Serum VEGF Potential as a Biomarker for Diagnosis of Female Unexplained Infertility: Does Atopy Matter?
Abstract
1. Introduction
2. Results
| Disease Group | Sample Size | VEGF Mean (pg/mL) | Reference | Research Types | |
|---|---|---|---|---|---|
| 1. | Oncologic conditions | 3401 | 340.45 | [13,14,15,16,17,18,19,20,21,22,23,24,25,26] | Meta-analysis; Prospective cohort observational; Case–control; Observational cohort; Cross-sectional observational |
| Breast cancer | 1835 | 216.32 | [13,15,16,17,18,19,20] | Meta-analysis; Case–control; Observational cohort; Cross-sectional observational | |
| Colon cancer | 1309 | 401.83 | [13,14,21,22,23] | Meta-analysis; Prospective cohort observational; Observational cohort | |
| Glioblastoma | 90 | 482.98 | [24,25,26] | Case–control | |
| Other cancers | 1005 | 386.79 | [13] | Meta-analysis | |
| 2. | Allergic diseases | 194 | 340.45 | [10,27,28,29,30] | Pilot observational; Cross-sectional observational; Case–control |
| 3. | Chronic diseases | 303 | 567.90 | [31,32,33,34,35,36] | Case–control |
| 4. | Control group | 1748 | 182.68 | [10,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] | Pilot observational; Meta-analysis; Prospective cohort observational; Case–control; Observational cohort; Cross-sectional observational |
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Njagi, P.; Groot, W.; Arsenijevic, J.; Dyer, S.; Mburu, G.; Kiarie, J. Financial costs of assisted reproductive technology for patients in low- and middle-income countries: A systematic review. Hum. Reprod. Open 2023, 2023, hoad007. [Google Scholar] [CrossRef]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility. JAMA 2021, 326, 65–76. [Google Scholar] [CrossRef]
- Lu, L.; Lu, Y.; Zhang, L. Regulatory T Cell and T Helper 17 Cell Imbalance in Patients with Unexplained Infertility. Int. J. Womens Health 2024, 16, 1033–1040. [Google Scholar] [CrossRef]
- Abdulslam Abdullah, A.; Ahmed, M.; Oladokun, A.; Ibrahim, N.A.; Adam, S.N. Serum leptin level in Sudanese women with unexplained infertility and its relationship with some reproductive hormones. World J. Biol. Chem. 2022, 13, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yi, H.; Li, T.C.; Wang, Y.; Wang, H.; Chen, X. Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo Implantation: Clinical Implications. Biomolecules 2021, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular Endothelial Growth Factor and Angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y. The impact of VEGF on cancer metastasis and systemic disease. Semin. Cancer Biol. 2022, 86, 251–261. [Google Scholar] [CrossRef]
- Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Gomułka, K.; Mędrala, W. Serum Levels of Vascular Endothelial Growth Factor, Platelet Activating Factor and Eosinophil-Derived Neurotoxin in Chronic Spontaneous Urticaria—A Pilot Study in Adult Patients. Int. J. Mol. Sci. 2022, 23, 9631. [Google Scholar] [CrossRef]
- Piekarska, K.; Dratwa, M.; Radwan, P.; Radwan, M.; Bogunia-Kubik, K.; Nowak, I. Pro- and anti-inflammatory cytokines and growth factors in patients undergoing in vitro fertilization procedure treated with prednisone. Front. Immunol. 2023, 14, 1250488. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef]
- Kut, C.; Mac Gabhann, F.; Popel, A.S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 2007, 97, 978–985. [Google Scholar] [CrossRef]
- De Vita, F.; Orditura, M.; Lieto, E.; Infusino, S.; Morgillo, F.; Martinelli, E.; Castellano, P.; Romano, C.; Ciardiello, F.; Catalano, G.; et al. Elevated perioperative serum vascular endothelial growth factor levels in patients with colon carcinoma. Cancer 2004, 100, 270–278. [Google Scholar] [CrossRef]
