The Role of Vitamin C in Selected Autoimmune and Immune-Mediated Diseases: Exploring Potential Therapeutic Benefits
Abstract
1. Introduction
2. Multiple Sclerosis
3. Rheumatoid Arthritis
4. Sjögren’s Disease
5. Type 1 Diabetes
6. Crohn’s Disease
7. Hashimoto’s Thyroiditis
8. Periodontitis
9. Pernicious Anemia
10. Antiphospholipid Syndrome
11. Alzheimer’s Disease
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
APS | antiphospholipid syndrome |
CD | Crohn’s disease |
ECM | extracellular matrix |
HT | Hashimoto’s thyroiditis |
MS | multiple sclerosis |
PA | pernicious anemia |
PD | periodontitis |
RA | rheumatoid arthritis |
RCT | randomized controlled trial |
ROS | reactive oxygen species |
SD | Sjögren’s disease |
T1D | type 1 diabetes |
VitC | vitamin C |
References
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Hemilä, H. Vitamin C and Infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef]
- Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98 (Suppl. 1), S29–S35. [Google Scholar] [CrossRef] [PubMed]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann. Nutr. Metab. 2006, 50, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Frei, B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 1999, 69, 1086–1107. [Google Scholar] [CrossRef]
- Vollbracht, C.; Raithel, M.; Krick, B.; Kraft, K.; Hagel, A.F. Intravenous vitamin C in the treatment of allergies: An interim subgroup analysis of a long-term observational study. J. Int. Med. Res. 2018, 46, 3640–3655. [Google Scholar] [CrossRef]
- Vollbracht, C.; Schneider, B.; Leendert, V.; Weiss, G.; Auerbach, L.; Beuth, M.J. Intravenous Vitamin C Administration Improves Quality of Life in Breast Cancer Patients during Chemo-/radiotherapy and Aftercare: Results of a Retrospective, Multicentre, Epidemiological Cohort Study in Germany. In Vivo 2011, 25, 983–990. [Google Scholar]
- Vollbracht, C.; Kraft, K. Feasibility of Vitamin C in the Treatment of Post Viral Fatigue with Focus on Long COVID, Based on a Systematic Review of IV Vitamin C on Fatigue. Nutrients 2021, 13, 1154. [Google Scholar] [CrossRef]
- Vollbracht, C.; Kraft, K. Plausibility and Feasibility of Intravenous High-Dose Vitamin C in Long COVID Related Fatigue. J. Basic Clin. Pharm. 2021, 12, 1–4. [Google Scholar]
- Schencking, M.; Vollbracht, C.; Weiss, G.; Lebert, J.; Biller, A.; Goyvaerts, B.; Kraft, K. Intravenous Vitamin C in the Treatment of Shingles: Results of a Multicenter Prospective Cohort Study. Med. Sci. Monit. 2012, 18, CR215–CR224. [Google Scholar] [CrossRef] [PubMed]
- Polachini, C.R.N.; Spanevello, R.M.; Zanini, D.; Baldissarelli, J.; Pereira, L.B.; Schetinger, M.R.C.; da Cruz, I.B.M.; Assmann, C.E.; Bagatini, M.D.; Morsch, V.M. Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers, and Vitamin D Levels in Patients with Multiple Sclerosis. Neurotox. Res. 2016, 29, 230–242. [Google Scholar] [CrossRef]
- Tavazzi, B.; Batocchi, A.P.; Amorini, A.M.; Nociti, V.; D’Urso, S.; Longo, S.; Gullotta, S.; Picardi, M.; Lazzarino, G. Serum Metabolic Profile in Multiple Sclerosis Patients. Mult. Scler. Int. 2011, 2011, 167156. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; Salgado-Cámara, P.; García-Martín, E.; Agúndez, J.A.G. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024, 14, 1266. [Google Scholar] [CrossRef] [PubMed]
- Kocot, J.; Luchowska-Kocot, D.; Kiełczykowska, M.; Musik, I.; Kurzepa, J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders. Nutrients 2017, 9, 659. [Google Scholar] [CrossRef]
- Sotiriou, S.; Gispert, S.; Cheng, J.; Wang, Y.; Chen, A.; Hoogstraten-Miller, S.; Miller, G.F.; Kwon, O.; Levine, M.; Guttentag, S.H.; et al. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat. Med. 2002, 8, 514–517. [Google Scholar] [CrossRef]
- Oliani, C.H.P.; Budib, C.L.; Marques, I.P.G.; Silva, A.P.C.; Barboza, M.N.C.; Nogueira, P.F. Supplementation and therapeutic use of vitamin C in multiple sclerosis. Rev. Bras. Oftalmol. 2025, 84, e0054. [Google Scholar] [CrossRef]
