Special Issue: “Pharmacological Strategies and Molecular Mechanisms Associated with the Novel Nephroprotective Treatments”
Conflicts of Interest
References
- Lambers Heerspink, H.J.; Fouque, D.; Wanner, C. Editorial: The role of sodium-glucose cotransporter 2 inhibitors in the management of chronic kidney disease. Nephrol. Dial. Transplant. 2020, 35 (Suppl. 1), i1–i2. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Marx-Schütt, K.; Cherney, D.Z.I.; Jankowski, J.; Matsushita, K.; Nardone, M.; Marx, N. Cardiovascular disease in chronic kidney disease. Eur. Heart J. 2025, 46, 2148–2160. [Google Scholar] [CrossRef] [PubMed]
- Schunk, S.J.; Zimmermann, P. Cardiovascular Risk and Its Presentation in Chronic Kidney Disease. J. Clin. Med. 2025, 14, 4567. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Ballew, S.H.; Wang, A.Y.; Kalyesubula, R.; Schaeffner, E.; Agarwal, R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat. Rev. Nephrol. 2022, 18, 696–707. [Google Scholar] [CrossRef]
- Bhandari, S.; Mehta, S.; Khwaja, A.; Cleland, J.G.F.; Ives, N.; Brettell, E.; Chadburn, M.; Cockwell, P. STOPACEi Trial Investigators Renin-Angiotensin System Inhibition in Advanced Chronic Kidney Disease. N. Engl. J. Med. 2022, 387, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Fioretti, F.; Testani, J.M.; Tio, M.C.; Pitt, B.; Butler, J. Aldosterone and Aldosterone Modulation in Cardio-Kidney Diseases. J. Am. Coll. Cardiol. 2025, 86, 354–373. [Google Scholar] [CrossRef]
- Brewster, U.C.; Perazella, M.A. The renin-angiotensin-aldosterone system and the kidney: Effects on kidney disease. Am. J. Med. 2004, 116, 263–272. [Google Scholar] [CrossRef]
- Shrestha, A.; Che, R.C.; Zhang, A.H. Role of Aldosterone in Renal Fibrosis. Adv. Exp. Med. Biol. 2019, 1165, 325–346. [Google Scholar] [CrossRef]
- Rüster, C.; Wolf, G. Renin-angiotensin-aldosterone system and progression of renal disease. J. Am. Soc. Nephrol. 2006, 17, 2985–2991. [Google Scholar] [CrossRef] [PubMed]
- Książek, K.; Wiśniewska, M.; Rogalska, A.; Sokołowska, M.; Czarnecka, J.; Wajda, A.; Król, E. Novel pharmacological approaches to renin–angiotensin–aldosterone system inhibition: Current and future perspectives. Int. J. Mol. Sci. 2023, 24, 14527. [Google Scholar] [CrossRef]
- Nardone, M.; Yau, K.; Kugathasan, L.; Odutayo, A.; Mohsen, M.; Ouimet, J.P.; Sridhar, V.S.; Cherney, D.Z.I. Upcoming drug targets for kidney protective effects in chronic kidney disease. Nephrol Dial Transplant. 2025, 40 (Suppl. 1), i47–i58. [Google Scholar] [CrossRef] [PubMed]
- Helmeczi, W.; Hundemer, G.L. Targeting aldosterone to improve cardiorenal outcomes: From nonsteroidal mineralocorticoid receptor antagonists to aldosterone synthase inhibitors. Curr. Opin. Nephrol. Hypertens. 2025, 34, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Theodorakopoulou, M.P.; Iatridi, F.; Sarafidis, P.A. Aldosterone synthase inhibition in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2025, 34, 360–367. [Google Scholar] [CrossRef]
- Zachariah, T.; Radhakrishnan, J. Potential Role of Mineralocorticoid Receptor Antagonists in Nondiabetic Chronic Kidney Disease and Glomerular Disease. Clin. J. Am. Soc. Nephrol. 2024, 19, 1499–1512. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, Y.; Tang, X.; Chen, Q.; Sun, Y.; Wu, Y.; Zhang, Z. Indoxyl sulfate induces renal fibrosis via ROS-mediated activation of the NLRP3 inflammasome in mice. Int. J. Mol. Sci. 2023, 24, 12051. [Google Scholar] [CrossRef]
- Burnier, M.; Damianaki, A. Hypertension as Cardiovascular Risk Factor in Chronic Kidney Disease. Circ. Res. 2023, 132, 1050–1063. [Google Scholar] [CrossRef]
- Sarafidis, P.; Schmieder, R.; Burnier, M.; Persu, A.; Januszewicz, A.; Halimi, J.M.; Arici, M.; Ortiz, A.; Wanner, C.; Mancia, G.; et al. A European Renal Association (ERA) synopsis for nephrology practice of the 2023 European Society of Hypertension (ESH) Guidelines for the Management of Arterial Hypertension. Nephrol Dial Transplant. 2024, 39, 929–943. [Google Scholar] [CrossRef]
- Serra, R.; Ielapi, N.; Licastro, N.; Provenzano, M.; Andreucci, M.; Bracale, U.M.; Jiritano, F.; de Franciscis, S.; Mastroroberto, P.; Serraino, G.F. Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio as Biomarkers for Cardiovascular Surgery Procedures: A Literature Review. Rev. Recent. Clin. Trials 2021, 16, 173–179. [Google Scholar] [CrossRef]
