosci. 2011, 43, 85–93. [Google Scholar] [CrossRef]
- Oliva-Cárdenas, A.; Ávalos-Rodríguez, A.; Díaz-Rosas, G.; Cruz, M.; Nario-Chaidez, H.F.; Contreras-Ramos, A.; Ortega-Camarillo, C. Conditioned Medium from Adipose Mesenchymal Stromal Cells Stimulated with Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Mitigates RINm5F Pancreatic β-Cell Dysfunction. Mol. Biol. Rep. 2025, 52, 689. [Google Scholar] [CrossRef]
- Hou, X.; Yang, D.; Yang, G.; Li, M.; Zhang, J.; Zhang, J.; Zhang, Y.; Liu, Y. Therapeutic Potential of Vasoactive Intestinal Peptide and Its Receptor VPAC2 in Type 2 Diabetes. Front. Endocrinol. 2022, 13, 984198. [Google Scholar] [CrossRef] [PubMed]
- Patko, E.; Szabo, E.; Toth, D.; Tornoczky, T.; Bosnyak, I.; Vaczy, A.; Atlasz, T.; Reglodi, D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J. Mol. Neurosci. 2022, 72, 2176–2187. [Google Scholar] [CrossRef]
- Shioda, S.; Takenoya, F.; Wada, N.; Hirabayashi, T.; Seki, T.; Nakamachi, T. Pleiotropic and Retinoprotective Functions of PACAP. Anat. Sci. Int. 2016, 91, 313–324. [Google Scholar] [CrossRef]
- Seki, T.; Shioda, S.; Ogino, D.; Nakai, Y.; Arimura, A.; Koide, R. Distribution and Ultrastructural Localization of a Receptor for Pituitary Adenylate Cyclase Activating Polypeptide and Its MRNA in the Rat Retina. Neurosci. Lett. 1997, 238, 127–130. [Google Scholar] [CrossRef]
- Seki, T.; Shioda, S.; Izumi, S.; Arimura, A.; Koide, R. Electron Microscopic Observation of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-Containing Neurons in the Rat Retina. Peptides 2000, 21, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Seki, T.; Shioda, S.; Nakai, Y.; Arimura, A.; Koide, R. Distribution and Ultrastractural Localization of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Its Receptor in the Rat Retina. Ann. N. Y. Acad. Sci. 1998, 865, 408–411. [Google Scholar] [CrossRef]
- Izumi, S.; Seki, T.; Shioda, S.; Zhou, C.-J.; Arimura, A.; Koide, R. Ultrastructural Localization of PACAP Immunoreactivity in the Rat Retina. Ann. N. Y. Acad. Sci. 2000, 921, 317–320. [Google Scholar] [CrossRef]
- Seki, T.; Izumi, S.; Shioda, S.; Zhou, C.J.; Arimura, A.; Koide, R. Gene Expression for PACAP Receptor MRNA in the Rat Retina by in Situ Hybridization and in Situ RT-PCR. Ann. N. Y. Acad. Sci. 2000, 921, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Atlasz, T.; Vaczy, A.; Werling, D.; Kiss, P.; Tamas, A.; Kovacs, K.; Fabian, E.; Kvarik, T.; Mammel, B.; Danyadi, B. Protective Effects of PACAP in the Retina. In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP; Current Topics in Neurotoxicity; Reglodi, D., Tamas, A., Eds.; Springer: Cham, Germany, 2016; Volume 11, pp. 501–527. [Google Scholar]
- Pöstyéni, E.; Kovács-Valasek, A.; Dénes, V.; Mester, A.; Sétáló, G.; Gábriel, R. PACAP for Retinal Health: Model for Cellular Aging and Rescue. Int. J. Mol. Sci. 2021, 22, 444. [Google Scholar] [CrossRef] [PubMed]
- Kovács-Valasek, A.; Szabadfi, K.; Dénes, V.; Szalontai, B.; Tamás, A.; Kiss, P.; Szabó, A.; Setalo Jr, G.; Reglődi, D.; Gábriel, R. Accelerated Retinal Aging in PACAP Knock-out Mice. Neuroscience 2017, 348, 1–10. [Google Scholar] [CrossRef]
- Szabadfi, K.; Atlasz, T.; Kiss, P.; Danyadi, B.; Tamas, A.; Helyes, Z.; Hashimoto, H.; Shintani, N.; Baba, A.; Toth, G.; et al. Mice Deficient in Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Are More Susceptible to Retinal Ischemic Injury In Vivo. Neurotox. Res. 2012, 21, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kvarik, T.; Reglodi, D.; Werling, D.; Vaczy, A.; Kovari, P.; Szabo, E.; Kovacs, K.; Hashimoto, H.; Ertl, T.; Gyarmati, J.; et al. The Protective Effects of Endogenous PACAP in Oxygen-Induced Retinopathy. J. Mol. Neurosci. 2021, 71, 2546–2557. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.G.; Maugeri, G.; Musumeci, G.; Reglodi, D.; D’Agata, V. PACAP and NAP: Effect of Two Functionally Related Peptides in Diabetic Retinopathy. J. Mol. Neurosci. 2021, 71, 1525–1535. [Google Scholar] [CrossRef]
- Nakatani, M.; Seki, T.; Shinohara, Y.; Taki, C.; Nishimura, S.; Takaki, A.; Shioda, S. Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Stimulates Production of Interleukin-6 in Rat Müller Cells. Peptides 2006, 27, 1871–1876. [Google Scholar] [CrossRef]
- Szabadfi, K.; Pinter, E.; Reglodi, D.; Gabriel, R. Neuropeptides, Trophic Factors, and Other Substances Providing Morphofunctional and Metabolic Protection in Experimental Models of Diabetic Retinopathy. Int. Rev. Cell Mol. Biol. 2014, 311, 1–121. [Google Scholar]
- Gábriel, R. Neuropeptides and Diabetic Retinopathy. Br. J. Clin. Pharmacol. 2013, 75, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Horvath, G.; Reglodi, D.; Fabian, E.; Opper, B. Effects of Pituitary Adenylate Cyclase Activating Polypeptide on Cell Death. Int. J. Mol. Sci. 2022, 23, 4953. [Google Scholar] [CrossRef]
