Natural Remedies for Irritable Bowel Syndrome: A Comprehensive Review of Herbal-Based Therapies
Abstract
1. Introduction
2. Pathophysiology of IBS and Diagnostic Criteria
- -
- Abdominal pain: antispasmodics (hyoscine, peppermint oil) and gut–brain neuromodulators (e.g., a tricyclic antidepressant) as first- and second-line treatments, respectively,
- -
- Constipation: laxatives and secretagogues (lubiprostone, linaclotide), as first- and second-line treatments, respectively,
- -
- Diarrhea: loperamide and 5-HT3 receptor antagonists, eluxadoline or rifaximine, as first- and second-line treatments, respectively.
3. Herbal-Based Remedies for IBS Management
3.1. Peppermint Oil
3.2. Iberogast (STW 5)
3.3. Curcumin
3.4. Fennel Essential Oil
3.5. Ginger
3.6. Aloe vera
3.7. Cannabis sativa
3.8. Coffee
3.9. Yellow gentian
3.10. Chinese Herbal Medicine
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Carter, K.A. Irritable Bowel Syndrome: Clinical Practice Update. JAAPA 2024, 37, 13–18. [Google Scholar] [CrossRef]
- JohnBritto, J.S.; Di Ciaula, A.; Noto, A.; Cassano, V.; Sciacqua, A.; Khalil, M.; Portincasa, P.; Bonfrate, L. Gender-Specific Insights into the Irritable Bowel Syndrome Pathophysiology. Focus on Gut Dysbiosis and Permeability. Eur. J. Intern. Med. 2024, 125, 10–18. [Google Scholar] [CrossRef]
- Huang, K.-Y.; Wang, F.-Y.; Lv, M.; Ma, X.-X.; Tang, X.-D.; Lv, L. Irritable Bowel Syndrome: Epidemiology, Overlap Disorders, Pathophysiology and Treatment. World J. Gastroenterol. 2023, 29, 4120–4135. [Google Scholar] [CrossRef] [PubMed]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2021, 160, 99–114.e3. [Google Scholar] [CrossRef]
- Li, F.; Yano, Y.; Étiévant, L.; Daniel, C.R.; Sharma, S.V.; Brown, E.L.; Li, R.; Loftfield, E.; Lan, Q.; Sinha, R.; et al. The Time-Dependent Association Between Irritable Bowel Syndrome and All-Cause and Cause-Specific Mortality: A Prospective Cohort Study Within the UK Biobank. Am. J. Gastroenterol. 2024, 119, 1373–1382. [Google Scholar] [CrossRef]
- Krynicka, P.; Kaczmarczyk, M.; Skonieczna-Żydecka, K.; Cembrowska-Lech, D.; Podsiadło, K.; Dąbkowski, K.; Gaweł, K.; Botke, N.; Zawada, I.; Ławniczak, M.; et al. The Burden of Irritable Bowel Syndrome and Functional Dyspepsia in Poland: A Cross-Sectional Study from West Pomeranian Voivodship. BMC Gastroenterol. 2025, 25, 8. [Google Scholar] [CrossRef]
- Treatment for Irritable Bowel Syndrome—NIDDK. Available online: https://www.niddk.nih.gov/health-information/digestive-diseases/irritable-bowel-syndrome/treatment (accessed on 3 February 2025).
- Camilleri, M. Management Options for Irritable Bowel Syndrome. Mayo Clin. Proc. 2018, 93, 1858–1872. [Google Scholar] [CrossRef]
- 7 Tips: Irritable Bowel Syndrome and Complementary Health Approaches. Available online: https://www.nccih.nih.gov/health/tips/7-tips-irritable-bowel-syndrome-and-complementary-health-approaches (accessed on 3 February 2025).
