The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans
Abstract
1. Introduction
2. Periodontitis Causes
Periodontitis Pathomechanism
3. Endoplasmic Reticulum Stress (ER Stress)
3.1. The Role of ER Stress in the Development of Periodontitis—Studies on Cellular Models (Table 2)
Experimental Model | Changes in the Endoplasmic Reticulum Stress Markers | Factors Causing Endoplasmic Reticulum Stress or Other Related | References |
---|---|---|---|
Cell Models | |||
human periodontal ligament cells (hPDLCs) | ↑ PERK, ↑ eIF2α, ↑ CHOP, ↑ GRP78, ↑ C/EBP β → ↑ IL-6, ↑ IL-8, ↑ MMP-8, ↑ MMP-9 | inflammation through LPS of P. gingivalis | Bai et al. [72] |
periodontal ligament stem cells (PDLSCs) | ↑ CHOP, ↑ ATF4 | chemical hypoxia through cobalt chloride (CoCl2) | Zheng et al. [73] |
human periodontal ligament stem cells (hPDLSCs) | ↑ GRP78, ↑ CHOP, ↑ ATF4, ↑ ATF6 | inflammation through LPS | Jiang et al. [74] |
↓ GRP78, ↓ CHOP, ↓ ATF4, ↓ ATF6 | oridonin | ||
human periodontal ligament stem cells (PDLSCs) | ↑ PERK/eIF2α/ATF4 | cyclic tension | Liu et al. [75] |
periodontal ligament stem cells (PDLSCs) | ↑ PERK, ↑ ATF4, ↑ CHOP | inflammation through TNFα→ ↓ KAT6B | Xue et al. [76] |
human periodontal ligament cells (hPDLCs) | ↑ PERK, ↑ IRE1, ↑ ATF6 → ↑ CHOP → ↑ caspase-3 | inflammation through LPS | Cui et al. [77] |
↓ GRP78 → ↓ caspase-3, ↓ caspase-12 | ↑ M2 exosomes with melatonin | ||
human gingival epithelial cells (HGECs) | ↑ GRP78, ↑ IRE1, ↑ XBP1 | inflammation through LPS | Li et al. [78] |
3.2. The Role of ER Stress in the Development of Periodontitis—Studies on Animal Models (Table 3)
Experimental Model | Changes in the Endoplasmic Reticulum Stress Markers | Factors Causing Endoplasmic Reticulum Stress or Other Related | References |
---|---|---|---|
Animal Models | |||
mice | ↑ GRP78, ↑ XBP1 | inflammation through oral administration of P. gingivalis | Yamada et al. [79] |
rats | ↑ GRP78, ↑ PERK, ↑ ATF4, ↑ CHOP | LPS | Feng et al. [80] |
↓ GRP78, ↓ PERK, ↓ ATF4, ↓ CHOP | 4-PBA + LPS | ||
rats | ↑ CHOP | inflammation through placing 3-O braided silk ligation in the cervical region of the bilateral maxillary second | Tu et al. [81] |
mice | ↑ ATF6β | inflammation through placing 5-0 silk ligature around teeth | Hayashi et al. [82] |
3.3. The Role of ER Stress in the Development of Periodontitis—Human Studies (Table 4)
Experimental Model | Changes in the Endoplasmic Reticulum Stress Markers | Factors Causing Endoplasmic Reticulum Stress or Other Related | References |
---|---|---|---|
Studies on Human | |||
Subjects with periodontitis | ↑ XBP1, ↑ ATF4, ↑ SEPS1, ↑ CHOP | inflammation through: E. coli LPS P. gingivalis LPS | Domon et al. [83] |
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Kwon, T.; Lamster, I.B.; Levin, L. Current Concepts in the Management of Periodontitis. Int. Dent. J. 2021, 71, 462–476. [Google Scholar] [CrossRef]
- GBD 2017 Oral Disorders Collaborators; Bernabe, E.; Marcenes, W.; Hernandez, C.R.; Bailey, J.; Abreu, L.G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Górska, R. Periodontologia. Podręcznik dla Studentów i do LDEK; Edra Urban & Partner: Wrocław, Poland, 2022. [Google Scholar]