- Allais, A.; Burel, D.; Roy, V.; Arthaud, S.; Galas, L.; Isaac, E.R.; Desfeux, A.; Parent, B.; Fournier, A.; Chapillon, P.; et al. Balanced Effect of PACAP and FasL on Granule Cell Death during Cerebellar Development: A Morphological, Functional and Behavioural Characterization. J. Neurochem. 2010, 113, 329–340. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, Y.; Shen, X.; Gao, F.; Huang, C.Y.; Abad, C.; Busuttil, R.W.; Waschek, J.A.; Kupiec-Weglinski, J.W. Neuropeptide PACAP in Mouse Liver Ischemia and Reperfusion Injury: Immunomodulation by the CAMP-PKA Pathway. Hepatology 2013, 57, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
- Hartfield, P.J.; Bilney, A.J.; Murray, A.W. Neurotrophic Factors Prevent Ceramide-Induced Apoptosis Downstream of C-Jun N-Terminal Kinase Activation in PC12 Cells. J. Neurochem. 1998, 71, 161–169. [Google Scholar] [CrossRef]
- Roth, E.; Weber, G.; Kiss, P.; Horváth, G.; Toth, G.; Gasz, B.; Ferencz, A.; Gallyas, F.; Reglodi, D.; Racz, B. Effects of PACAP and Preconditioning against Ischemia/Reperfusion-induced Cardiomyocyte Apoptosis In Vitro. Ann. N. Y. Acad. Sci. 2009, 1163, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Masmoudi-Kouki, O.; Douiri, S.; Hamdi, Y.; Kaddour, H.; Bahdoudi, S.; Vaudry, D.; Basille, M.; Leprince, J.; Fournier, A.; Vaudry, H.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide Protects Astroglial Cells against Oxidative Stress-Induced Apoptosis. J. Neurochem. 2011, 117, 403–411. [Google Scholar] [CrossRef]
- Morio, H.; Tatsuno, I.; Tanaka, T.; Uchida, D.; Hirai, A.; Tamura, Y.; Saito, Y. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is a Neurotrophic Factor for Cultured Rat Cortical Neurons. Ann. N. Y. Acad. Sci. 2006, 805, 476–481. [Google Scholar] [CrossRef]
- Vaudry, D.; Rousselle, C.; Basille, M.; Falluel-Morel, A.; Pamantung, T.F.; Fontaine, M.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. Pituitary Adenylate Cyclase-Activating Polypeptide Protects Rat Cerebellar Granule Neurons against Ethanol-Induced Apoptotic Cell Death. Proc. Natl. Acad. Sci. USA 2002, 99, 6398–6403. [Google Scholar] [CrossRef]
- Mei, Y.A.; Vaudry, D.; Basille, M.; Castel, H.; Fournier, A.; Vaudry, H.; Gonzalez, B.J. PACAP Inhibits Delayed Rectifier Potassium Current via a CAMP/PKA Transduction Pathway: Evidence for the Involvement of I k in the Anti-apoptotic Action of PACAP. Eur. J. Neurosci. 2004, 19, 1446–1458. [Google Scholar] [CrossRef]
- Tanaka, J.; Koshimura, K.; Murakami, Y.; Sohmiya, M.; Yanaihara, N.; Kato, Y. Neuronal Protection from Apoptosis by Pituitary Adenylate Cyclase-Activating Polypeptide. Regul. Pept. 1997, 72, 1–8. [Google Scholar] [CrossRef]
- Douiri, S.; Bahdoudi, S.; Hamdi, Y.; Cubì, R.; Basille, M.; Fournier, A.; Vaudry, H.; Tonon, M.; Amri, M.; Vaudry, D.; et al. Involvement of Endogenous Antioxidant Systems in the Protective Activity of Pituitary Adenylate Cyclase-activating Polypeptide against Hydrogen Peroxide-induced Oxidative Damages in Cultured Rat Astrocytes. J. Neurochem. 2016, 137, 913–930. [Google Scholar] [CrossRef]
- Nakamachi, T.; Li, M.; Shioda, S.; Arimura, A. Signaling Involved in Pituitary Adenylate Cyclase-Activating Polypeptide-Stimulated ADNP Expression. Peptides 2006, 27, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
- Szabo, E.; Patko, E.; Vaczy, A.; Molitor, D.; Csutak, A.; Toth, G.; Reglodi, D.; Atlasz, T. Retinoprotective Effects of PACAP Eye Drops in Microbead-Induced Glaucoma Model in Rats. Int. J. Mol. Sci. 2021, 22, 8825. [Google Scholar] [CrossRef]
- Werling, D.; Banks, W.; Salameh, T.; Kvarik, T.; Kovacs, L.; Vaczy, A.; Szabo, E.; Mayer, F.; Varga, R.; Tamas, A.; et al. Passage through the Ocular Barriers and Beneficial Effects in Retinal Ischemia of Topical Application of PACAP1-38 in Rodents. Int. J. Mol. Sci. 2017, 18, 675. [Google Scholar] [CrossRef]
- Fabian, E.; Reglodi, D.; Horvath, G.; Opper, B.; Toth, G.; Fazakas, C.; Vegh, A.G.; Wilhelm, I.; Krizbai, I.A. Pituitary Adenylate Cyclase Activating Polypeptide Acts against Neovascularization in Retinal Pigment Epithelial Cells. Ann. N. Y. Acad. Sci. 2019, 1455, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Fábián, E.; Horváth, G.; Opper, B.; Atlasz, T.; Tóth, G.; Reglődi, D. PACAP Is Protective Against Cellular Stress in Retinal Pigment Epithelial Cells. Int. J. Pept. Res. Ther. 2021, 27, 1221–1228. [Google Scholar] [CrossRef]
- Mester, L.; Kovacs, K.; Racz, B.; Solti, I.; Atlasz, T.; Szabadfi, K.; Tamas, A.; Reglodi, D. Pituitary Adenylate Cyclase-Activating Polypeptide Is Protective Against Oxidative Stress in Human Retinal Pigment Epithelial Cells. J. Mol. Neurosci. 2011, 43, 35–43. [Google Scholar] [CrossRef]