- Liu, G.; Chen, X.-T.; Zhang, H.; Chen, X. Expression analysis of cytokines IL-5, IL-6, IL-8, IL-17 and VEGF in breast cancer patients. Front. Oncol. 2022, 12, 1019247. [Google Scholar] [CrossRef] [PubMed]
- Balalis, D.; Tsakogiannis, D.; Kalogera, E.; Kokkali, S.; Tripodaki, E.; Ardavanis, A.; Manatakis, D.; Dimas, D.; Koufopoulos, N.; Fostira, F.; et al. Serum Concentration of Selected Angiogenesis-Related Molecules Differs among Molecular Subtypes, Body Mass Index and Menopausal Status in Breast Cancer Patients. J. Clin. Med. 2022, 11, 4079. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, M.I.; Limberis, V.; Tentes, I.; Kontomanolis, E.; Kortsaris, A.; Sivridis, E.; Giatromanolaki, A. Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine 2011, 53, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yin, L.; Wu, J.; Zhang, Y.; Xu, T.; Ma, R.; Cao, H.; Tang, J. Detection of serum VEGF and MMP-9 levels by Luminex multiplexed assays in patients with breast infiltrative ductal carcinoma. Exp. Ther. Med. 2014, 8, 175–180. [Google Scholar] [CrossRef]
- Benoy, I.; Salgado, R.; Colpaert, C.; Weytjens, R.; Vermeulen, P.B.; Dirix, L.Y. Serum Interleukin 6, Plasma VEGF, Serum VEGF, and VEGF Platelet Load in Breast Cancer Patients. Clin. Breast Cancer 2002, 2, 311–315. [Google Scholar] [CrossRef]
- Lu, D.; Zhou, X.; Yao, L.; Liu, C.; Ma, W.; Jin, F.; Wu, Y. Serum soluble ST2 is associated with ER-positive breast cancer. BMC Cancer 2014, 14, 198. [Google Scholar] [CrossRef]
- Karayiannakis, A.J.; Syrigos, K.N.; Zbar, A.; Baibas, N.; Polychronidis, A.; Simopoulos, C.; Karatzas, G. Clinical significance of preoperative serum vascular endothelial growth factor levels in patients with colorectal cancer and the effect of tumor surgery. Surgery 2002, 131, 548–555. [Google Scholar] [CrossRef]
- Broll, R.; Erdmann, H.; Duchrow, M.; Oevermann, E.; Schwandner, O.; Markert, U.; Bruch, H.P.; Windhövel, U. Vascular endothelial growth factor (VEGF)—A valuable serum tumour marker in patients with colorectal cancer? Eur. J. Surg. Oncol. (EJSO) 2001, 27, 37–42. [Google Scholar] [CrossRef]
- Kumar, H.; Heer, K.; Lee, P.W.; Duthie, G.S.; MacDonald, A.W.; Greenman, J.; Kerin, M.J.; Monson, J.R. Preoperative serum vascular endothelial growth factor can predict stage in colorectal cancer. Clin. Cancer Res. 1998, 4, 1279–1285. [Google Scholar] [PubMed]
- Crocker, M.; Ashley, S.; Giddings, I.; Petrik, V.; Hardcastle, A.; Aherne, W.; Pearson, A.; Anthony Bell, B.; Zacharoulis, S.; Papadopoulos, M.C. Serum angiogenic profile of patients with glioblastoma identifies distinct tumor subtypes and shows that TIMP-1 is a prognostic factor. Neuro Oncol. 2011, 13, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Chiorean, R.; Berindan-Neagoe, I.; Braicu, C.; Florian, S.; Daniel-Corneliu, L.; Crisan, D.; Cernea, V. Quantitative expression of serum biomarkers involved in angiogenesis and inflammation, in patients with glioblastoma multiforme: Correlations with clinical data. Cancer Biomark. Sect. A Dis. Markers 2014, 14, 185–194. [Google Scholar] [CrossRef]
- Reynés, G.; Vila, V.; Martín, M.; Parada, A.; Fleitas, T.; Reganon, E.; Martínez-Sales, V. Circulating markers of angiogenesis, inflammation, and coagulation in patients with glioblastoma. J. Neuro Oncol. 2011, 102, 35–41. [Google Scholar] [CrossRef]
- Gomułka, K.; Liebhart, J.; Gładysz, U.; Mędrala, W. VEGF serum concentration and irreversible bronchoconstriction in adult asthmatics. Adv. Clin. Exp. Med. 2019, 28, 759–763. [Google Scholar] [CrossRef]