- Peng, H.; Wu, X.; Wen, Y.; Lin, J. Plasma circulating vitamin C levels and risk of multiple sclerosis: A two-sample Mendelian randomization analysis. Mult. Scler. Relat. Disord. 2021, 56, 103267. [Google Scholar] [CrossRef] [PubMed]
- Ghadirian, P.; Jain, M.; Ducic, S.; Shatenstein, B.; Morisset, R. Nutritional factors in the aetiology of multiple sclerosis: A case- control study in Montreal, Canada. Int. J. Epidemiol. 1998, 27, 845–852. [Google Scholar] [CrossRef]
- Khosravi-Largani, M.; Pourvali-Talatappeh, P.; Rousta, A.M.; Karimi-Kivi, M.; Noroozi, E.; Mahjoob, A.; Asaadi, Y.; Shahmohammadi, A.; Sadeghi, S.; Shakeri, S.; et al. A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis. eNeurologicalSci 2018, 10, 37–44. [Google Scholar] [CrossRef]
- Pomary, P.K.; Eichau, S.; Amigó, N.; Barrios, L.; Matesanz, F.; García-Valdecasas, M.; Hrom, I.; Sánchez, M.I.G.; Garcia-Martin, M.L. Multifaceted Analysis of Cerebrospinal Fluid and Serum from Progressive Multiple Sclerosis Patients: Potential Role of Vitamin C and Metal Ion Imbalance in the Divergence of Primary Progressive Multiple Sclerosis and Secondary Progressive Multiple Sclerosis. J. Proteome Res. 2023, 22, 743–757. [Google Scholar] [CrossRef]
- Eldridge, C.F.; Bunge, M.B.; Bunge, R.P.; Wood, P.M. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 1987, 105, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Carlson, N.G.; Rose, J.W. Antioxidants in multiple sclerosis: Do they have a role in therapy? CNS Drugs 2006, 20, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, P.; Huang, S.; Chen, Q.; Wang, X.; Liu, H. Association between rheumatoid arthritis and serum vitamin C levels in Adults: Based on the National health and Nutrition Examination survey database. Prev. Med. Rep. 2024, 44, 102793. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, S.; Luo, Y.; Zhang, C.; Xu, W.; Wang, L. The association between composite dietary antioxidant index and rheumatoid arthritis: Evidence from NHANES 2001–2020. BMC Rheumatol. 2024, 8, 74. [Google Scholar] [CrossRef]
- Baygin, H.; Siriken, F.; Sargın, G.; Çildag, S.; Ozturk, H.; Senturk, T. The relationship between dietary inflammatory index scores and rheumatoid arthritis disease activity. Reum. Clin. 2024, 20, 305–311. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhen, S.; Xu, H.; Sun, S.; Wang, Z.; Li, M.; Zou, L.; Zhang, Y.; Zhao, Y.; Cui, Y.; et al. Vitamin C alleviates rheumatoid arthritis by modulating gut microbiota balance. Biosci. Trends 2024, 18, 187–194. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S. Ascorbic acid alleviates rheumatoid arthritis by inhibiting the production of autoantibodies. Cell Commun. Signal. CCS 2024, 22, 373. [Google Scholar] [CrossRef]
- Gomathi, A.; Chenthamarai, G.; Manvizhi, S.; Gowrithilagam, T.G. Effects of Vitamin C and Vitamin E in rheumatoid arthritis—A randomized, open label, and comparative study in a tertiary care hospital. Natl. J. Physiol. Pharm. Pharmacol. 2022, 12, 1463–1465. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Saeedy, S.A.G.; Abdi, A.; Khademi, F.; Lorian, K.; Clark, C.C.; Djafarian, K. Vitamin C reduces interleukin-6 plasma concentration: A systematic review and meta-analysis of randomized clinical trials. Clin. Nutr. Open Sci. 2021, 40, 1–14. [Google Scholar] [CrossRef]
- Latif, F.A.A.; Ghazali, W.S.W.; Mohamad, S.M.; Lee, L.K. High fiber multigrain supplementation improved disease activity score, circulating inflammatory and oxidative stress biomarkers in rheumatoid arthritis (RA) patients: A randomized human clinical trial. J. Funct. Foods 2023, 100, 105392. [Google Scholar] [CrossRef]
- Hijjawi, N.; Tout, F.S.; Azaizeh, B.; Aljaafreh, B. The role of vitamins D, B12, C, and K in modulating inflammation and disease management in rheumatoid arthritis: A comprehensive review. Clin. Rheumatol. 2025, 44, 591–600. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Vitamin C Supplementation Intervention. Identifier: NCT04036110. Available online: https://www.clinicaltrials.gov/study/NCT04036110 (accessed on 17 September 2025).