- Bosnyak, I.; Farkas, N.; Molitor, D.; Meresz, B.; Patko, E.; Atlasz, T.; Vaczy, A.; Reglodi, D. Optimization of an Ischemic Retinopathy Mouse Model and the Consequences of Hypoxia in a Time-Dependent Manner. Int. J. Mol. Sci. 2024, 25, 8008. [Google Scholar] [CrossRef] [PubMed]
- Ladea, L.; Zemba, M.; Calancea, M.I.; Călțaru, M.V.; Dragosloveanu, C.D.M.; Coroleucă, R.; Catrina, E.L.; Brezean, I.; Dinu, V. Corneal Epithelial Changes in Diabetic Patients: A Review. Int. J. Mol. Sci. 2024, 25, 3471. [Google Scholar] [CrossRef]
- Yeung, A.; Dwarakanathan, S. Diabetic Keratopathy. Dis. Mon. 2021, 67, 101135. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, T.; Shibato, J.; Kimura, A.; Yamashita, M.; Takenoya, F.; Shioda, S. Potential Therapeutic Role of Pituitary Adenylate Cyclase-Activating Polypeptide for Dry Eye Disease. Int. J. Mol. Sci. 2022, 23, 664. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Castrogiovanni, P.; Saccone, S.; Federico, C.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; Longo, A.; et al. PACAP through EGFR Transactivation Preserves Human Corneal Endothelial Integrity. J. Cell. Biochem. 2019, 120, 10097–10105. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Amenta, A.; Saccone, S.; Federico, C.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; Longo, A.; et al. Protective Effect of PACAP against Ultraviolet B Radiation-Induced Human Corneal Endothelial Cell Injury. Neuropeptides 2020, 79, 101978. [Google Scholar] [CrossRef]
- Maugeri, G.; Longo, A.; D’Amico, A.G.; Rasà, D.M.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; D’Agata, V. Trophic Effect of PACAP on Human Corneal Endothelium. Peptides 2018, 99, 20–26. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Alm, P.; Håkanson, R. Distribution and Effects of Pituitary Adenylate Cyclase-Activating Peptide in the Rabbit Eye. Neuroscience 1995, 69, 297–308. [Google Scholar] [CrossRef]
- Fukiage, C.; Nakajima, T.; Takayama, Y.; Minagawa, Y.; Shearer, T.R.; Azuma, M. PACAP Induces Neurite Outgrowth in Cultured Trigeminal Ganglion Cells and Recovery of Corneal Sensitivity after Flap Surgery in Rabbits. Am. J. Ophthalmol. 2007, 143, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, J.; Chen, X.; Hong, A. Expression, Identification and Biological Effects of the Novel Recombination Protein, PACAP38-NtA, with High Bioactivity. Int. J. Mol. Med. 2015, 35, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Shioda, S.; Takenoya, F.; Hirabayashi, T.; Wada, N.; Seki, T.; Nonaka, N.; Nakamachi, T. Effects of PACAP on Dry Eye Symptoms, and Possible Use for Therapeutic Application. J. Mol. Neurosci. 2019, 68, 420–426. [Google Scholar] [CrossRef]
- Wang, Z.; Shan, W.; Li, H.; Feng, J.; Lu, S.; Ou, B.; Ma, M.; Ma, Y. The PACAP-Derived Peptide MPAPO Facilitates Corneal Wound Healing by Promoting Corneal Epithelial Cell Proliferation and Trigeminal Ganglion Cell Axon Regeneration. Int. J. Biol. Sci. 2019, 15, 2676–2691. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, S.; Wang, X.; Shen, S.; Ma, M.; Xu, W.; Hong, A. A New Recombinant PACAP-Derived Peptide Efficiently Promotes Corneal Wound Repairing and Lacrimal Secretion. Invest. Ophthalmol. Vis. Sci. 2015, 56, 4336–4349. [Google Scholar] [CrossRef]
- Delcourt, N.; Thouvenot, E.; Chanrion, B.; Galéotti, N.; Jouin, P.; Bockaert, J.; Marin, P. PACAP Type I Receptor Transactivation Is Essential for IGF-1 Receptor Signalling and Antiapoptotic Activity in Neurons. EMBO J. 2007, 26, 1542–1551. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Bucolo, C.; D’Agata, V. Protective Effect of PACAP-38 on Retinal Pigmented Epithelium in an in Vitro and in Vivo Model of Diabetic Retinopathy through EGFR-Dependent Mechanism. Peptides 2019, 119, 170108. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, G.; D’Amico, A.G.; Saccone, S.; Federico, C.; Rasà, D.M.; Caltabiano, R.; Broggi, G.; Giunta, S.; Musumeci, G.; D’Agata, V. Effect of PACAP on Hypoxia-Induced Angiogenesis and Epithelial–Mesenchymal Transition in Glioblastoma. Biomedicines 2021, 9, 965. [Google Scholar] [CrossRef]
- Moody, T.W.; Osefo, N.; Nuche-Berenguer, B.; Ridnour, L.; Wink, D.; Jensen, R.T. Pituitary Adenylate Cyclase-Activating Polypeptide Causes Tyrosine Phosphorylation of the Epidermal Growth Factor Receptor in Lung Cancer Cells. J. Pharmacol. Exp. Ther. 2012, 341, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-KappaB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.M.; Dua Avinashi, S.; Venkataraman, K. Predictors of Incident Diabetic Peripheral Neuropathy: A Systematic Review of Longitudinal Studies in Patients with Diabetes Mellitus. Rev. Endocr. Metab. Disord. 2025, 26, 659–677. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, Z.; Luo, Y.; Liu, Y.; Luo, W.; Du, X.; Luo, Z.; Hu, J.; Peng, S. Diabetic Peripheral Neuropathy: Pathogenetic Mechanisms and Treatment. Front. Endocrinol. 2024, 14, 1265372. [Google Scholar] [CrossRef]