- Tezal, M.; Grossi, S.G.; Genco, R.J. Is periodontitis associated with oral neoplasms? J. Periodontol. 2005, 76, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Al-Hebshi, N.N.; Nasher, A.T.; Maryoud, M.Y.; Homeida, H.E.; Chen, T.; Idris, A.M.; Johnson, N.W. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci. Rep. 2017, 7, 1834. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, J.; Qiu, Y.; Liu, Z. Periodontal disease and the risk of Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Psychogeriatrics 2021, 21, 813–825. [Google Scholar] [CrossRef]
- Preshaw, P.M.; Bissett, S.M. Periodontitis and diabetes. Br. Dent. J. 2019, 227, 577–584. [Google Scholar] [CrossRef]
- Zhou, Q.B.; Xia, W.H.; Ren, J.; Yu, B.B.; Tong, X.Z.; Chen, Y.B.; Chen, S.; Feng, L.; Dai, J.; Tao, J.; et al. Effect of Intensive Periodontal Therapy on Blood Pressure and Endothelial Microparticles in Patients With Prehypertension and Periodontitis: A Randomized Controlled Trial. J. Periodontol. 2017, 88, 711–722. [Google Scholar] [CrossRef]
- Marouf, N.; Cai, W.; Said, K.N.; Daas, H.; Diab, H.; Chinta, V.R.; Hssain, A.A.; Nicolau, B.; Sanz, M.; Tamimi, F. Association between periodontitis and severity of COVID-19 infection: A case-control study. J. Clin. Periodontol. 2021, 48, 483–491. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef]
- Schreiber, F.; Stief, P.; Gieseke, A.; Heisterkamp, I.M.; Verstraete, W.; de Beer, D.; Stoodley, P. Denitrification in human dental plaque. BMC Biol. 2010, 8, 24. [Google Scholar] [CrossRef]
- Zambon, J.J. Periodontal diseases: Microbial factors. Ann. Periodontol. 1996, 1, 879–925. [Google Scholar] [CrossRef]
- Mesa, F.; Mesa-López, M.J.; Egea-Valenzuela, J.; Benavides-Reyes, C.; Nibali, L.; Ide, M.; Mainas, G.; Rizzo, M.; Magan-Fernandez, A. A New Comorbidity in Periodontitis: Fusobacterium nucleatum and Colorectal Cancer. Medicina 2022, 58, 546. [Google Scholar] [CrossRef] [PubMed]
- Zambon, J.J. Consensus Report Periodontal diseases: Pathogenesis and microbial factors. Ann. Periodontol. 1996, 1, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Lamont, R.J.; Jenkinson, H.F. Subgingival colonization by Porphyromonas gingivalis. Oral Microbiol. Immunol. 2000, 15, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Henderson, B. Virulence factors of Actinobacillus actinomycetemcomitans relevant to the pathogenesis of inflammatory periodontal diseases. FEMS Microbiol. Rev. 1995, 17, 365–379. [Google Scholar] [CrossRef]
- Chukkapalli, S.S.; Rivera-Kweh, M.F.; Velsko, I.M.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers. Pathog. Dis. 2015, 73, 9. [Google Scholar] [CrossRef]
- Sharma, A.; Inagaki, S.; Sigurdson, W.; Kuramitsu, H.K. Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol. Immunol. 2005, 20, 39–42. [Google Scholar] [CrossRef]
- Gawlak-Socka, S. Figure 1. Created in BioRender. 2025. Available online: https://BioRender.com/4qv9w7c (accessed on 25 September 2025).