- Riitano, G.; Spinelli, F.; Manganelli, V.; Caissutti, D.; Capozzi, A.; Garufi, C.; Garofalo, T.; Misasi, R.; Sorice, M.; Conti, F.; et al. Wnt signaling as a translational target in rheumatoid and psoriatic arthritis. J. Transl. Med. 2025, 23, 158. [Google Scholar] [CrossRef]
- Choi, H.K.; Kim, G.-J.; Yoo, H.-S.; Song, D.H.; Chung, K.-H.; Lee, K.-J.; Koo, Y.T.; An, J.H. Vitamin C Activates Osteoblastogenesis and Inhibits Osteoclastogenesis via Wnt/β-Catenin/ATF4 Signaling Pathways. Nutrients 2019, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, M.; Cianciulli, A.; Calvello, R.; Porro, C.; De Nuccio, F.; Kashyrina, M.; Miraglia, A.; Lofrumento, D.D.; Panaro, M.A. Ser9p-GSK3β Modulation Contributes to the Protective Effects of Vitamin C in Neuroinflammation. Nutrients 2024, 16, 1121. [Google Scholar] [CrossRef]
- Rharass, T.; Lantow, M.; Gbankoto, A.; Weiss, D.G.; Panáková, D.; Lucas, S. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner. J. Biomed. Sci. 2017, 24, 78. [Google Scholar] [CrossRef]
- Rodriguez-Trillo, A.; Mosquera, N.; Pena, C.; Rivas-Tobío, F.; Mera-Varela, A.; Gonzalez, A.; Conde, C. Non-Canonical WNT5A Signaling Through RYK Contributes to Aggressive Phenotype of the Rheumatoid Fibroblast-Like Synoviocytes. Front. Immunol. 2020, 11, 555245. [Google Scholar] [CrossRef] [PubMed]
- Laigle, L.; Le Dantec, C.; Soret, P.; Desvaux, E.; Hubert, S.; Foulquier, N.; Moingeon, P.; Guedj, M.; Pers, J.-O. Sjögren’s syndrome: Towards precision medicine. Med. Sci. 2022, 38, 148–151. [Google Scholar] [CrossRef]
- Horai, Y.; Kurushima, S.; Shimizu, T.; Nakamura, H.; Kawakami, A. A Review of the Current Clinical Aspects of Sjögren’s Disease: Geographical Difference, Classification/Diagnostic Criteria, Recent Advancements in Diagnostic Methods, and Molecular Targeted Therapy. J. Clin. Med. 2025, 14, 5577. [Google Scholar] [CrossRef]
- Hyon, J.Y.; Han, S.B. Dry Eye Disease and Vitamins: A Narrative Literature Review. Appl. Sci. 2022, 12, 4567. [Google Scholar] [CrossRef]
- Bu, J.; Liu, Y.; Zhang, R.; Lin, S.; Zhuang, J.; Sun, L.; Zhang, L.; He, H.; Zong, R.; Wu, Y.; et al. Potential New Target for Dry Eye Disease—Oxidative Stress. Antioxidants 2024, 13, 422. [Google Scholar] [CrossRef]
- Machowicz, A.; Hall, I.; de Pablo, P.; Rauz, S.; Richards, A.; Higham, J.; Poveda-Gallego, A.; Imamura, F.; Bowman, S.J.; Barone, F.; et al. Mediterranean diet and risk of Sjögren’s syndrome. Clin. Exp. Rheumatol. 2020, 38, 216–221. [Google Scholar]
- Nesvold, M.B.; Jensen, J.L.; Hove, L.H.; Singh, P.B.; Young, A.; Palm, Ø.; Andersen, L.F.; Carlsen, M.H.; Iversen, P.O. Dietary Intake, Body Composition, and Oral Health Parameters among Female Patients with Primary Sjögren’s Syndrome. Nutrients 2018, 10, 866. [Google Scholar] [CrossRef]
- Benchabane, S.; Sour, S.; Zidi, S.; Hadjimi, Z.; Nabila, L.; Acheli, D.; Bouzenad, A.; Belguendouz, H.; Touil-Boukoffa, C. Exploring the relationship between oxidative stress status and inflammatory markers during primary Sjögren’s syndrome: A new approach for patient monitoring. Int. J. Immunopathol. Pharmacol. 2024, 38, 3946320241263034. [Google Scholar] [CrossRef]
- Hou, Y.-C.; Huang, J.-Y.; Yeh, P.-T. A randomized, double-blind, placebo-controlled study of oral antioxidant supplement therapy in patients with dry eye syndrome. Clin. Ophthalmol. 2016, 10, 813–820. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, Y.; Han, Y.; Wu, Y.; Wang, D.; Zhang, B. Recommendations for nutritional supplements for dry eye disease: Current advances. Front. Pharmacol. 2024, 15, 1388787. [Google Scholar] [CrossRef]
- Dogru, M.; Kojima, T.; Simsek, C.; Tsubota, K. Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES163–DES168. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, Z.; Chen, Y.; Lu, H.; Wang, A.; Shi, Y.; Zhang, Q.; Wang, Y.; Li, Y.; Lan, J.; et al. A non-invasive model for diagnosis of primary Sjogren’s disease based on salivary biomarkers, serum autoantibodies, and Schirmer’s test. Arthritis Res. Ther. 2024, 26, 217. [Google Scholar] [CrossRef]