- Galiero, R.; Caturano, A.; Vetrano, E.; Beccia, D.; Brin, C.; Alfano, M.; Di Salvo, J.; Epifani, R.; Piacevole, A.; Tagliaferri, G.; et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int. J. Mol. Sci. 2023, 24, 3554. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, J.; Kapsa, A.; Boczek, T. Adenylyl Cyclases as Therapeutic Targets in Neuroregeneration. Int. J. Mol. Sci. 2025, 26, 6081. [Google Scholar] [CrossRef]
- Shioda, S.; Nakamachi, T. PACAP as a Neuroprotective Factor in Ischemic Neuronal Injuries. Peptides 2015, 72, 202–207. [Google Scholar] [CrossRef]
- Watanabe, J.; Seki, T.; Shioda, S. PACAP and Neural Development. In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP; Current Topics in Neurotoxicity; Reglodi, D., Tamas, A., Eds.; Springer: Cham, Germany, 2016; Volume 11, pp. 65–82. [Google Scholar]
- Waschek, J.A. Multiple Actions of Pituitary Adenylyl Cyclase Activating Peptide in Nervous System Development and Regeneration. Dev. Neurosci. 2002, 24, 14–23. [Google Scholar] [CrossRef]
- Somogyvari-Vigh, A.; Reglodi, D. Pituitary Adenylate Cyclase Activating Polypeptide: A Potential Neuroprotective Peptide. Curr. Pharm. Des. 2004, 10, 2861–2889. [Google Scholar] [CrossRef]
- Pettersson, L.M.E.; Dahlin, L.B.; Danielsen, N. Changes in Expression of PACAP in Rat Sensory Neurons in Response to Sciatic Nerve Compression. Eur. J. Neurosci. 2004, 20, 1838–1848. [Google Scholar] [CrossRef] [PubMed]
- Woodley, P.K.; Min, Q.; Li, Y.; Mulvey, N.F.; Parkinson, D.B.; Dun, X. Distinct VIP and PACAP Functions in the Distal Nerve Stump During Peripheral Nerve Regeneration. Front. Neurosci. 2019, 13, 1326. [Google Scholar] [CrossRef]
- Ogata, K.; Shintani, N.; Hayata-Takano, A.; Kamo, T.; Higashi, S.; Seiriki, K.; Momosaki, H.; Vaudry, D.; Vaudry, H.; Galas, L.; et al. PACAP Enhances Axon Outgrowth in Cultured Hippocampal Neurons to a Comparable Extent as BDNF. PLoS ONE 2015, 10, e0120526. [Google Scholar] [CrossRef]
- Nakajima, E.; Walkup, R.D.; Fujii, A.; Shearer, T.R.; Azuma, M. Pituitary Adenylate Cyclase-Activating Peptide Induces Neurite Outgrowth in Cultured Monkey Trigeminal Ganglion Cells: Involvement of Receptor PAC1. Mol. Vis. 2013, 19, 174–183. [Google Scholar]
- Guirland, C.; Buck, K.B.; Gibney, J.A.; DiCicco-Bloom, E.; Zheng, J.Q. Direct CAMP Signaling through G-Protein-Coupled Receptors Mediates Growth Cone Attraction Induced by Pituitary Adenylate Cyclase-Activating Polypeptide. J. Mol. Neurosci. 2003, 23, 2274–2283. [Google Scholar] [CrossRef]
- Pandey, S.; Mudgal, J. A Review on the Role of Endogenous Neurotrophins and Schwann Cells in Axonal Regeneration. J. Neuroimmune Pharmacol. 2022, 17, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.D.; Abad, C.; Chhith, S.; Cheung-Lau, G.; Hajji, O.E.; Nobuta, H.; Waschek, J.A. Impaired Nerve Regeneration and Enhanced Neuroinflammatory Response in Mice Lacking Pituitary Adenylyl Cyclase Activating Peptide. Neuroscience 2008, 151, 63–73. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Musumeci, G.; Reglodi, D.; D’Agata, V. Effects of PACAP on Schwann Cells: Focus on Nerve Injury. Int. J. Mol. Sci. 2020, 21, 8233. [Google Scholar] [CrossRef] [PubMed]
- Castorina, A. Multiple Actions of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Schwann Cell Biology. In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP; Current Topics in Neurotoxicity; Reglodi, D., Tamas, A., Eds.; Springer: Cham, Germany, 2016; Volume 11, pp. 459–479. [Google Scholar]
- Castorina, A.; Waschek, J.A.; Marzagalli, R.; Cardile, V.; Drago, F. PACAP Interacts with PAC1 Receptors to Induce Tissue Plasminogen Activator (TPA) Expression and Activity in Schwann Cell-Like Cultures. PLoS ONE 2015, 10, e0117799. [Google Scholar] [CrossRef]
- Castorina, A.; Tiralongo, A.; Giunta, S.; Carnazza, M.L.; Rasi, G.; D’Agata, V. PACAP and VIP Prevent Apoptosis in Schwannoma Cells. Brain Res. 2008, 1241, 29–35. [Google Scholar] [CrossRef]
