The Human Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptor Can Form Two Distinguishable Subtypes
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data and Statistical Analysis
4.2. Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
AD | Alzheimer’s Disease |
ADHD | Attention Deficit Hyperactivity Disorder |
ASD | Autism Spectrum Disorder |
CA1 | Amun’s horn |
CNS | Central nervous system |
nH | Hill slope |
nAChR | Nicotinic acetylcholine receptor |
PNS | Peripheral nervous system |
RT-qPCR | reverse transcription-quantitative polymerase chain reaction |
References
- Cobb, S.R.; Buhl, E.H.; Halasy, K.; Paulsen, O.; Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 1995, 378, 75–78. [Google Scholar] [CrossRef]
- Jones, S.; Yakel, J.L. Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J. Physiol. 1997, 504 Pt 3, 603–610. [Google Scholar] [CrossRef]
- Winzer-Serhan, U.H.; Leslie, F.M. Expression of alpha5 nicotinic acetylcholine receptor subunit mRNA during hippocampal and cortical development. J. Comp. Neurol. 2005, 481, 19–30. [Google Scholar] [CrossRef]
- Grybko, M.; Sharma, G.; Vijayaraghavan, S. Functional distribution of nicotinic receptors in CA3 region of the hippocampus. J. Mol. Neurosci. 2010, 40, 114–120. [Google Scholar] [CrossRef]
- Ji, D.; Dani, J.A. Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. J. Neurophysiol. 2000, 83, 2682–2690. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.C.; Burgon, R.M.; Thompson, S.; Sudweeks, S.N. Single-cell quantitative expression of nicotinic acetylcholine receptor mRNA in rat hippocampal interneurons. PLoS ONE 2024, 19, e0301592. [Google Scholar] [CrossRef] [PubMed]
- Sudweeks, S.N.; Yakel, J.L. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J. Physiol. 2000, 527 Pt 3, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef]
- Zoli, M.; Pucci, S.; Vilella, A.; Gotti, C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr. Neuropharmacol. 2018, 16, 338–349. [Google Scholar] [CrossRef]
- Wang, N.; Orr-Urtreger, A.; Korczyn, A.D. The role of neuronal nicotinic acetylcholine receptor subunits in autonomic ganglia: Lessons from knockout mice. Prog. Neurobiol. 2002, 68, 341–360. [Google Scholar] [CrossRef]
- Carbone, A.L.; Moroni, M.; Groot-Kormelink, P.J.; Bermudez, I. Pentameric concatenated (α4)2(β2)3 and (α4)3(β2)2 nicotinic acetylcholine receptors: Subunit arrangement determines functional expression. Br. J. Pharmacol. 2009, 156, 970–981. [Google Scholar] [CrossRef] [PubMed]
- Lucero, L.M.; Weltzin, M.M.; Eaton, J.B.; Cooper, J.F.; Lindstrom, J.M.; Lukas, R.J.; Whiteaker, P. Differential α4(+)/(-)β2 Agonist-binding Site Contributions to α4β2 Nicotinic Acetylcholine Receptor Function Within and Between Isoforms. J. Biol. Chem. 2016, 291, 2444–2459. [Google Scholar] [CrossRef] [PubMed]
- Moroni, M.; Zwart, R.; Sher, E.; Cassels, B.K.; Bermudez, I. α4β2 nicotinic receptors with high and low acetylcholine sensitivity: Pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol. Pharmacol. 2006, 70, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.E.; Kuryatov, A.; Choi, C.H.; Zhou, Y.; Lindstrom, J. Alternate stoichiometries of α4β2 nicotinic acetylcholine receptors. Mol. Pharmacol. 2003, 63, 332–341. [Google Scholar] [CrossRef]
- Zhou, Y.; Nelson, M.E.; Kuryatov, A.; Choi, C.; Cooper, J.; Lindstrom, J. Human α4β2 acetylcholine receptors formed from linked subunits. J. Neurosci. 2003, 23, 9004–9015. [Google Scholar] [CrossRef]
- Zwart, R.; Vijverberg, H.P. Four pharmacologically distinct subtypes of α4β2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol. Pharmacol. 1998, 54, 1124–1131. [Google Scholar] [CrossRef]
- Millar, N.S.; Harkness, P.C. Assembly and trafficking of nicotinic acetylcholine receptors. Mol. Membr. Biol. 2008, 25, 279–292. [Google Scholar] [CrossRef]