- Navel, V.; Sapin, V.; Henrioux, F.; Blanchon, L.; Labbé, A.; Chiambaretta, F.; Baudouin, C.; Dutheil, F. Oxidative and antioxidative stress markers in dry eye disease: A systematic review and meta-analysis. Acta Ophthalmol. 2022, 100, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Karp, J.; Sun, K.M.; Weaver, C.M. Decreasing Vitamin C Intake, Low Serum Vitamin C Level and Risk for US Adults with Diabetes. Nutrients 2022, 14, 3902. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Novials, A.; Ortega, E.; Canivell, S.; La Sala, L.; Pujadas, G.; Bucciarelli, L.; Rondinelli, M.; Genovese, S. Vitamin C Further Improves the Protective Effect of Glucagon-Like Peptide-1 on Acute Hypoglycemia-Induced Oxidative Stress, Inflammation, and Endothelial Dysfunction in Type 1 Diabetes. Diabetes Care 2013, 36, 4104–4108. [Google Scholar] [CrossRef] [PubMed]
- Odermarsky, M.; Lykkesfeldt, J.; Liuba, P. Poor vitamin C status is associated with increased carotid intima-media thickness, decreased microvascular function, and delayed myocardial repolarization in young patients with type 1 diabetes. Am. J. Clin. Nutr. 2009, 90, 447–452. [Google Scholar] [CrossRef]
- Sangani, R.; Naime, M.; Zakhary, I.; Ahmad, S.; Chutkan, N.; Zhu, A.; Ha, Y.; Hamrick, M.; Isales, C.; Elsalanty, M.; et al. Regulation of vitamin C transporter in the type 1 diabetic mouse bone and bone marrow. Exp. Mol. Pathol. 2013, 95, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Piconi, L.; Esposito, K.; Giugliano, D. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes. Diabetes Care 2007, 30, 1694–1698. [Google Scholar] [CrossRef]
- Mattila, M.; Hakola, L.; Niinistö, S.; Tapanainen, H.; Takkinen, H.-M.; Ahonen, S.; Ilonen, J.; Toppari, J.; Veijola, R.; Knip, M.; et al. Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children: A Birth Cohort Study. Nutrients 2021, 13, 928. [Google Scholar] [CrossRef]
- Juhl, B.; Lauszus, F.F.; Lykkesfeldt, J. Poor Vitamin C Status Late in Pregnancy Is Associated with Increased Risk of Complications in Type 1 Diabetic Women: A Cross-Sectional Study. Nutrients 2017, 9, 186. [Google Scholar] [CrossRef]
- Juhl, B.; Klein, F.; Christiansen, J.S. Vitamin C treatment reduces transcapillary escape rate of albumin in type 1 diabetes. Eur. J. Intern. Med. 2004, 15, 428–435. [Google Scholar] [CrossRef]
- Gordon, B.L.; Galati, J.; Yang, S.; Katz, P.O.; Scherl, E.J. Vitamin C Deficiency: An Under-Recognized Condition in Crohn’s Disease. ACG Case Rep. J. 2020, 7, e00424. [Google Scholar] [CrossRef]
- Verma, K.K.; Deligonul, F.Z.; Tarbox, M.; Chen, H.Z. Vitamin C Deficiency Masquerading as Vasculitis in a Patient With Crohn’s Disease. Cureus 2024, 16, e55295. [Google Scholar] [CrossRef]
- Mortezaei, K.; Gonzales, S.A.B.; Kreitenberg, A.; Arkfeld, D.G. Scurvy in a Patient with Crohn’s Disease: A Case Report. Curr. Rheumatol. Rev. 2025. [Google Scholar] [CrossRef] [PubMed]
- Guarino, L.; Chatelanat, O.; Gressot, P.; Larpin, C.; Serratrice, J.; Coen, M. When a diet is followed too strictly. Scurvy—An old disease in a modern gut: A case report. Medicine 2025, 104, e43688. [Google Scholar] [CrossRef] [PubMed]
- Aghdassi, E.; Wendland, B.E.; Steinhart, A.; Wolman, S.L.; Jeejeebhoy, K.; Allard, J.P. Original contribution Antioxidant vitamin supplementation in Crohn’s disease decreases oxidative stress a randomized controlled trial. Am. J. Gastroenterol. 2003, 98, 348–353. [Google Scholar] [CrossRef]
- Hébuterne, X.; Filippi, J.; Al-Jaouni, R.; Schneider, S. Nutritional consequences and nutrition therapy in Crohn’s disease. Gastroenterol. Clin. Biol. 2009, 33, S235–S244. [Google Scholar] [CrossRef]
- Alzoghaibi, M.A. Concepts of oxidative stress and antioxidant defense in Crohn’s disease. World J. Gastroenterol. 2013, 19, 6540–6547. [Google Scholar] [CrossRef] [PubMed]
- Filippi, J.; Al-Jaouni, R.; Wiroth, J.-B.; Hébuterne, X.; Schneider, S.M. Nutritional deficiencies in patients with Crohn’s disease in remission. Inflamm. Bowel Dis. 2006, 12, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Animashaun, A.; Kelleher, J.; Heatley, R.; Trejdosiewicz, L.; Losowsky, M. The effect of zinc and vitamin C supplementation on the immune status of patients with Crohn’s disease. Clin. Nutr. 1990, 9, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, F.; Iida, M.; Tominaga, M.; Matsumoto, T.; Hirakawa, K.; Sugiyama, S.; Fujishima, M. Multiple vitamin status in Crohn’s disease. Correlation with disease activity. Dig. Dis. Sci. 1993, 38, 1614–1618. [Google Scholar] [CrossRef]