- Castorina, A.; Scuderi, S.; D’Amico, A.G.; Drago, F.; D’Agata, V. PACAP and VIP Increase the Expression of Myelin-Related Proteins in Rat Schwannoma Cells: Involvement of PAC1/VPAC2 Receptor-Mediated Activation of PI3K/Akt Signaling Pathways. Exp. Cell Res. 2014, 322, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Leggio, G.; Marzagalli, R.; Al-Badri, G.; Drago, F.; Castorina, A. Identification of Dysregulated MicroRNA Networks in Schwann Cell-Like Cultures Exposed to Immune Challenge: Potential Crosstalk with the Protective VIP/PACAP Neuropeptide System. Int. J. Mol. Sci. 2018, 19, 981. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.-Y.; Wang, Y.-P.; Fu, Y.-J.; Cao, F.; Xu, Y.-N.; Kong, J.-G.; Tian, N.-X.; Xu, Y.; Wang, Y. Unveiling Adcyap1 as a Protective Factor Linking Pain and Nerve Regeneration through Single-Cell RNA Sequencing of Rat Dorsal Root Ganglion Neurons. BMC Biol. 2023, 21, 235. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Noda-Asano, S.; Inoue, R.; Himeno, T.; Motegi, M.; Hayami, T.; Nakai-Shimoda, H.; Kono, A.; Sasajima, S.; Miura-Yura, E.; et al. Dipeptidyl Peptidase (DPP)-4 Inhibitors and Pituitary Adenylate Cyclase-Activating Polypeptide, a DPP-4 Substrate, Extend Neurite Outgrowth of Mouse Dorsal Root Ganglia Neurons: A Promising Approach in Diabetic Polyneuropathy Treatment. Int. J. Mol. Sci. 2024, 25, 8881. [Google Scholar] [CrossRef]
- Baskozos, G.; Sandy-Hindmarch, O.; Clark, A.J.; Windsor, K.; Karlsson, P.; Weir, G.A.; McDermott, L.A.; Burchall, J.; Wiberg, A.; Furniss, D. Molecular and Cellular Correlates of Human Nerve Regeneration: ADCYAP1/PACAP Enhance Nerve Outgrowth. Brain 2020, 143, 2009–2026. [Google Scholar] [CrossRef]
- Yevgi, R.; Laloğlu, E.; Bilge, N. High Plasma Calcitonin Gene-Related Peptide and Serum Pituitary Adenylate Cyclase-Activating Polypeptide Levels in Patients with Neuropathic Pain. Rev Neurol 2023, 179, 289–296. [Google Scholar] [CrossRef]
- Khan, M.-A.; Batuman, V. Renoprotective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide 38 (PACAP38). In Pituitary Adenylate Cyclase Activating Polypeptide—PACAP; Current Topics in Neurotoxicity; Reglodi, D., Tamas, A., Eds.; Springer: Cham, Germany, 2016; Volume 11, pp. 289–312. [Google Scholar]
- László, E.; Kiss, P.; Horváth, G.; Szakály, P.; Tamás, A.; Reglődi, D. The Effects of Pituitary Adenylate Cyclase Activating Polypeptide in Renal Ischemia/Reperfusion. Acta Biol. Hung. 2014, 65, 369–378. [Google Scholar] [CrossRef]
- Szakaly, P.; Laszlo, E.; Kovacs, K.; Racz, B.; Horvath, G.; Ferencz, A.; Lubics, A.; Kiss, P.; Tamas, A.; Brubel, R.; et al. Mice Deficient in Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Show Increased Susceptibility to in Vivo Renal Ischemia/Reperfusion Injury. Neuropeptides 2011, 45, 113–121. [Google Scholar] [CrossRef]
- Sparks, J.; Jungling, A.; Kiss, G.; Hiripi, L.; Pham, D.; Tamas, A.; Hoffmann, O.; Bardosi, S.; Miseta, A.; Reglodi, D. Presence of Systemic Amyloidosis in Mice with Partial Deficiency in Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Aging. Appl. Sci. 2021, 11, 7373. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Gu, W.; Cai, B.; Lei, M.; Luo, Y.; Zhang, N. Association of Immune-Inflammation Indexes with Incidence and Prognosis of Diabetic Nephropathy: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2025, 16, 1532682. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Kuno, K.; Takemoto, M.; He, P.; Ishikawa, T.; Onishi, S.; Ishibashi, R.; Okabe, E.; Shoji, M.; Hattori, A.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide Protects Glomerular Podocytes from Inflammatory Injuries. J. Diabetes Res. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Solymar, M.; Ivic, I.; Balasko, M.; Fulop, B.D.; Toth, G.; Tamas, A.; Reman, G.; Koller, A.; Reglodi, D. Pituitary Adenylate Cyclase-Activating Polypeptide Ameliorates Vascular Dysfunction Induced by Hyperglycaemia. Diabetes Vasc. Dis. Res. 2018, 15, 277–285. [Google Scholar] [CrossRef]
- Pulipaka, S.; Singuru, G.; Sahoo, S.; Shaikh, A.; Thennati, R.; Kotamraju, S. Therapeutic Efficacies of Mitochondria-Targeted Esculetin and Metformin in the Improvement of Age-Associated Atherosclerosis via Regulating AMPK Activation. Geroscience 2023, 46, 2391–2408. [Google Scholar] [CrossRef] [PubMed]
- Rácz, B.; Gasz, B.; Borsiczky, B.; Gallyas, F.; Tamás, A.; Józsa, R.; Lubics, A.; Kiss, P.; Rőth, E.; Ferencz, A.; et al. Protective Effects of Pituitary Adenylate Cyclase Activating Polypeptide in Endothelial Cells against Oxidative Stress-Induced Apoptosis. Gen. Comp. Endocrinol. 2007, 153, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Banki, E.; Sosnowska, D.; Tucsek, Z.; Gautam, T.; Toth, P.; Tarantini, S.; Tamas, A.; Helyes, Z.; Reglodi, D.; Sonntag, W.E.; et al. Age-Related Decline of Autocrine Pituitary Adenylate Cyclase-Activating Polypeptide Impairs Angiogenic Capacity of Rat Cerebromicrovascular Endothelial Cells. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2015, 70, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Baranoglu Kilinc, Y.; Dagistan, Y.; Kilinc, E. Plasma Levels of Biomarkers Associated with Vasodilation and Neuroinflammation in Pediatric Patients with Head Trauma and Their Relationship with Clinical Characteristics of Patients. Child’s Nerv. Syst. 2025, 41, 224. [Google Scholar] [CrossRef]