- Balaji, A.; Surekha, V.; Mahalakshmi, K.; Valiatthan, M. Gram-positive microorganisms in periodontitis. Drug Invent. Today 2019, 12, 1199–1203. [Google Scholar]
- Kozak, M.; Pawlik, A. The Role of the Oral Microbiome in the Development of Diseases. Int. J. Mol. Sci. 2023, 24, 5231. [Google Scholar] [CrossRef]
- Bloch, S.; Hager-Mair, F.F.; Andrukhov, O.; Schäffer, C. Oral streptococci: Modulators of health and disease. Front. Cell. Infect. Microbiol. 2024, 14, 1357631. [Google Scholar] [CrossRef]
- Nunn, M.E. Understanding the etiology of periodontitis: An overview of periodontal risk factors. Periodontol. 2000 2003, 32, 11–23. [Google Scholar] [CrossRef]
- Eismann, D.; Prusas, R. Periodontal findings before and after orthodontic therapy in cases of incisor cross-bite. Eur. J. Orthod. 1990, 12, 281–283. [Google Scholar] [CrossRef]
- Ainamo, J. Relationship between malalignment of the teeth and periodontal disease. Eur. J. Oral Sci. 1972, 80, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Feldman, G.; Solomon, C.; Notaro, P.J.; Moskowitz, E.; Weseley, P.; Coffiner, M.; Kellert, M. Endodontic treatment of periodontal problems. Dent. Radiogr. Photogr. 1981, 54, 1–15. [Google Scholar] [PubMed]
- Simon, J.H.; Glick, D.H.; Frank, A.L. The relationship of endodontic-periodontic lesions. J. Periodontol. 1972, 43, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Caudle, R.M.; Bhattacharyya, I.; Stewart, C.M.; Cohen, D.M. Receptor for advanced glycation end product (RAGE) upregulation in human gingival fibroblasts incubated with nornicotine. J. Periodontol. 2005, 76, 1171–1174. [Google Scholar] [CrossRef]
- Meyle, J.; Chapple, I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2000 2015, 69, 7–17. [Google Scholar] [CrossRef]
- Grossi, S.G.; Genco, R.J.; Machtei, E.E.; Ho, A.W.; Koch, G.; Dunford, R.; Zambon, J.J.; Hausmann, E. Assessment of risk for periodontal disease. II. Risk indicators for alveolar bone loss. J. Periodontol. 1995, 66, 23–29. [Google Scholar] [CrossRef]
- McGuire, M.K.; Nunn, M.E. Prognosis versus actual outcome. III. The effectiveness of clinical parameters in accurately predicting tooth survival. J. Periodontol. 1996, 67, 666–674. [Google Scholar] [CrossRef]
- Figueredo, C.A.; Abdelhay, N.; Figueredo, C.M.; Catunda, R.; Gibson, M.P. The impact of vaping on periodontitis: A systematic review. Clin. Exp. Dent. Res. 2021, 7, 376–384. [Google Scholar] [CrossRef]
- Kinane, D.F.; Chestnutt, I.G. Relationship of diabetes to periodontitis. Curr. Opin. Periodontol. 1997, 4, 29–34. [Google Scholar]
- Zhao, P.; Xu, A.; Leung, W.K. Obesity, Bone Loss, and Periodontitis: The Interlink. Biomolecules 2022, 12, 865. [Google Scholar] [CrossRef]
- Sanz, M.; Marco Del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef]
- Guo, H.; Chang, S.; Pi, X.; Hua, F.; Jiang, H.; Liu, C.; Du, M. The Effect of Periodontitis on Dementia and Cognitive Impairment: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 6823. [Google Scholar] [CrossRef]
- SanGiacomo, T.R.; Tan, P.M.; Loggi, D.G.; Itkin, A.B. Progressive osseous destruction as a complication of HIV-periodontitis. Oral Surg. Oral Med. Oral Pathol. 1990, 70, 476–479. [Google Scholar] [CrossRef]
- Dutra, W.O.; Moreira, P.R.; Souza, P.E.; Gollob, K.J.; Gomez, R.S. Implications of cytokine gene polymorphisms on the orchestration of the immune response: Lessons learned from oral diseases. Cytokine Growth Factor Rev. 2009, 20, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Nishida, M.; Grossi, S.G.; Dunford, R.G.; Ho, A.W.; Trevisan, M.; Genco, R.J. Calcium and the risk for periodontal disease. J. Periodontol. 2000, 71, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Nishida, M.; Grossi, S.G.; Dunford, R.G.; Ho, A.W.; Trevisan, M.; Genco, R.J. Dietary vitamin C and the risk for periodontal disease. J. Periodontol. 2000, 71, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Hoare, A.; Soto, C.; Rojas-Celis, V.; Bravo, D. Chronic Inflammation as a Link between Periodontitis and Carcinogenesis. Mediat. Inflamm. 2019, 2019, 1029857. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Tu, S.Q.; Wei, J.M.; Hou, Y.L.; Kuang, Z.L.; Kang, X.N.; Ai, H. Role of Interleukin-17A in the Pathomechanisms of Periodontitis and Related Systemic Chronic Inflammatory Diseases. Front. Immunol. 2022, 13, 862415. [Google Scholar] [CrossRef]
- Gawlak-Socka, S. Figure 2. Created in BioRender. 2025. Available online: https://BioRender.com/gcdnmcc (accessed on 25 September 2025).