- Harries, A.D.; Heatley, R.V. Nutritional disturbances in Crohn’s disease. Postgrad. Med. J. 1983, 59, 690–697. [Google Scholar] [CrossRef]
- Murphree, J.; Mulherin, D.W.; Morton, C.; Adams, D. High-dose vitamin C therapy for symptomatic deficiency in a patient with myasthenia gravis and Crohn’s disease. Nutr. Clin. Pract. 2021, 37, 1242–1245. [Google Scholar] [CrossRef]
- Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Immunomodulatory and Antimicrobial Effects of Vitamin C. Eur. J. Microbiol. Immunol. 2019, 9, 73–79. [Google Scholar] [CrossRef]
- Geerling, B.J.; Badart-Smook, A.; Stockbrügger, R.W.; Brummer, R.J. Comprehensive nutritional status in patients with long-standing Crohn disease currently in remission. Am. J. Clin. Nutr. 1998, 67, 919–926. [Google Scholar] [CrossRef]
- Brown, A.C.; Rampertab, S.D.; Mullin, G.E. Existing dietary guidelines for Crohn’s disease and ulcerative colitis. Expert Rev. Gastroenterol. Hepatol. 2011, 5, 411–425. [Google Scholar] [CrossRef]
- Smith, T.J.; Hegedüs, L. Graves’ Disease. N. Engl. J. Med. 2016, 375, 1552–1565. [Google Scholar] [CrossRef] [PubMed]
- Chaker, L.; Bianco, A.C.; Jonklaas, J.; Peeters, R.P. Hypothyroidism. Lancet 2017, 390, 1550–1562. [Google Scholar] [CrossRef]
- Far, B.F.; Behnoush, A.H.; Ghondaghsaz, E.; Habibi, M.A.; Khalaji, A. The interplay between vitamin C and thyroid. Endocrinol. Diabetes Metab. 2023, 6, e432. [Google Scholar] [CrossRef] [PubMed]
- Karimi, F.; Omrani, G.R. Effects of selenium and vitamin C on the serum level of antithyroid peroxidase antibody in patients with autoimmune thyroiditis. J. Endocrinol. Investig. 2019, 42, 481–487. [Google Scholar] [CrossRef]
- Peepre, K.S.; Deshpandey, U.; Choudhary, P. Role of Antioxidants on Thyroid Hormones in Wister Rats. Int. J. Sci. Res. 2014, 3, 34–38. [Google Scholar]
- Ward, M.H.; Kilfoy, B.A.; Weyer, P.J.; Anderson, K.E.; Folsom, A.R.; Cerhan, J.R. Nitrate Intake and the Risk of Thyroid Cancer and Thyroid Disease. Epidemiology 2010, 21, 389–395. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, H.; Jiang, H.; Lin, H.; He, J.; Fan, S.; Yu, D.; Yang, L.; Tang, H.; Lin, E.; et al. The effect of micronutrient on thyroid cancer risk: A Mendelian randomization study. Front. Nutr. 2024, 11, 1331172. [Google Scholar] [CrossRef]
- Wu, J.; Jia, C.; Wang, Q.; Li, X. Association between vitamin C intake and thyroid function among U.S. adults: A population-based study. Front. Endocrinol. 2024, 15, 1462251. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, E.; Que, H. Association of circulating vitamin levels with thyroid diseases: A Mendelian randomization study. Front. Endocrinol. 2024, 15, 1360851. [Google Scholar] [CrossRef]
- Sarandi, E.; Tsoukalas, D.; Rudofsky, G.; Fragoulakis, V.; Liapi, C.; Paramera, E.; Papakonstantinou, E.; Krasagakis, S.K.; Tsatsakis, A. Identifying the metabolic profile of Hashimoto’s thyroiditis from the METHAP clinical study. Sci. Rep. 2025, 15, 12410. [Google Scholar] [CrossRef]
- Chen, L.; Mao, Y.; Chen, G. Association between total vitamin C intake and hypothyroidism among Hashimoto thyroiditis: National Health and Nutrition Examination Survey, 2007–2012. Br. J. Nutr. 2024, 132, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Kaur, J.; Anand, S.; Jacobs, R. Salivary Stress Markers, Stress, and Periodontitis: A Pilot Study. J. Periodontol. 2011, 82, 287–292. [Google Scholar] [CrossRef]
- Woelber, J.P.; Gärtner, M.; Breuninger, L.; Anderson, A.; König, D.; Hellwig, E.; Al-Ahmad, A.; Vach, K.; Dötsch, A.; Ratka-Krüger, P.; et al. The influence of an anti-inflammatory diet on gingivitis. A randomized controlled trial. J. Clin. Periodontol. 2019, 46, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Ustianowski, Ł.; Ustianowska, K.; Gurazda, K.; Rusiński, M.; Ostrowski, P.; Pawlik, A. The Role of Vitamin C and Vitamin D in the Pathogenesis and Therapy of Periodontitis—Narrative Review. Int. J. Mol. Sci. 2023, 24, 6774. [Google Scholar] [CrossRef]
- Helmersson, J.; Ärnlöv, J.; Larsson, A.; Basu, S. Low dietary intake of β-carotene, α-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort. Br. J. Nutr. 2008, 101, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Tada, A.; Miura, H. The Relationship between Vitamin C and Periodontal Diseases: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2472. [Google Scholar] [CrossRef]