- Chang, Q. [Experimental Study of the Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Its Mechanism on the Vascular Cell Components--the Possible Relationship between PACAP and Atherosclerosis]. Sheng Li Ke Xue Jin Zhan 1997, 28, 132–135. [Google Scholar]
- Mey, L.; Bonaterra, G.A.; Hoffmann, J.; Schwarzbach, H.; Schwarz, A.; Eiden, L.E.; Weihe, E.; Kinscherf, R. PAC1 Agonist Maxadilan Reduces Atherosclerotic Lesions in Hypercholesterolemic ApoE-Deficient Mice. Int. J. Mol. Sci. 2024, 25, 13245. [Google Scholar] [CrossRef]
- Rasbach, E.; Splitthoff, P.; Bonaterra, G.A.; Schwarz, A.; Mey, L.; Schwarzbach, H.; Eiden, L.E.; Weihe, E.; Kinscherf, R. PACAP Deficiency Aggravates Atherosclerosis in ApoE Deficient Mice. Immunobiology 2019, 224, 124–132. [Google Scholar] [CrossRef]
- Castorina, A.; Giunta, S.; Mazzone, V.; Cardile, V.; D’Agata, V. Effects of PACAP and VIP on Hyperglycemia-Induced Proliferation in Murine Microvascular Endothelial Cells. Peptides 2010, 31, 2276–2283. [Google Scholar] [CrossRef]
- Tian, S.; Wu, T.; Zhang, Z.; Lv, S.; Ji, X.; Zhao, Z.; Ma, X.; Wang, J.; Bi, Y. Activation of Central Angiotensin-(1-7)/Mas Receptor Alleviates Synaptic Damage in Diabetes-Associated Cognitive Impairment via Modulating AKT/FOXO1/PACAP Axis. Int. J. Biol. Sci. 2025, 21, 2824–2842. [Google Scholar] [CrossRef]
- Jansen, M.I.; Hrncir, H.; MacKenzie-Graham, A.; Waschek, J.A.; Brinkman, J.; Bradfield, L.A.; Withana, M.; Musumeci, G.; D’Agata, V.; Castorina, A. Neuronal PAC1 Deletion Impairs Structural Plasticity. Life Sci. 2025, 378, 123843. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.; Li, S.; Shi, J. PACAP–Sirtuin3 Alleviates Cognitive Impairment through Autophagy in Alzheimer’s Disease. Alzheimers Res. Ther. 2023, 15, 184. [Google Scholar] [CrossRef] [PubMed]
- Heppner, T.J.; Hennig, G.W.; Nelson, M.T.; May, V.; Vizzard, M.A. PACAP38-Mediated Bladder Afferent Nerve Activity Hyperexcitability and Ca2+ Activity in Urothelial Cells from Mice. J. Mol. Neurosci. 2019, 68, 348–356. [Google Scholar] [CrossRef]
- Ojala, J.; Tooke, K.; Hsiang, H.; Girard, B.M.; May, V.; Vizzard, M.A. PACAP/PAC1 Expression and Function in Micturition Pathways. J. Mol. Neurosci. 2019, 68, 357–367. [Google Scholar] [CrossRef]
- Han, X.; Chen, Y.; Ha, L.; Yang, J.; Wang, F.; Chen, H.; Zhou, Q.; Long, C.; Qiu, X.; Chen, Q. Effects of Electroacupuncture on Bladder Dysfunction and the Expression of PACAP38 in a Diabetic Rat Model. Front. Physiol. 2023, 13, 1008269. [Google Scholar] [CrossRef] [PubMed]
- Shpakov, A.O.; Bondareva, V.M.; Chistiakova, O. V [Functional State of Adenylyl Cyclase Signaling System in Reproductive Tissues of Rats with Experimental Type 1 Diabetes]. Tsitologiia 2010, 52, 177–183. [Google Scholar] [CrossRef]
- Shpakov, A.O.; Derkach, K.V.; Bondareva, V.M. Changes in Hormone Sensitivity of the Adenylate Cyclase Signaling System in the Testicular Tissue of Rats with Neonatal Streptozotocin-Induced Diabetes. Bull. Exp. Biol. Med. 2009, 148, 394–398. [Google Scholar] [CrossRef]
- Reed, S.; Taka, E.; Darling-Reed, S.; Soliman, K.F.A. Neuroprotective Effects of Metformin Through the Modulation of Neuroinflammation and Oxidative Stress. Cells 2025, 14, 1064. [Google Scholar] [CrossRef]
- Tao, W.; Yu, Y.; Tan, D.; Huang, X.; Huang, J.; Lin, C.; Yu, R. Microbiota and Enteric Nervous System Crosstalk in Diabetic Gastroenteropathy: Bridging Mechanistic Insights to Microbiome-Based Therapies. Front. Cell. Infect. Microbiol. 2025, 15, 1603442. [Google Scholar] [CrossRef]
- Palus, K.; Bulc, M.; Całka, J.; Zielonka, Ł.; Nowicki, M. Diabetes Affects the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-Like Immunoreactive Enteric Neurons in the Porcine Digestive Tract. Int. J. Mol. Sci. 2021, 22, 5727. [Google Scholar] [CrossRef]
- Zhu, L.; Tamvakopoulos, C.; Xie, D.; Dragovic, J.; Shen, X.; Fenyk-Melody, J.E.; Schmidt, K.; Bagchi, A.; Griffin, P.R.; Thornberry, N.A.; et al. The Role of Dipeptidyl Peptidase IV in the Cleavage of Glucagon Family Peptides. J. Biol. Chem. 2003, 278, 22418–22423. [Google Scholar] [CrossRef]
- Lambeir, A.-M.; Durinx, C.; Proost, P.; Van Damme, J.; Scharpé, S.; De Meester, I. Kinetic Study of the Processing by Dipeptidyl-peptidase IV/CD26 of Neuropeptides Involved in Pancreatic Insulin Secretion. FEBS Lett. 2001, 507, 327–330. [Google Scholar] [CrossRef]
- Al-Badri, G.; Leggio, G.; Musumeci, G.; Marzagalli, R.; Drago, F.; Castorina, A. Tackling Dipeptidyl Peptidase IV in Neurological Disorders. Neural Regen. Res. 2018, 13, 26. [Google Scholar] [CrossRef]