- Makowska, J.S.; Cieślak, M.; Jarzębska, M.; Lewandowska-Polak, A.; Kowalski, M.L. Angiopoietin-2 concentration in serum is associated with severe asthma phenotype. Allergy Asthma Clin. Immunol. 2016, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Mostmans, Y.; Maurer, M.; Richert, B.; Smith, V.; Melsens, K.; De Maertelaer, V.; Saidi, I.; Corazza, F.; Michel, O. Chronic spontaneous urticaria: Evidence of systemic microcirculatory changes. Clin. Transl. Allergy 2024, 14, e12335. [Google Scholar] [CrossRef]
- Samochocki, Z.; Bogaczewicz, J.; Sysa-Jędrzejowska, A.; McCauliffe, D.P.; Kontny, E.; Wozniacka, A. Expression of vascular endothelial growth factor and other cytokines in atopic dermatitis, and correlation with clinical features. Int. J. Dermatol. 2016, 55, e141–e146. [Google Scholar] [CrossRef]
- Pihan, M.; Keddie, S.; D’Sa, S.; Church, A.J.; Yong, K.L.; Reilly, M.M.; Lunn, M.P. Raised VEGF. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e486. [Google Scholar] [CrossRef]
- Kierszniewska-Stepien, D.; Pietras, T.; Gorski, P.; Stepien, H. Serum vascular endothelial growth factor and its receptor level in patients with chronic obstructive pulmonary disease. Eur. Cytokine Netw. 2006, 17, 75–79. [Google Scholar] [PubMed]
- Farid Hosseini, R.; Jabbari Azad, F.; Yousefzadeh, H.; Rafatpanah, H.; Hafizi, S.; Tehrani, H.; Khani, M. Serum levels of vascular endothelial growth factor in chronic obstructive pulmonary disease. Med. J. Islam. Repub. Iran 2014, 28, 85. [Google Scholar]
- Kouchaki, E.; Shahreza, B.O.; Faraji, S.; Nikoueinejad, H.; Sehat, M. The Association between Vascular Endothelial Growth Factor-related Factors with Severity of Multiple Sclerosis. Iran. J. Allergy Asthma Immunol. 2016, 15, 204–211. [Google Scholar]
- Ziora, D.; Jastrzębski, D.; Adamek, M.; Czuba, Z.; Grzanka, A.; Kasperska-Zajac, A. Circulating concentration of markers of angiogenic activity in patients with sarcoidosis and idiopathic pulmonary fibrosis. BMC Pulm. Med. 2015, 15, 113. [Google Scholar] [CrossRef]
- Öztop, N.; Özer, P.K.; Demir, S.; Beyaz, Ş.; Tiryaki, T.O.; Özkan, G.; Aydogan, M.; Bugra, M.Z.; Çolakoglu, B.; Büyüköztürk, S.; et al. Impaired endothelial function irrespective of systemic inflammation or atherosclerosis in mastocytosis. Ann. Allergy Asthma Immunol. 2021, 127, 76–82. [Google Scholar] [CrossRef]
- Tedeschi, A.; Asero, R.; Marzano, A.V.; Lorini, M.; Fanoni, D.; Berti, E.; Cugno, M. Plasma levels and skin-eosinophil-expression of vascular endothelial growth factor in patients with chronic urticaria. Allergy 2009, 64, 1616–1622. [Google Scholar] [CrossRef]
- Alkharsah, K.R. VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. IJMS 2018, 19, 1642. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Wang, T.-N.; Lin, Y.-S.; Kuo, P.-L.; Hsu, Y.-L.; Huang, M.-S. Aryl hydrocarbon receptor agonists upregulate VEGF secretion from bronchial epithelial cells. J. Mol. Med. 2015, 93, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Sismanopoulos, N.; Delivanis, D.A.; Alysandratos, K.D.; Angelidou, A.; Vasiadi, M.; Therianou, A.; Theoharides, T.C. IL-9 Induces VEGF Secretion from Human Mast Cells and IL-9/IL-9 Receptor Genes Are Overexpressed in Atopic Dermatitis. PLoS ONE 2012, 7, e33271. [Google Scholar] [CrossRef] [PubMed]
- Bae, O.; Ahn, S.; Jin, S.H.; Hong, S.H.; Lee, J.; Kim, E.-S.; Jeong, T.; Chun, Y.; Lee, A.-Y.; Noh, M. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor. Toxicol. Appl. Pharmacol. 2015, 283, 147–155. [Google Scholar] [CrossRef]