- Dannenberg, H.; Young, K.; Hasselmo, M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front. Neural Circuits 2017, 11, 102. [Google Scholar] [CrossRef]
- Guan, Z.Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci. Ther. 2024, 30, e70069. [Google Scholar] [CrossRef]
- Levin, E.D.; McClernon, F.J.; Rezvani, A.H. Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology 2006, 184, 523–539. [Google Scholar] [CrossRef]
- Rezvani, A.H.; Levin, E.D. Cognitive effects of nicotine. Biol. Psychiatry 2001, 49, 258–267. [Google Scholar] [CrossRef]
- Leiser, S.C.; Bowlby, M.R.; Comery, T.A.; Dunlop, J. A cog in cognition: How the alpha 7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmacol. Ther. 2009, 122, 302–311. [Google Scholar] [CrossRef]
- Martin, L.F.; Kem, W.R.; Freedman, R. Alpha-7 nicotinic receptor agonists: Potential new candidates for the treatment of schizophrenia. Psychopharmacology 2004, 174, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Soderman, A.; Mikkelsen, J.D.; West, M.J.; Christensen, D.Z.; Jensen, M.S. Activation of nicotinic α7 acetylcholine receptor enhances long term potentation in wild type mice but not in APP(swe)/PS1DeltaE9 mice. Neurosci. Lett. 2011, 487, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.L.; Porter, R.H. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem. Pharmacol. 2011, 82, 891–903. [Google Scholar] [CrossRef]
- Rode, F.; Munro, G.; Holst, D.; Nielsen, E.O.; Troelsen, K.B.; Timmermann, D.B.; Ronn, L.C.; Grunnet, M. Positive allosteric modulation of α4β2 nAChR agonist induced behaviour. Brain Res. 2012, 1458, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Timmermann, D.B.; Sandager-Nielsen, K.; Dyhring, T.; Smith, M.; Jacobsen, A.M.; Nielsen, E.O.; Grunnet, M.; Christensen, J.K.; Peters, D.; Kohlhaas, K.; et al. Augmentation of cognitive function by NS9283, a stoichiometry-dependent positive allosteric modulator of α2- and α4-containing nicotinic acetylcholine receptors. Br. J. Pharmacol. 2012, 167, 164–182. [Google Scholar] [CrossRef]
- Chavez-Noriega, L.E.; Crona, J.H.; Washburn, M.S.; Urrutia, A.; Elliott, K.J.; Johnson, E.C. Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 1997, 280, 346–356. [Google Scholar] [CrossRef]
- Chavez-Noriega, L.E.; Gillespie, A.; Stauderman, K.A.; Crona, J.H.; Claeps, B.O.; Elliott, K.J.; Reid, R.T.; Rao, T.S.; Velicelebi, G.; Harpold, M.M.; et al. Characterization of the recombinant human neuronal nicotinic acetylcholine receptors α3β2 and α4β2 stably expressed in HEK293 cells. Neuropharmacology 2000, 39, 2543–2560. [Google Scholar] [CrossRef]
- Wang, F.; Nelson, M.E.; Kuryatov, A.; Olale, F.; Cooper, J.; Keyser, K.; Lindstrom, J. Chronic nicotine treatment up-regulates human α3β2 but not α3β4 acetylcholine receptors stably transfected in human embryonic kidney cells. J. Biol. Chem. 1998, 273, 28721–28732. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, C.; Liu, Z.; Wang, X.; Liu, N.; Du, W.; Dai, Q. Structural and Functional Characterization of a Novel alpha-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR α3β2, α9α10 and α6/α3β2β3 Subtypes. Mar. Drugs 2015, 13, 3259–3275. [Google Scholar] [CrossRef]
- Wu, T.Y.; Smith, C.M.; Sine, S.M.; Levandoski, M.M. Morantel allosterically enhances channel gating of neuronal nicotinic acetylcholine α3β2 receptors. Mol. Pharmacol. 2008, 74, 466–475. [Google Scholar] [CrossRef]
- Papke, R.L.; Boulter, J.; Patrick, J.; Heinemann, S. Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neuron 1989, 3, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Khiroug, S.S.; Khiroug, L.; Yakel, J.L. Rat nicotinic acetylcholine receptor alpha2beta2 channels: Comparison of functional properties with alpha4beta2 channels in Xenopus oocytes. Neuroscience 2004, 124, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Ussing, C.A.; Hansen, C.P.; Petersen, J.G.; Jensen, A.A.; Rohde, L.A.; Ahring, P.K.; Nielsen, E.O.; Kastrup, J.S.; Gajhede, M.; Frolund, B.; et al. Synthesis, pharmacology, and biostructural characterization of novel α4β2 nicotinic acetylcholine receptor agonists. J. Med. Chem. 2013, 56, 940–951. [Google Scholar] [CrossRef]