- Bernstein, H.-G.; Keilhoff, G.; Dobrowolny, H.; Steiner, J. The Many Facets of CD26/Dipeptidyl Peptidase 4 and Its Inhibitors in Disorders of the CNS—A Critical Overview. Rev. Neurosci. 2023, 34, 1–24. [Google Scholar] [CrossRef]
- Nassar, N.N.; Al-Shorbagy, M.Y.; Arab, H.H.; Abdallah, D.M. Saxagliptin: A Novel Antiparkinsonian Approach. Neuropharmacology 2015, 89, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Ahrén, B.; Hughes, T.E. Inhibition of Dipeptidyl Peptidase-4 Augments Insulin Secretion in Response to Exogenously Administered Glucagon-Like Peptide-1, Glucose-Dependent Insulinotropic Polypeptide, Pituitary Adenylate Cyclase-Activating Polypeptide, and Gastrin-Releasing Peptide in Mice. Endocrinology 2005, 146, 2055–2059. [Google Scholar] [CrossRef] [PubMed]
- Omar, B.; Ahrén, B. Pleiotropic Mechanisms for the Glucose-Lowering Action of DPP-4 Inhibitors. Diabetes 2014, 63, 2196–2202. [Google Scholar] [CrossRef]
- Cheng, Q.; Cheng, J.; Cordato, D.; Gao, J. Can Dipeptidyl Peptidase-4 Inhibitors Treat Cognitive Disorders? Pharmacol. Ther. 2020, 212, 107559. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Masato, A.; Bubacco, L.; Bisaglia, M. Metformin Repurposing for Parkinson Disease Therapy: Opportunities and Challenges. Int. J. Mol. Sci. 2021, 23, 398. [Google Scholar] [CrossRef] [PubMed]
- DiGiovanni, A.; Shehaj, A.; Millar, D.; Tse, C.; Rizk, E. Utility of Pharmacological Agents for Diabetes Mellitus in the Prevention of Alzheimer’s Disease: Comparison of Metformin, Glucagon-Like Peptide-1 (GLP-1) Agonists, Insulin, and Sulfonylureas. Cureus 2025, 17, e87350. [Google Scholar] [CrossRef]
- Ullah, A.; Shen, B. Immunomodulatory Effects of Anti-Diabetic Therapies: Cytokine and Chemokine Modulation by Metformin, Sodium-Glucose Cotransporter 2 Inhibitors, and Glucagon-like Peptide-1 Receptor Agonists (2013–2025). Eur. J. Med. Chem. 2025, 299, 118065. [Google Scholar] [CrossRef]
- Mandwie, M.; Karunia, J.; Niaz, A.; Keay, K.A.; Musumeci, G.; Rennie, C.; McGrath, K.; Al-Badri, G.; Castorina, A. Metformin Treatment Attenuates Brain Inflammation and Rescues PACAP/VIP Neuropeptide Alterations in Mice Fed a High-Fat Diet. Int. J. Mol. Sci. 2021, 22, 13660. [Google Scholar] [CrossRef]
- Cherait, A.; Xifró, X.; Reglodi, D.; Vaudry, D. More Than Three Decades After Discovery of the Neuroprotective Effect of PACAP, What Is Still Preventing Its Clinical Use? J. Mol. Neurosci. 2025, 75, 80. [Google Scholar] [CrossRef] [PubMed]
- Poujol de Molliens, M.; Létourneau, M.; Devost, D.; Hébert, T.E.; Fournier, A.; Chatenet, D. New Insights about the Peculiar Role of the 28–38 C-Terminal Segment and Some Selected Residues in PACAP for Signaling and Neuroprotection. Biochem. Pharmacol. 2018, 154, 193–202. [Google Scholar] [CrossRef]
- Hökfelt, T.; Bartfai, T.; Bloom, F. Neuropeptides: Opportunities for Drug Discovery. Lancet Neurol. 2003, 2, 463–472. [Google Scholar] [CrossRef]
- Meier, J.J.; Nauck, M.A. Incretin-Based Therapies: Where Will We Be 50 Years from Now? Diabetologia 2015, 58, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Langoth, N.; Kalbe, J.; Bernkopschnurch, A. Development of a Mucoadhesive and Permeation Enhancing Buccal Delivery System for PACAP (Pituitary Adenylate Cyclase-Activating Polypeptide). Int. J. Pharm. 2005, 296, 103–111. [Google Scholar] [CrossRef]
- Reglodi, D.; Atlasz, T.; Jungling, A.; Szabo, E.; Kovari, P.; Manavalan, S.; Tamas, A. Alternative Routes of Administration of the Neuroprotective Pituitary Adenylate Cyclase Activating Polypeptide. Curr. Pharm. Des. 2018, 24, 3892–3904. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Keith, A.M.; Ye, W.; Hu, X.; Southall, N.; Marugan, J.J.; Ferrer, M.; Henderson, M.J.; Sexton, P.M.; Deganutti, G.; et al. Design of Peptide-Based PAC1 Antagonists Combining Molecular Dynamics Simulations and a Biologically Relevant Cell-Based Assay. Biochem. Pharmacol. 2025, 242, 117300. [Google Scholar] [CrossRef]
Model | PACAP Treatment | PACAP-Induced Effects, Counteracting Diabetes/High Glucose-Induced Effects | Reference |
---|---|---|---|
In Vivo Models | |||
Rat diabetic neuropathy, type 1 | PACAP38, 20 µg/100 µL saline i.p., every second day for 8 weeks | - axon–myelin separation ↓ - mitochondrial fission ↓ - unmyelinated fiber atrophy ↓ - endoneurial capillary basement membrane thickening ↓ - mechanical hyperalgesia ↓ - activation of pain processing centers (PAG, dorsal horn) ↓ | [33] |
Rat diabetic retinopathy, type 1 | PACAP38 100 pmol/5 µL saline intravitreal, 3 times during the last week of the 3-week-long survival period | - ganglion cell number ↑ - Müller glial cell overactivation ↓ - cone photoreceptor outer segment degeneration ↓ - dopaminergic amacrine cell damage ↓ | [34] |