- Lee, C.; Kim, M.-J.; Kumar, A.; Lee, H.-W.; Yang, Y.; Kim, Y. Vascular endothelial growth factor signaling in health and disease: From molecular mechanisms to therapeutic perspectives. Signal Transduct. Target. Ther. 2025, 10, 170. [Google Scholar] [CrossRef]
- Atalay, M.A. Clinical significance of maternal serum vascular endothelial growth factor (VEGF) level in idiopathic recurrent pregnancy loss. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2974–2982. [Google Scholar]
- Failla, C.M.; Carbone, M.L.; Ramondino, C.; Bruni, E.; Orecchia, A. Vascular Endothelial Growth Factor (VEGF) Family and the Immune System: Activators or Inhibitors? Biomedicines 2024, 13, 6. [Google Scholar] [CrossRef]
- Lai, T.-H.; Chen, H.-T.; Wu, W.-B. TGFβ1 induces in-vitro and ex-vivo angiogenesis through VEGF production in human ovarian follicular fluid-derived granulosa cells during in-vitro fertilization cycle. J. Reprod. Immunol. 2021, 145, 103311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, H.; Lin, J.; Qian, Y.; Deng, L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG 2005, 112, 1153–1155. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, F.; Klinger, F.G.; Rossi, G.; Sbracia, M. Immunohistochemical Study on the Expression of G-CSF, G-CSFR, VEGF, VEGFR-1, Foxp3 in First Trimester Trophoblast of Recurrent Pregnancy Loss in Pregnancies Treated with G-CSF and Controls. IJMS 2019, 21, 285. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Zhou, W.-J.; Luo, X.-Z.; Tao, Y.; Li, D.-J. Synergistic effect of regulatory T cells and proinflammatory cytokines in angiogenesis in the endometriotic milieu. Human. Reprod. 2017, 32, 1304–1317. [Google Scholar] [CrossRef]
- Lužnik, Z.; Anchouche, S.; Dana, R.; Yin, J. Regulatory T Cells in Angiogenesis. J. Immunol. 2020, 205, 2557–2565. [Google Scholar] [CrossRef]
- Cusano, N.E.; Rubin, M.R.; Zhang, C.; Anderson, L.; Levy, E.; Costa, A.G.; Irani, D.; Bilezikian, J.P. Parathyroid Hormone 1–84 Alters Circulating Vascular Endothelial Growth Factor Levels in Hypoparathyroidism. J. Clin. Endocrinol. Metab. 2014, 99, E2025–E2028. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.P.; Shrivastava, D. Evaluation of serum VEGF-A and interleukin 6 as predictors of angiogenesis during peri-implantation period assessed by Transvaginal Doppler Ultrasonography amongst women of prior reproductive failure: A cross-sectional analytical study. F1000Research 2023, 12, 284. [Google Scholar] [CrossRef]
- Lee, C.; Link, H.; Baluk, P.; Homer, R.; Chapoval, S.; Bhandari, V.; Kang, M.-J.; Cohn, L.; Kim, Y.-K.; McDonald, D.; et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat. Med. 2004, 10, 1095–1103. [Google Scholar] [CrossRef]
- Chang, W.-S.; Do, J.-H.; Kim, K.; Kim, Y.-S.; Lee, S.-H.; Yoon, D.; Kim, E.-J.; Lee, J.-K. The association of plasma cytokines including VEGF with recurrent wheezing in allergic patients. Asian Pac. J. Allergy Immunol. 2022, 40, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Terada, N.; Hamano, N.; Kishi, H.; Kobayashi, N.; Kotani, Y.; Miura, M.; Konno, A. Involvement of vascular endothelial growth factor in nasal obstruction in patients with nasal allergy. Allergol. Int. 2000, 49, 183–188. [Google Scholar] [CrossRef]
- Semenza, G.L. Regulation of hypoxia-induced angiogenesis: A chaperone escorts VEGF to the dance. J. Clin. Invest. 2001, 108, 39–40. [Google Scholar] [CrossRef]
- Ahluwalia, A.; Tarnawski, A.S. Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr. Med. Chem. 2012, 19, 90–97. [Google Scholar] [CrossRef]