- Dineley, K.T.; Pandya, A.A.; Yakel, J.L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol. Sci. 2015, 36, 96–108. [Google Scholar] [CrossRef]
- Hoskin, J.L.; Al-Hasan, Y.; Sabbagh, M.N. Nicotinic Acetylcholine Receptor Agonists for the Treatment of Alzheimer’s Dementia: An Update. Nicotine Tob. Res. 2019, 21, 370–376. [Google Scholar] [CrossRef]
- Deutsch, S.I.; Urbano, M.R.; Neumann, S.A.; Burket, J.A.; Katz, E. Cholinergic Abnormalities in Autism: Is There a Rationale for Selective Nicotinic Agonist Interventions? Clin. Neuropharmacol. 2010, 33, 114–120. [Google Scholar] [CrossRef]
- Potter, A.S.; Schaubhut, G.; Shipman, M. Targeting the nicotinic cholinergic system to treat attention-deficit/hyperactivity disorder: Rationale and progress to date. CNS Drugs 2014, 28, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Wilens, T.E.; Decker, M.W. Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: Focus on cognition. Biochem. Pharmacol. 2007, 74, 1212–1223. [Google Scholar] [CrossRef]
- Hill, J.A., Jr.; Zoli, M.; Bourgeois, J.P.; Changeux, J.P. Immunocytochemical localization of a neuronal nicotinic receptor: The beta 2-subunit. J. Neurosci. 1993, 13, 1551–1568. [Google Scholar] [CrossRef]
- Lindstrom, J. Ion Channels; Narahashi, T., Ed.; Springer: Boston, MA, USA, 1996; Volume 4. [Google Scholar]
- Ullian, E.M.; McIntosh, J.M.; Sargent, P.B. Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. J. Neurosci. 1997, 17, 7210–7219. [Google Scholar] [CrossRef]
- Vernallis, A.B.; Conroy, W.G.; Berg, D.K. Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 1993, 10, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.J.; Yasuda, R.P.; Davila-Garcia, M.I.; Xiao, Y.; Ebert, S.; Gupta, T.; Kellar, K.J.; Wolfe, B.B. Neuronal nicotinic acetylcholine receptor alpha3 subunit protein in rat brain and sympathetic ganglion measured using a subunit-specific antibody: Regional and ontogenic expression. J. Neurochem. 2001, 77, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Campos-Caro, A.; Smillie, F.I.; Dominguez del Toro, E.; Rovira, J.C.; Vicente-Agullo, F.; Chapuli, J.; Juiz, J.M.; Sala, S.; Sala, F.; Ballesta, J.J.; et al. Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: Cloning, expression, and genomic organization of receptor subunits. J. Neurochem. 1997, 68, 488–497. [Google Scholar] [CrossRef]
- Mihovilovic, M.; Roses, A.D. Expression of alpha-3, alpha-5, and beta-4 neuronal acetylcholine receptor subunit transcripts in normal and myasthenia gravis thymus. Identification of thymocytes expressing the alpha-3 transcripts. J. Immunol. 1993, 151, 6517–6524. [Google Scholar] [CrossRef] [PubMed]
- Zia, S.; Ndoye, A.; Nguyen, V.T.; Grando, S.A. Nicotine enhances expression of the alpha 3, alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res. Commun. Mol. Pathol. Pharmacol. 1997, 97, 243–262. [Google Scholar]
- Grando, S.A.; Horton, R.M.; Mauro, T.M.; Kist, D.A.; Lee, T.X.; Dahl, M.V. Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx and enhances cell differentiation. J. Investig. Dermatol. 1996, 107, 412–418. [Google Scholar] [CrossRef]
- Grando, S.A.; Horton, R.M.; Pereira, E.F.; Diethelm-Okita, B.M.; George, P.M.; Albuquerque, E.X.; Conti-Fine, B.M. A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes. J. Investig. Dermatol. 1995, 105, 774–781. [Google Scholar] [CrossRef]
- Boorman, J.P.; Beato, M.; Groot-Kormelink, P.J.; Broadbent, S.D.; Sivilotti, L.G. The effects of β3 subunit incorporation on the pharmacology and single channel properties of oocyte-expressed human α3β4 neuronal nicotinic receptors. J. Biol. Chem. 2003, 278, 44033–44040. [Google Scholar] [CrossRef]