PACAP38 100 pmol/5 µL saline intravitreal, 3 times during the last week of the 3-week-long survival period | - p-Akt, p-ERK2, PKC and Bcl-2 ↑ - phospho-p38MAPK and caspase-3, -8 and -12 ↓ - number of apoptotic cells ↓ | [35] | |
PACAP38 100 pmol/5 µL saline intravitreal, 3 times during the last week of the 3-week-long survival period | - photoreceptor, pigment epithelial cell and outer limiting membrane damage ↓ - GLUT1 immunoreactivity ↑ - RAGE mRNA ↓ - number of cone bipolar and ganglion cells ↑ - PAC1, VPAC1, VPAC2 receptor expression ↑ - degeneration of ribbon synapses ↓ | [36] | |
Intraocular PACAP38, 100 µg/4 µL 1 week after STZ | - HIF-1alpha and HIF-2alpha ↓ - HIF-3alpha ↑ | [37] | |
Intraocular PACAP38 100 µM, 1 week after STZ | - ADNP expression ↑ | [38] | |
Intraocular PACAP38 100 µM in 4 µL, 1 week after STZ | - interleukin-1 beta ↓ - VEGF, VEGF receptor expression ↓ | [39] | |
Intravitreal PACAP 100 pmol/5 µL saline, once a week for 3 weeks in spontaneously hypertensive rats alone or in combination with the PARP inhibitor olaparib | - total retinal thickness ↑ - thickness of ONL, OPL, INL, IPL ↑ - number of ganglion cells ↑ - rod bipolar cell degeneration ↓ - calbindin staining ↑ | [40] | |
Single intravitreal injection of PACAP38—100 µL, 4 µL | - Bcl-2, p53 ↑ | [41] | |
Rat diabetic retinopathy, type 2 | PACAP eye drops (1 µg/drop) twice a day for 16 weeks | - visual function (ERG: a-wave, b-wave, oscillatory potential) ↑ - retinal thickness ↑ - microvascular lesion ↓ - number of surviving pericytes ↑ - number of acellular capillaries ↓ - vessel density ↑ | [42] |
Rat diabetic nephropathy, type 1 | Continuous intravenous treatment with jugular osmotic minipump for 2 weeks | - glomerular damage and vacuolar appearance ↓ - TNF-alpha, TGF-beta ↓ - body weight ↑ - kidney weight, glomerular enlargement ↓ - hyperglycemia, proteinuria, polyuria ↓ | [43,44] |
PACAP38, 20 µg/100 µL saline i.p., every second day for 8 weeks | - histological signs of diabetes: intraglomerular PAS positive area expansion, tubular glycogen deposits, arteriolar hyalinosis ↓ - cytokine activation (CINC-1, TIMP-1, LIX, MIG, s-ICAM) ↓ | [45] | |
PACAP38, 20 µg/100 µL saline i.p., every second day for 8 weeks | - p38 MAPK, cleaved caspase-3 ↓ - NFκB ↓ - pAkt, ERK1/2 ↑ - collagen IV, TGF-beta1 ↓ - glutathione ↑ - glomerular basement membrane thickening ↓ | [46] | |
High glucose exposure in vitro | |||
Retinal explant | 100 nM PACAP in vitro on retinal explant exposed to high glucose | - caspase-3 ↓ - VEGF ↓ | [47] |
ARPE19 pigment epithelial cells exposed to hyperglycemic/hypoxic insult | 100 nM PACAP38 | - ADNP ↑ - VEGF ↓ - outer retinal barrier permeability ↓ - junctional protein expression (ZO-1, occludin) ↑ - choriocapillaris neovascularization ↓ | [38] |
ARPE19 pigment epithelial cells exposed to hyperglycemic/hypoxic insult | 100 nM PACAP38 | - HIF-1alpha ↓ - HIF-3alpha ↑ - VEGF, VEGF receptors ↓ - p38 MAPK ↓ | [48,49] |
ARPE19 cells exposed to high glucose and interleukin-1 beta | 100 nM PACAP38 | - hyperpermeability ↓ | [50] |
Human corneal epithelial cells exposed to high glucose | 0.1, 1, 5 µM PACAP38 | - cell proliferation, migration ↑ - Ki-67, Bcl-2 mRNA ↑ - autophagy ↑ - p-AMPK, p-ERK, Bcl-2 ↑ - p62 ↓ | [51] |
Rabbit corneal epithelial cells exposed to high glucose | 100 nM PACAP38 | - cell viability ↑ - corneal epithelial wound healing ↑ - EGFR, ERK1/2 ↑ | [52] |
Rabbit corneal epithelial cells exposed to high glucose | 100 nM PACAP38 | - IL-1beta, TNF-alpha ↓ - activation of NF-kB ↓ - epithelial morphology, corneal barrier thickness ↑ | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reglodi, D.; Tamas, A.; Bosnyak, I.; Atlasz, T.; Szabo, E.; Li, L.; Horvath, G.; Opper, B.; Kiss, P.; Lucas, L.; et al. Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy. Int. J. Mol. Sci. 2025, 26, 9650. https://doi.org/10.3390/ijms26199650
Reglodi D, Tamas A, Bosnyak I, Atlasz T, Szabo E, Li L, Horvath G, Opper B, Kiss P, Lucas L, et al. Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy. International Journal of Molecular Sciences. 2025; 26(19):9650. https://doi.org/10.3390/ijms26199650
Chicago/Turabian StyleReglodi, Dora, Andrea Tamas, Inez Bosnyak, Tamas Atlasz, Edina Szabo, Lina Li, Gabriella Horvath, Balazs Opper, Peter Kiss, Liliana Lucas, and et al. 2025. "Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy" International Journal of Molecular Sciences 26, no. 19: 9650. https://doi.org/10.3390/ijms26199650
APA StyleReglodi, D., Tamas, A., Bosnyak, I., Atlasz, T., Szabo, E., Li, L., Horvath, G., Opper, B., Kiss, P., Lucas, L., Maugeri, G., D’Amico, A. G., D’Agata, V., Fabian, E., Reman, G., & Vaczy, A. (2025). Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy. International Journal of Molecular Sciences, 26(19), 9650. https://doi.org/10.3390/ijms26199650