- Eisermann, K.; Fraizer, G. The Androgen Receptor and VEGF: Mechanisms of Androgen-Regulated Angiogenesis in Prostate Cancer. Cancers 2017, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Simińska, D.; Gąssowska-Dobrowolska, M.; Listos, J.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int. J. Mol. Sci. 2021, 22, 10701. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Li, L.; Jiang, M.; Tang, Y.; Zhou, L.; Li, J.; Chen, Y. Sesamin inhibits hypoxia-stimulated angiogenesis via the NF-κB p65/HIF-1α/VEGFA signaling pathway in human colorectal cancer. Food Funct. 2022, 13, 8989–8997. [Google Scholar] [CrossRef] [PubMed]
- Asano-Kato, N.; Fukagawa, K.; Okada, N.; Kawakita, T.; Takano, Y.; Doğru, M.; Tsubota, K.; Fujishima, H. TGF-beta1, IL-1beta, and Th2 cytokines stimulate vascular endothelial growth factor production from conjunctival fibroblasts. Exp. Eye Res. 2005, 80, 555–560. [Google Scholar] [CrossRef]
- Lee, K.-W.; Park, S.; Kim, S.-R.; Min, K.-H.; Lee, K.; Choe, Y.; Hong, S.H.; Lee, Y.R.; Kim, J.-S.; Hong, S.; et al. Inhibition of VEGF blocks TGF-β1 production through a PI3K/Akt signalling pathway. Eur. Respir. J. 2008, 31, 523–531. [Google Scholar] [CrossRef]
- Soares, S.R.; Gómez, R.; Simón, C.; García-Velasco, J.A.; Pellicer, A. Targeting the vascular endothelial growth factor system to prevent ovarian hyperstimulation syndrome. Hum. Reprod. Update 2008, 14, 321–333. [Google Scholar] [CrossRef]
- Wu, W.-B.; Chen, H.-T.; Lin, J.-J.; Lai, T.-H. VEGF Concentration in a Preovulatory Leading Follicle Relates to Ovarian Reserve and Oocyte Maturation during Ovarian Stimulation with GnRH Antagonist Protocol in In Vitro Fertilization Cycle. J. Clin. Med. 2021, 10, 5032. [Google Scholar] [CrossRef]
- Gómez, R.; Simón, C.; Remohí, J.; Pellicer, A. Administration of moderate and high doses of gonadotropins to female rats increases ovarian vascular endothelial growth factor (VEGF) and VEGF receptor-2 expression that is associated to vascular hyperpermeability. Biol. Reprod. 2003, 68, 2164–2171. [Google Scholar] [CrossRef]
- Friedman, C.I.; Seifer, D.B.; Kennard, E.A.; Arbogast, L.; Alak, B.; Danforth, D.R. Elevated level of follicular fluid vascular endothelial growth factor is a marker of diminished pregnancy potential. Fertil. Steril. 1998, 70, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, P.; Giovanni Artini, P.; Simi, G.; Casarosa, E.; Cela, V.; Genazzani, A.R. Follicular fluid VEGF levels directly correlate with perifollicular blood flow in normoresponder patients undergoing IVF. J. Assist. Reprod. Genet. 2008, 25, 183–186. [Google Scholar] [CrossRef]
- Hannan, N.J.; Paiva, P.; Meehan, K.L.; Rombauts, L.J.F.; Gardner, D.K.; Salamonsen, L.A. Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation. Endocrinology 2011, 152, 4948–4956. [Google Scholar] [CrossRef]
- Asimakopoulos, B.; Nikolettos, N.; Papachristou, D.N.; Simopoulou, M.; Al-Hasani, S.; Diedrich, K. Follicular fluid levels of vascular endothelial growth factor and leptin are associated with pregnancy outcome of normal women participating in intracytoplasmic sperm injection cycles. Physiol. Res. 2005, 54, 263–270. [Google Scholar] [CrossRef]
- Lai, T.-H.; Vlahos, N.; Shih, I.-M.; Zhao, Y. Expression Patterns of VEGF and Flk-1 in Human Endometrium during the Menstrual Cycle. J. Reprod. Infertil. 2015, 16, 3–9. [Google Scholar]
- Gomez Medellin, J.E.; Hollinger, M.K.; Rosenberg, J.; Blaine, K.; Kurtanich, T.; Ankenbruck, N.; Hrusch, C.L.; Sperling, A.I.; Swartz, M.A. VEGFR3-driven pulmonary lymphangiogenesis exacerbates induction of bronchus-associated lymphoid tissue in allergic airway disease. J. Immunol. 2022, 208, 109.24. [Google Scholar] [CrossRef]