- Gerzanich, V.; Wang, F.; Kuryatov, A.; Lindstrom, J. Alpha 5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J. Pharmacol. Exp. Ther. 1998, 286, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; McCollum, M.; Bracamontes, J.; Steinbach, J.H.; Akk, G. Functional characterization of the α5(Asn398) variant associated with risk for nicotine dependence in the α3β4α5 nicotinic receptor. Mol. Pharmacol. 2011, 80, 818–827. [Google Scholar] [CrossRef]
- Rush, R.; Kuryatov, A.; Nelson, M.E.; Lindstrom, J. First and second transmembrane segments of alpha3, alpha4, beta2, and beta4 nicotinic acetylcholine receptor subunits influence the efficacy and potency of nicotine. Mol. Pharmacol. 2002, 61, 1416–1422. [Google Scholar] [CrossRef]
- Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P. The Hill equation: A review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 2008, 22, 633–648. [Google Scholar] [CrossRef]
- Monod, J.; Wyman, J.; Changeux, J.P. On the Nature of Allosteric Transitions: A Plausible Model. J. Mol. Biol. 1965, 12, 88–118. [Google Scholar] [CrossRef]
- Buisson, B.; Bertrand, D. Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function. J. Neurosci. 2001, 21, 1819–1829. [Google Scholar] [CrossRef]
- Covernton, P.J.; Connolly, J.G. Multiple components in the agonist concentration-response relationships of neuronal nicotinic acetylcholine receptors. J. Neurosci. Methods 2000, 96, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Exley, R.; Moroni, M.; Sasdelli, F.; Houlihan, L.M.; Lukas, R.J.; Sher, E.; Zwart, R.; Bermudez, I. Chaperone protein 14-3-3 and protein kinase A increase the relative abundance of low agonist sensitivity human α4β2 nicotinic acetylcholine receptors in Xenopus oocytes. J. Neurochem. 2006, 98, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Houlihan, L.M.; Slater, Y.; Guerra, D.L.; Peng, J.H.; Kuo, Y.P.; Lukas, R.J.; Cassels, B.K.; Bermudez, I. Activity of cytisine and its brominated isosteres on recombinant human α7, α4β2 and alpha4beta4 nicotinic acetylcholine receptors. J. Neurochem. 2001, 78, 1029–1043. [Google Scholar] [CrossRef]
- Ota, H.; Ohnuma, T.; Kodama, A.; Shimizu, T.; Sugawara, K.; Yamamoto, F. The Cholinergic Receptor Nicotinic α3 Was Reduced in the Hippocampus of Early Cognitively Impaired Adult Male Mice and Upregulated by Nicotine and Cytisine in HT22 Cells. Cells 2025, 14, 340. [Google Scholar] [CrossRef]
- Moroni, M.; Bermudez, I. Stoichiometry and pharmacology of two human α4β2 nicotinic receptor types. J. Mol. Neurosci. 2006, 30, 95–96. [Google Scholar] [CrossRef] [PubMed]
1:5 α3:β2 mRNA | 5:1 α3:β2 mRNA | |
---|---|---|
EC-50 (µM ACh) 1 | 12 ± 1.7 | 264 ± 1.6 |
Hill Slope | 0.48 ± 0.13 | 0.55 ± 0.15 |
R2 | 0.74 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, D.C.; Hall, M.K.; Sudweeks, S.N. The Human Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptor Can Form Two Distinguishable Subtypes. Int. J. Mol. Sci. 2025, 26, 9506. https://doi.org/10.3390/ijms26199506
Jackson DC, Hall MK, Sudweeks SN. The Human Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptor Can Form Two Distinguishable Subtypes. International Journal of Molecular Sciences. 2025; 26(19):9506. https://doi.org/10.3390/ijms26199506
Chicago/Turabian StyleJackson, Doris C., Marcel K. Hall, and Sterling N. Sudweeks. 2025. "The Human Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptor Can Form Two Distinguishable Subtypes" International Journal of Molecular Sciences 26, no. 19: 9506. https://doi.org/10.3390/ijms26199506
APA StyleJackson, D. C., Hall, M. K., & Sudweeks, S. N. (2025). The Human Alpha3 Beta2 Neuronal Nicotinic Acetylcholine Receptor Can Form Two Distinguishable Subtypes. International Journal of Molecular Sciences, 26(19), 9506. https://doi.org/10.3390/ijms26199506