- Ohno, S.; Ishii, A.; Yanagita, M.; Yokoi, H. Calcium channel blocker in patients with chronic kidney disease. Clin. Exp. Nephrol. 2022, 26, 207–215. [Google Scholar] [CrossRef]
- Moore, K.H.; Clemmer, J.S. Questioning the renoprotective role of L-type calcium channel blockers in chronic kidney disease using physiological modeling. Am. J. Physiol. Renal Physiol. 2021, 321, F548–F557. [Google Scholar] [CrossRef]
- Hajdys, J.; Fularski, P.; Leszto, K.; Majchrowicz, G.; Stabrawa, M.; Młynarska, E.; Rysz, J.; Franczyk, B. New Insights into the Nephroprotective Potential of Lercanidipine. Int. J. Mol. Sci. 2023, 24, 14048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Lv, X.; Kan, M.; Wang, R.; Wang, H.; Zang, H. Critical overview of hepatic factors that link non-alcoholic fatty liver disease and acute kidney injury: Physiology and therapeutic implications. Int. J. Mol. Sci. 2022, 23, 12464. [Google Scholar] [CrossRef] [PubMed]
- Au-Yeung, K.K.W.; Shang, Y.; Wijerathne, C.U.B.; Madduma Hewage, S.; Siow, Y.L.; O, K. Acute kidney injury induces oxidative stress and hepatic lipid accumulation through AMPK signaling pathway. Antioxidants 2023, 12, 883. [Google Scholar] [CrossRef]
- Musso, G.; Cassader, M.; Cohney, S.; Pinach, S.; Saba, F.; Gambino, R. Emerging Liver-Kidney Interactions in Nonalcoholic Fatty Liver Disease. Trends Mol. Med. 2015, 21, 645–662. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D. Non-alcoholic fatty liver disease: An emerging driving force in chronic kidney disease. Nat. Rev. Nephrol. 2017, 13, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Frost, K.L.; Jilek, J.L.; Thompson, A.D.; Klein, R.R.; Sinari, S.; Torabzedehkorasani, E.; Billheimer, D.D.; Schnellmann, R.G.; Cherrington, N.J. Increased Renal Expression of Complement Components in Patients With Liver Diseases: Nonalcoholic Steatohepatitis, Alcohol-Associated, Viral Hepatitis, and Alcohol-Viral Combination. Toxicol. Sci. 2022, 189, 62–72. [Google Scholar] [CrossRef]
- Musso, G.; Cassader, M.; Cohney, S.; De Michieli, F.; Pinach, S.; Saba, F.; Gambino, R. Fatty Liver and Chronic Kidney Disease: Novel Mechanistic Insights and Therapeutic Opportunities. Diabetes Care 2016, 39, 1830–1845. [Google Scholar] [CrossRef]
- de Godoy Torso, N.; Visacri, M.B.; Quintanilha, J.C.F.; Cursino, M.A.; Pincinato, E.C.; Moriel, P. Assessment of renal function in head and neck cancer patients treated with cisplatin: Different biomarkers and acute kidney injury classifications. Int. J. Mol. Sci. 2022, 24, 141. [Google Scholar] [CrossRef]
- George, B.; Joy, M.S.; Aleksunes, L.M. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp. Biol. Med. 2018, 243, 272–282. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Wen, X.; Mercke, N.; Gomez, M.; O’Bryant, C.; Bowles, D.W.; Hu, Y.; Hogan, S.L.; Joy, M.S.; Aleksunes, L.M. Profiling of Kidney Injury Biomarkers in Patients Receiving Cisplatin: Time-dependent Changes in the Absence of Clinical Nephrotoxicity. Clin. Pharmacol. Ther. 2017, 101, 510–518. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Provenzano, M. Special Issue: “Pharmacological Strategies and Molecular Mechanisms Associated with the Novel Nephroprotective Treatments”. Int. J. Mol. Sci. 2025, 26, 9556. https://doi.org/10.3390/ijms26199556
Provenzano M. Special Issue: “Pharmacological Strategies and Molecular Mechanisms Associated with the Novel Nephroprotective Treatments”. International Journal of Molecular Sciences. 2025; 26(19):9556. https://doi.org/10.3390/ijms26199556
Chicago/Turabian StyleProvenzano, Michele. 2025. "Special Issue: “Pharmacological Strategies and Molecular Mechanisms Associated with the Novel Nephroprotective Treatments”" International Journal of Molecular Sciences 26, no. 19: 9556. https://doi.org/10.3390/ijms26199556
APA StyleProvenzano, M. (2025). Special Issue: “Pharmacological Strategies and Molecular Mechanisms Associated with the Novel Nephroprotective Treatments”. International Journal of Molecular Sciences, 26(19), 9556. https://doi.org/10.3390/ijms26199556