- Kunstfeld, R.; Hirakawa, S.; Hong, Y.-K.; Schacht, V.; Lange-Asschenfeldt, B.; Velasco, P.; Lin, C.; Fiebiger, E.; Wei, X.; Wu, Y.; et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 2004, 104, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-T.; Wu, W.-B.; Lin, J.-J.; Lai, T.-H. Identification of potential angiogenic biomarkers in human follicular fluid for predicting oocyte maturity. Front. Endocrinol. 2023, 14, 1173079. [Google Scholar] [CrossRef] [PubMed]




| Groups | VEGF Median (pg/mL) | Q1 (pg/mL) | Q3 (pg/mL) | IQR (pg/mL) | p Value |
|---|---|---|---|---|---|
| Fertile women | 82.5 | 57.8 | 128.9 | 71.1 | 0.152 |
| Women with unexplained infertility | 128.6 | 80.0 | 219.0 | 139.0 | |
| All sensitized women | 115.9 | 89.8 | 238.4 | 148.6 | 0.028 |
| All non-sensitized women | 85.7 | 21.7 | 177.3 | 155.6 | |
| Sensitized fertile women | 105.4 | 75.2 | 150.7 | 75.6 | 0.287 |
| Non-sensitized fertile women | 53.5 | 18.5 | 125.6 | 302.0 | |
| Sensitized women with unexplained infertility | 151.2 | 98.7 | 244.5 | 145.8 | |
| Non-sensitized women with unexplained infertility | 89.0 | 44.0 | 197.1 | 153.1 | |
| Atopic fertile women | 108.3 | 69.4 | 111.8 | 42.4 | 0.376 |
| Atopic women with unexplained infertility | 128.6 | 93.3 | 197.1 | 103.8 | |
| Allergic fertile women | 77.7 | 72.6 | 189.5 | 116.9 | |
| Non-allergic fertile women | 79.2 | 25.7 | 125.6 | 99.9 | |
| Allergic women with unexplained infertility | 162.7 | 101.4 | 273.4 | 172.0 | |
| Non-allergic women with unexplained infertility | 93.9 | 70.6 | 202.7 | 132.1 |
| Allergen Group/Allergen | All Subjects | Fertile Women | Infertile Women |
|---|---|---|---|
| Sensitizations (positive ALEX2 test result) | |||
| Pet allergens | 19 (27.1%) | 4 (5.7%) | 15 (21.4%) |
| Tree pollen | 15 (21.4%) | 5 (7.1%) | 10 (14.3%) |
| Fish/seafood | 15 (21.4%) | 5 (7.1%) | 10 (14.3%) |
| House dust mites (HDM) | 14 (20.0%) | 3 (4.3%) | 11 (15.7%) |
| Grass pollen | 14 (20.0%) | 3 (4.3%) | 11 (15.7%) |
| Confirmed Allergies (positive ALEX2 test result and clinical history) | |||
| Tree pollen | 17 (26.6%) | 4 (6.3%) | 13 (20.31%) |
| Cat allergen | 16 (25.0%) | 4 (6.3%) | 12 (18.8%) |
| Category | Infertile Group | Control Group |
|---|---|---|
| Inclusion criteria |
|
|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
| Exclusion criteria |
|
|
|
| |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didžiokaitė, G.; Grudytė, A.; Kuznecovaitė, A.; Žvirblė, M.; Survila, Ž.; Pašukonienė, V.; Kvedarienė, V. Serum VEGF Potential as a Biomarker for Diagnosis of Female Unexplained Infertility: Does Atopy Matter? Int. J. Mol. Sci. 2025, 26, 9499. https://doi.org/10.3390/ijms26199499
Didžiokaitė G, Grudytė A, Kuznecovaitė A, Žvirblė M, Survila Ž, Pašukonienė V, Kvedarienė V. Serum VEGF Potential as a Biomarker for Diagnosis of Female Unexplained Infertility: Does Atopy Matter? International Journal of Molecular Sciences. 2025; 26(19):9499. https://doi.org/10.3390/ijms26199499
Chicago/Turabian StyleDidžiokaitė, Gabija, Austėja Grudytė, Aida Kuznecovaitė, Margarita Žvirblė, Žilvinas Survila, Vita Pašukonienė, and Violeta Kvedarienė. 2025. "Serum VEGF Potential as a Biomarker for Diagnosis of Female Unexplained Infertility: Does Atopy Matter?" International Journal of Molecular Sciences 26, no. 19: 9499. https://doi.org/10.3390/ijms26199499
APA StyleDidžiokaitė, G., Grudytė, A., Kuznecovaitė, A., Žvirblė, M., Survila, Ž., Pašukonienė, V., & Kvedarienė, V. (2025). Serum VEGF Potential as a Biomarker for Diagnosis of Female Unexplained Infertility: Does Atopy Matter? International Journal of Molecular Sciences, 26(19), 9499. https://doi.org/10.3390/ijms26199499