- Amaliya, V.; Timmerman, M.F.; Abbas, F.; Loos, B.G.; Van der Weijden, G.A.; Van Winkelhoff, A.J.; Winkel, E.G.; Van der Velden, U. Java project on periodontal diseases: The relationship between vitamin C and the severity of periodontitis. J. Clin. Periodontol. 2007, 34, 299–304. [Google Scholar] [CrossRef]
- Assaf, M.; Rabi, H. Assessment of Vitamin C Levels in Periodontal Patients: A Cross-Sectional Study in Palestine. J. Pharm. Bioallied Sci. 2022, 14 (Suppl. 1), S903–S906. [Google Scholar] [CrossRef]
- Munday, M.-R.; Rodricks, R.; Fitzpatrick, M.; Flood, V.M.; Gunton, J.E. A Pilot Study Examining Vitamin C Levels in Periodontal Patients. Nutrients 2020, 12, 2255. [Google Scholar] [CrossRef]
- de Jong, T.M.H.; Stamatelou, E.; Rosema, N.A.M.; Jansen, I.D.C.; Brandt, B.W.; Angelakis, A.; Loos, B.G.; van der Velden, U.; Danser, M.M. Effect of Daily Vitamin C Supplementation with or Without Flavonoids on Periodontal, Microbial, and Systemic Conditions Before and After Periodontal Therapy: A Case Series from an RCT. J. Clin. Med. 2024, 13, 7571. [Google Scholar] [CrossRef]
- Li, W.; Song, J.; Chen, Z. The association between dietary vitamin C intake and periodontitis: Result from the NHANES (2009–2014). BMC Oral Health 2022, 22, 390. [Google Scholar] [CrossRef]
- Van der Velden, U. Vitamin C and Its Role in Periodontal Diseases—The Past and the Present: A Narrative Review. Oral Health Prev. Dent. 2020, 18, 115–123. [Google Scholar] [CrossRef]
- Buzatu, R.; Luca, M.M.; Bumbu, B.A. Does Vitamin C Supplementation Provide a Protective Effect in Periodontal Health? A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 8598. [Google Scholar] [CrossRef]
- Li, X.; Tang, L.; Lin, Y.F.; Xie, G.F. Role of vitamin C in wound healing after dental implant surgery in patients treated with bone grafts and patients with chronic periodontitis. Clin. Implant. Dent. Relat. Res. 2018, 20, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Polizzi, A.; Muraglie, S.; Leonardi, R.; Lo Giudice, A. Assessment of Vitamin C and Antioxidant Profiles in Saliva and Serum in Patients with Periodontitis and Ischemic Heart Disease. Nutrients 2019, 11, 2956. [Google Scholar] [CrossRef] [PubMed]
- Hoffbrand, A.V. Megaloblastic Anaemia. In Postgraduate Haematology; Hoffbrand, A.V., Higgs, D.R., Keeling, D.M., Mehta, A.B., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Andres, E.; Serraj, K. Optimal management of pernicious anemia. J. Blood Med. 2012, 3, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Dottori, L.; Pivetta, G.; Ligato, I.; Dilaghi, E.; Lahner, E. Pernicious Anemia: The Hematological Presentation of a Multifaceted Disorder Caused by Cobalamin Deficiency. Nutrients 2022, 14, 1672. [Google Scholar] [CrossRef]
- Angeli, A.M.; Megna, B.; Mazepa, M.; Ivy, Z.K.; Sultan, S.; Sloan, J.A. Transfusion-dependent anemia secondary to vitamin C deficiency. Am. J. Hematol. 2022, 97, E166–E167. [Google Scholar] [CrossRef]
- Sano, K.; Imoto, N.; Koketsu, H.; Kubo, A.; Ito, R.; Nakashima, M.; Kurahashi, S. Vitamin C Deficiency Megaloblastic Anemia Mimicking Hemolytic Anemia: A Case Report. Intern. Med. 2025. [Google Scholar] [CrossRef]
- Taylor, L.; McCaddon, A.; Wolffenbuttel, B.H.R. Creating a Framework for Treating Autoimmune Gastritis—The Case for Replacing Lost Acid. Nutrients 2024, 16, 662. [Google Scholar] [CrossRef] [PubMed]
- Cavalcoli, F.; Zilli, A.; Conte, D.; Massironi, S. Micronutrient deficiencies in patients with chronic atrophic autoimmune gastritis: A review. World J. Gastroenterol. 2017, 23, 563–572. [Google Scholar] [CrossRef]
- Nocella, C.; Bartimoccia, S.; Cammisotto, V.; D’amico, A.; Pastori, D.; Frati, G.; Sciarretta, S.; Rosa, P.; Felici, C.; Riggio, O.; et al. Oxidative Stress in the Pathogenesis of Antiphospholipid Syndrome: Implications for the Atherothrombotic Process. Antioxidants 2021, 10, 1790. [Google Scholar] [CrossRef] [PubMed]
- Praticò, D.; Ferro, D.; Iuliano, L.; Rokach, J.; Conti, F.; Valesini, G.; FitzGerald, G.A.; Violi, F. Ongoing prothrombotic state in patients with antiphospholipid antibodies: A role for increased lipid peroxidation. Blood 1999, 93, 3401–3407. [Google Scholar] [CrossRef] [PubMed]