- Nussbaum, G.; Shapira, L. How has neutrophil research improved our understanding of periodontal pathogenesis? J. Clin. Periodontol. 2011, 38, 49–59. [Google Scholar] [CrossRef]
- Atalay, N.; Balci, N.; Gürsoy, M.; Gürsoy, U.K. Systemic Factors Affecting Human Beta-Defensins in Oral Cavity. Pathogens 2024, 13, 654. [Google Scholar] [CrossRef]
- Cafiero, C.; Spagnuolo, G.; Marenzi, G.; Martuscelli, R.; Colamaio, M.; Leuci, S. Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. J. Clin. Med. 2021, 10, 1488. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, D.E.; Hariyani, N.; Indrawati, R.; Ridwan, R.D.; Diyatri, I. Cytokines and Chemokines in Periodontitis. Eur. J. Dent. 2020, 14, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Taubman, M.A.; Valverde, P.; Han, X.; Kawai, T. Immune response: The key to bone resorption in periodontal disease. J. Periodontol. 2005, 76, 2033–2041. [Google Scholar] [CrossRef]
- Steinberg, B.E.; Scott, C.C.; Grinstein, S. High-throughput assays of phagocytosis, phagosome maturation, and bacterial invasion. Am. J. Physiol. Cell Physiol. 2007, 292, 945–952. [Google Scholar] [CrossRef]
- Gemmell, E.; Carter, C.L.; Hart, D.N.; Drysdale, K.E.; Seymour, G.J. Antigen-presenting cells in human periodontal disease tissues. Oral Microbiol. Immunol. 2002, 17, 388–393. [Google Scholar] [CrossRef]
- He, L.; Liu, L.; Li, T.; Zhuang, D.; Dai, J.; Wang, B.; Bi, L. Exploring the Imbalance of Periodontitis Immune System From the Cellular to Molecular Level. Front. Genet. 2021, 12, 653209. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Musolino, V.; Carresi, C.; Nucera, S.; Scicchitano, M.; Scarano, F.; Bosco, F.; Oppedisano, F.; Macrì, R.; et al. Environmental and Nutritional “Stressors” and Oligodendrocyte Dysfunction: Role of Mitochondrial and Endoplasmatic Reticulum Impairment. Biomedicines 2020, 8, 553. [Google Scholar] [CrossRef]
- Jarosch, E.; Lenk, U.; Sommer, T. Endoplasmic reticulum-associated protein degradation. Int. Rev. Cytol. 2003, 223, 39–81. [Google Scholar] [CrossRef]
- Wang, S.; Kaufman, R.J. The impact of the unfolded protein response on human disease. J. Cell Biol. 2012, 197, 857–867. [Google Scholar] [CrossRef]
- Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Sokołowska, P.; Wiktorowska-Owczarek, A.; Tambor, J.; Gawlak-Socka, S.; Kowalczyk, E.; Jóźwiak-Bębenista, M. Endoplasmic Reticulum Stress Differently Modulates the Release of IL-6 and IL-8 Cytokines in Human Glial Cells. Int. J. Mol. Sci. 2024, 25, 8687. [Google Scholar] [CrossRef] [PubMed]
- Shore, G.C.; Papa, F.R.; Oakes, S.A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 2011, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Hendershot, L.M.; Valentine, V.A.; Lee, A.S.; Morris, S.W.; Shapiro, D.N. Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 1994, 20, 281–284. [Google Scholar] [CrossRef]
- Pfaffenbach, K.T.; Lee, A.S. The critical role of GRP78 in physiologic and pathologic stress. Curr. Opin. Cell Biol. 2011, 23, 150–156. [Google Scholar] [CrossRef]
- Lee, S.I.; Kang, K.L.; Shin, S.I.; Herr, Y.; Lee, Y.M.; Kim, E.C. Endoplasmic reticulum stress modulates nicotine-induced extracellular matrix degradation in human periodontal ligament cells. J. Periodontal. Res. 2012, 47, 299–308. [Google Scholar] [CrossRef]
- Oakes, S.A.; Papa, F.R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 2015, 10, 173–194. [Google Scholar] [CrossRef]