- Martinuzzo, M.E.; Forastiero, R.R.; Kordich, L.; Carreras, L.O. Increased lipid peroxidation correlates with platelet activation but not with markers of endothelial cell and blood coagulation activation in patients with antiphospholipid antibodies. Br. J. Haematol. 2001, 114, 845–851. [Google Scholar] [CrossRef]
- Iuliano, L.; Praticò, D.; Ferro, D.; Pittoni, V.; Valesini, G.; Lawson, J.; FitzGerald, G.A.; Violi, F. Enhanced lipid peroxidation in patients positive for antiphospholipid antibodies. Blood 1997, 90, 3931–3935. [Google Scholar] [CrossRef]
- Lefferts, E.C.; Hibner, B.A.; Lefferts, W.K.; Lima, N.S.; Baynard, T.; Haus, J.M.; Lane-Cordova, A.D.; Phillips, S.A.; Fernhall, B. Oral vitamin C restores endothelial function during acute inflammation in young and older adults. Physiol. Rep. 2021, 9, e15104. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Z.; Liu, Z. Impact of Neutrophil Extracellular Traps on Thrombosis Formation: New Findings and Future Perspective. Front. Cell. Infect. Microbiol. 2022, 12, 910908. [Google Scholar] [CrossRef]
- Bozonet, S.M.; Carr, A.C. The Role of Physiological Vitamin C Concentrations on Key Functions of Neutrophils Isolated from Healthy Individuals. Nutrients 2019, 11, 1363. [Google Scholar] [CrossRef]
- Ferro, D.; Saliola, M.; Meroni, P.L.; Valesini, G.; Caroselli, C.; Praticò, D.; Fitzgerald, G.A.; Shoenfeld, Y.; Violi, F. Enhanced monocyte expression of tissue factor by oxidative stress in patients with antiphospholipid antibodies: Effect of antioxidant treatment. J. Thromb. Haemost. JTH 2003, 1, 523–531. [Google Scholar] [CrossRef]
- Isola, S.; Gammeri, L.; Furci, F.; Gangemi, S.; Pioggia, G.; Allegra, A. Vitamin C Supplementation in the Treatment of Autoimmune and Onco-Hematological Diseases: From Prophylaxis to Adjuvant Therapy. Int. J. Mol. Sci. 2024, 25, 7284. [Google Scholar] [CrossRef] [PubMed]
- Kello, N.; Cho, Y.M. Natural supplements in antiphospholipid syndrome: A case for further study. Clin. Immunol. 2024, 258, 109848. [Google Scholar] [CrossRef] [PubMed]
- Štok, U.; Blokar, E.; Lenassi, M.; Holcar, M.; Frank-Bertoncelj, M.; Erman, A.; Resnik, N.; Sodin-Šemrl, S.; Čučnik, S.; Pirkmajer, K.P.; et al. Characterization of Plasma-Derived Small Extracellular Vesicles Indicates Ongoing Endothelial and Platelet Activation in Patients with Thrombotic Antiphospholipid Syndrome. Cells 2020, 9, 1211. [Google Scholar] [CrossRef]
- Tian, W.; Shi, D.; Zhang, Y.; Wang, H.; Tang, H.; Han, Z.; Wong, C.C.L.; Cui, L.; Zheng, J.; Chen, Y. Deep proteomic analysis of obstetric antiphospholipid syndrome by DIA-MS of extracellular vesicle enriched fractions. Commun. Biol. 2024, 7, 99. [Google Scholar] [CrossRef]
- Bonisoli, G.L.; Argentino, G.; Friso, S.; Tinazzi, E. Extracellular Vesicles Analysis as Possible Signatures of Antiphospholipid Syndrome Clinical Features. Int. J. Mol. Sci. 2025, 26, 2834. [Google Scholar] [CrossRef]
- Weaver, D.F. β-Amyloid is an Immunopeptide and Alzheimer’s is an Autoimmune Disease. Curr. Alzheimer Res. 2021, 18, 849–857. [Google Scholar] [CrossRef]
- Weaver, D.F. Alzheimer’s disease as an innate autoimmune disease (AD2): A new molecular paradigm. Alzheimer’s Dement. 2022, 19, 1086–1098. [Google Scholar] [CrossRef]
- Arshavsky, Y.I. Alzheimer’s Disease: From Amyloid to Autoimmune Hypothesis. Neuroscientist 2020, 26, 455–470. [Google Scholar] [CrossRef]
- Severini, C.; Barbato, C.; Di Certo, M.G.; Gabanella, F.; Petrella, C.; Di Stadio, A.; de Vincentiis, M.; Polimeni, A.; Ralli, M.; Greco, A. Alzheimer’s Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr. Neuropharmacol. 2020, 19, 498–512. [Google Scholar] [CrossRef]
- Hamid, M.; Mansoor, S.; Amber, S.; Zahid, S. A quantitative meta-analysis of vitamin C in the pathophysiology of Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 970263. [Google Scholar] [CrossRef] [PubMed]
- Appiah, D.; Ingabire-Gasana, E.; Appiah, L.; Yang, J. The Relation of Serum Vitamin C Concentrations with Alzheimer’s Disease Mortality in a National Cohort of Community-Dwelling Elderly Adults. Nutrients 2024, 16, 1672. [Google Scholar] [CrossRef]