- Cao, S.S.; Luo, K.L.; Shi, L. Endoplasmic Reticulum Stress Interacts With Inflammation in Human Diseases. J. Cell Physiol. 2016, 231, 288–294. [Google Scholar] [CrossRef]
- Urra, H.; Dufey, E.; Lisbona, F.; Rojas-Rivera, D.; Hetz, C. When ER stress reaches a dead end. Biochim. Biophys. Acta 2013, 1833, 3507–3517. [Google Scholar] [CrossRef]
- Hayashi, T.; Rizzuto, R.; Hajnoczky, G.; Su, T.P. MAM: More than just a housekeeper. Trends Cell Biol. 2009, 19, 81–88. [Google Scholar] [CrossRef]
- Senft, D.; Ronai, Z.A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 2015, 40, 141–148. [Google Scholar] [CrossRef]
- Bailey, D.; O’Hare, P. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid. Redox Signal. 2007, 9, 2305–2321. [Google Scholar] [CrossRef] [PubMed]
- Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 2013, 1833, 3460–3470. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, M.; Dastghaib, S.; Aftabi, S.; Aghanoori, M.R.; Alizadeh, J.; Mokarram, P.; Mehrbod, P.; Ashrafizadeh, M.; Zarrabi, A.; McAlinden, K.D.; et al. The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Life 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004, 18, 3066–3077. [Google Scholar] [CrossRef]
- Chipuk, J.E.; Moldoveanu, T.; Llambi, F.; Parsons, M.J.; Green, D.R. The BCL-2 family reunion. Mol. Cell 2010, 37, 299–310. [Google Scholar] [CrossRef]
- Jiang, M.; Li, Z.; Zhu, G. The role of endoplasmic reticulum stress in the pathophysiology of periodontal disease. J. Periodontal. Res. 2022, 57, 915–932. [Google Scholar] [CrossRef]
- Bai, Y.; Wei, Y.; Wu, L.; Wei, J.; Wang, X.; Bai, Y. C/EBP β Mediates Endoplasmic Reticulum Stress Regulated Inflammatory Response and Extracellular Matrix Degradation in LPS-Stimulated Human Periodontal Ligament Cells. Int. J. Mol. Sci. 2016, 17, 385. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, X.; He, Y.; Hou, S.; Liu, T.; Zhi, K.; Hou, T.; Gao, L. CircCDK8 regulates osteogenic differentiation and apoptosis of PDLSCs by inducing ER stress/autophagy during hypoxia. Ann. N. Y. Acad. Sci. 2021, 1485, 56–70. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, N.; Song, H.; Yang, Y.; Li, J.; Hu, X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health 2023, 23, 137. [Google Scholar] [CrossRef]
- Liu, X.; Wang, B.; Chang, M.; Zhang, X.; Zou, H.; Zhang, Z.; Han, G. USP12 regulates ER stress-associated osteogenesis in human periodontal ligament cells under tension stress. Cell Signal. 2024, 114, 111015. [Google Scholar] [CrossRef]
- Xue, X.; Piao, J.H.; Nakajima, A.; Sakon-Komazawa, S.; Kojima, Y.; Mori, K.; Yagita, H.; Okumura, K.; Harding, H.; Nakano, H. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J. Biol. Chem. 2005, 280, 33917–33925. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hong, S.; Xia, Y.; Li, X.; He, X.; Hu, X.; Li, Y.; Wang, X.; Lin, K.; Mao, L. Melatonin Engineering M2 Macrophage-Derived Exosomes Mediate Endoplasmic Reticulum Stress and Immune Reprogramming for Periodontitis Therapy. Adv. Sci. 2023, 10, 2302029. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Huang, S.; Zhang, Y.; Song, Z.; Fu, H.; Lin, Z.; Huang, X. Regulation of the unfolded protein response transducer IRE1α by SERPINH1 aggravates periodontitis with diabetes mellitus via prolonged ER stress. Cell Signal. 2022, 91, 110241. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Nakajima, T.; Domon, H.; Honda, T.; Yamazaki, K. Endoplasmic reticulum stress response and bone loss in experimental periodontitis in mice. J. Periodontal. Res. 2015, 50, 500–508. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, R.; Wang, Y.R.; Chen, F.; Luo, Q.; Cai, C.; Jiao, Y.; Xue, P. Inhibition of Endoplasmic Reticulum Stress by 4-Phenyl Butyric Acid Presents Therapeutic Effects on Periodontitis: Experimental Studies In Vitro and in Rats. Stem. Cells Int. 2021, 2021, 6618943. [Google Scholar] [CrossRef]
- Tu, H.P.; Kuo, C.Y.; Fu, M.M.; Chin, Y.T.; Chiang, C.Y.; Chiu, H.C.; Hsia, Y.J.; Fu, E. Cyanidin-3-O-glucoside downregulates ligation-activated endoplasmic reticulum stress and alleviates induced periodontal destruction in rats. Arch. Oral Biol. 2022, 134, 105313. [Google Scholar] [CrossRef]
- Hayashi, C.; Fukuda, T.; Kawakami, K.; Toyoda, M.; Nakao, Y.; Watanabe, Y.; Shinjo, T.; Sano, T.; Iwashita, M.; Yotsumoto, K.; et al. miR-1260b inhibits periodontal bone loss by targeting ATF6β mediated regulation of ER stress. Front. Cell Dev. Biol. 2022, 10, 1061216. [Google Scholar] [CrossRef]
- Domon, H.; Takahashi, N.; Honda, T.; Nakajima, T.; Tabeta, K.; Abiko, Y.; Yamazaki, K. Up-regulation of the endoplasmic reticulum stress-response in periodontal disease. Clin. Chim. Acta 2009, 401, 134–140. [Google Scholar] [CrossRef]
- Armitage, G.C. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 1999, 4, 1–6. [Google Scholar] [CrossRef]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions-Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45, S1–S8. [Google Scholar] [CrossRef]
Systemic Factor | Mechanism/Impact on Periodontium | References |
---|---|---|
Smoking | Enhances pro-inflammatory cytokine production and oxidative stress, thereby promoting periodontal tissue destruction and increasing the risk of tooth loss. | [28,29,30,31,32] |
Diabetes mellitus | Alters host immune response and bone metabolism, markedly increasing susceptibility to periodontitis. | [33] |
Obesity, cardiovascular disease, dementia | Contribute to disease risk. | [34,35,36] |
HIV infection | Predisposes to aggressive forms of periodontitis in younger patients. | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawlak-Socka, S.; Sokołowska, P.; Henrykowska, G.; Kowalczyk, E.; Kłosek, S.; Wiktorowska-Owczarek, A. The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans. Int. J. Mol. Sci. 2025, 26, 9620. https://doi.org/10.3390/ijms26199620
Gawlak-Socka S, Sokołowska P, Henrykowska G, Kowalczyk E, Kłosek S, Wiktorowska-Owczarek A. The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans. International Journal of Molecular Sciences. 2025; 26(19):9620. https://doi.org/10.3390/ijms26199620
Chicago/Turabian StyleGawlak-Socka, Sebastian, Paulina Sokołowska, Gabriela Henrykowska, Edward Kowalczyk, Sebastian Kłosek, and Anna Wiktorowska-Owczarek. 2025. "The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans" International Journal of Molecular Sciences 26, no. 19: 9620. https://doi.org/10.3390/ijms26199620
APA StyleGawlak-Socka, S., Sokołowska, P., Henrykowska, G., Kowalczyk, E., Kłosek, S., & Wiktorowska-Owczarek, A. (2025). The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans. International Journal of Molecular Sciences, 26(19), 9620. https://doi.org/10.3390/ijms26199620