- He, X.; Lin, Y.; Wu, X.; Li, M.; Zhong, T.; Zhang, Y.; Weng, X. Vitamin C intake and cognitive function in older U.S. adults: Nonlinear dose–response associations and effect modification by smoking status. Front. Nutr. 2025, 12, 1585863. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, J.; Sun, Y.; Wang, Z. Association of antioxidants intake in diet and supplements with risk of Alzheimer’s disease: A systematic review and dose-response meta-analysis of prospective cohort studies. Aging Clin. Exp. Res. 2025, 37, 166. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Aran, K.R. Unraveling the molecular mechanisms of vitamin C in Alzheimer’s disease: Oxidative stress, homocysteine metabolism, and amyloid/tau interactions. Aging Health Res. 2025, 5, 100226. [Google Scholar] [CrossRef]
- Murakami, K.; Murata, N.; Ozawa, Y.; Kinoshita, N.; Irie, K.; Shirasawa, T.; Shimizu, T. Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 26, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Arlt, S.; Müller-Thomsen, T.; Beisiegel, U.; Kontush, A. Effect of One-Year Vitamin C- and E-Supplementation on Cerebrospinal Fluid Oxidation Parameters and Clinical Course in Alzheimer’s Disease. Neurochem. Res. 2012, 37, 2706–2714. [Google Scholar] [CrossRef]
- Li, F.-J.; Shen, L.; Ji, H.-F. Dietary Intakes of Vitamin E, Vitamin C, and β-Carotene and Risk of Alzheimer’s Disease: A Meta-Analysis. J. Alzheimer’s Dis. 2012, 31, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Harrison, F.E. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J. Alzheimer’s Dis. 2012, 29, 711–726. [Google Scholar] [CrossRef]
Disease | Evidence Type | Findings | Strength of Evidence * |
---|---|---|---|
Multiple sclerosis | Observational, small clinical studies | Reduced serum VitC; some improvement in oxidative stress; limited trial data | Limited |
Rheumatoid arthritis | Population cohorts, experimental, small RCTs | Inverse associations; antioxidant and immunomodulatory effects; ongoing trials | Moderate |
Sjögren’s disease | Dietary studies, small interventions | Antioxidant rationale; modest benefits in dry eye; no disease-modifying data | Limited |
Type 1 diabetes | Animal models, small human interventions | Endothelial and oxidative improvements; no consistent glycemic benefit | Limited |
Crohn’s disease | Case reports, biochemical analyses | Frequent deficiency; links to oxidative stress; supplementation prevents scurvy | Limited |
Hashimoto’s thyroiditis | Observational, meta-analyses, animal studies | Possible antibody reduction; mixed population data; no strong RCTs | Limited –Moderate |
Periodontitis | Cross-sectional, clinical interventions | Consistent link with deficiency; supplementation modestly supports standard therapy | Moderate |
Pernicious anemia | Case reports, mechanistic studies | Deficiency worsens hematologic profile; supplementation helpful but not curative | Limited |
Antiphospholipid syndrome | Small biomarker trials, mechanistic rationale | Antioxidant effects demonstrated; no outcome-based clinical data | Limited |
Alzheimer’s disease | Observational cohorts, meta-analyses | Lower VitC in patients; dietary intake linked to reduced risk; supplementation less consistent | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mochol, M.; Jablonowski, L.; Pawlik, A.; Rasławska-Socha, J.; Chamarczuk, A.; Lipski, M.; Mazurek-Mochol, M. The Role of Vitamin C in Selected Autoimmune and Immune-Mediated Diseases: Exploring Potential Therapeutic Benefits. Int. J. Mol. Sci. 2025, 26, 9375. https://doi.org/10.3390/ijms26199375
Mochol M, Jablonowski L, Pawlik A, Rasławska-Socha J, Chamarczuk A, Lipski M, Mazurek-Mochol M. The Role of Vitamin C in Selected Autoimmune and Immune-Mediated Diseases: Exploring Potential Therapeutic Benefits. International Journal of Molecular Sciences. 2025; 26(19):9375. https://doi.org/10.3390/ijms26199375
Chicago/Turabian StyleMochol, Martyna, Lukasz Jablonowski, Andrzej Pawlik, Joanna Rasławska-Socha, Agnieszka Chamarczuk, Mariusz Lipski, and Małgorzata Mazurek-Mochol. 2025. "The Role of Vitamin C in Selected Autoimmune and Immune-Mediated Diseases: Exploring Potential Therapeutic Benefits" International Journal of Molecular Sciences 26, no. 19: 9375. https://doi.org/10.3390/ijms26199375
APA StyleMochol, M., Jablonowski, L., Pawlik, A., Rasławska-Socha, J., Chamarczuk, A., Lipski, M., & Mazurek-Mochol, M. (2025). The Role of Vitamin C in Selected Autoimmune and Immune-Mediated Diseases: Exploring Potential Therapeutic Benefits. International Journal of Molecular Sciences, 26(19), 9375. https://doi.org/10.3390/ijms26199375