- Warner, M.M.; Soliman, O.M.; Crichton, M.; Marshall, S.; Staudacher, H.M.; Kelly, J.T. Systematic Review: Integrated Models of Care for Managing Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2025, 37, e14989. [Google Scholar] [CrossRef] [PubMed]
- Marasco, G.; Cremon, C.; Salvi, D.; Meacci, D.; Dajti, E.; Colecchia, L.; Barbaro, M.R.; Stanghellini, V.; Barbara, G. Functional Foods and Nutraceuticals in Irritable Bowel Syndrome. J. Clin. Med. 2025, 14, 1830. [Google Scholar] [CrossRef] [PubMed]
- Julián-Flores, A.; Aguilar-Zárate, P.; Michel, M.R.; Sepúlveda-Torre, L.; Torres-León, C.; Aguilar, C.N.; Chávez-González, M.L. Exploring the Therapeutic Potential of Medicinal Plants in the Context of Gastrointestinal Health: A Review. Plants 2025, 14, 642. [Google Scholar] [CrossRef]
- Roman, P.; Abalo, R.; Marco, E.M.; Cardona, D. Probiotics in Digestive, Emotional, and Pain-Related Disorders. Behav. Pharmacol. 2018, 29, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016, 150, 1262–1279.e2. [Google Scholar] [CrossRef]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar] [PubMed]
- Black, C.J.; Ford, A.C. An Evidence-Based Update on the Diagnosis and Management of Irritable Bowel Syndrome. Expert Rev. Gastroenterol. Hepatol. 2025, 19, 227–242. [Google Scholar] [CrossRef]
- Goelen, N.; Scheepers, J.; Carbone, F.; Holvoet, L.; Vandenberghe, A.; Arts, J.; Boeckxstaens, G.; Caenepeel, P.; Gijsen, I.; Latour, P.; et al. The Waiting Room Questionnaire, a Patient-Reported Outcome Instrument Including Pictograms for Facilitating the Diagnosis of Functional Gastrointestinal Disorders. Neurogastroenterol. Motil. 2025, 37, e70019. [Google Scholar] [CrossRef]
- Betz, C.; Mannsdörfer, K.; Bischoff, S.C. Validation of the IBS-SSS. Z Gastroenterol. 2013, 51, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, Y.; Guo, D.; He, H.; Zhang, Z.; Wang, X.; Yu, S. Classification of Irritable Bowel Syndrome Using Brain Functional Connectivity Strength and Machine Learning. Neurogastroenterol. Motil. 2025, 37, e14994. [Google Scholar] [CrossRef]
- Huskisson, E.C. MEASUREMENT OF PAIN. Lancet 1974, 304, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Bahramsoltani, R.; Abdollahi, M.; Rahimi, R. The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. J. Neurogastroenterol. Motil. 2016, 22, 558–574. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Fu, Y.; Wu, C.C.; Xu, G.-Y.; Huang, L.-Y.; Shi, X.-Z. Colon Distention Induces Persistent Visceral Hypersensitivity by Mechanotranscription of Pain Mediators in Colonic Smooth Muscle Cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G434–G441. [Google Scholar] [CrossRef]
- Bouin, M.; Plourde, V.; Boivin, M.; Riberdy, M.; Lupien, F.; Laganière, M.; Verrier, P.; Poitras, P. Rectal Distention Testing in Patients with Irritable Bowel Syndrome: Sensitivity, Specificity, and Predictive Values of Pain Sensory Thresholds. Gastroenterology 2002, 122, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Heaton, K.W. Stool Form Scale as a Useful Guide to Intestinal Transit Time. Scand. J. Gastroenterol. 1997, 32, 920–924. [Google Scholar] [CrossRef]
- Aliyu, A.I.; Katsumata, R.; Törnblom, H.; Simrén, M. Gastrointestinal Transit Abnormalities in Irritable Bowel Syndrome and Their Relation to Symptoms. Expert Rev. Gastroenterol. Hepatol. 2025, 19, 447–454. [Google Scholar] [CrossRef]
- Goodoory, V.C.; Riggott, C.; Khasawneh, M.; Black, C.J.; Ford, A.C. Validating Simple Modifications to the Rome IV Criteria for the Diagnosis of Irritable Bowel Syndrome in Secondary Care. Aliment. Pharmacol. Ther. 2025, 61, 354–362. [Google Scholar] [CrossRef]
- Beaugerie, L.; Pardi, D.S. Review Article: Drug-Induced Microscopic Colitis—Proposal for a Scoring System and Review of the Literature. Aliment. Pharmacol. Ther. 2005, 22, 277–284. [Google Scholar] [CrossRef]
- Krynicka, P.; Koulaouzidis, G.; Marlicz, W.; Koulaouzidis, A. Innovations in the Diagnosis, Treatment, and Management of Disorders of Gut-Brain Interaction (DGBI). Expert Rev. Gastroenterol. Hepatol. 2025, 19, 657–670. [Google Scholar] [CrossRef]
- Butt, M.F.; Corsetti, M. Editorial: Rebuilding Rome-Revising Diagnostic Criteria for Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2025, 61, 392–393. [Google Scholar] [CrossRef]
- Zamani, M.; Alizadeh-Tabari, S.; Zamani, V. Systematic Review with Meta-Analysis: The Prevalence of Anxiety and Depression in Patients with Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2019, 50, 132–143. [Google Scholar] [CrossRef]
- Patel, P.; Bercik, P.; Morgan, D.G.; Bolino, C.; Pintos-Sanchez, M.I.; Moayyedi, P.; Ford, A.C. Irritable Bowel Syndrome Is Significantly Associated with Somatisation in 840 Patients, Which May Drive Bloating. Aliment. Pharmacol. Ther. 2015, 41, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Houghton, L.A.; West, R.M.; Bangdiwala, S.I.; Palsson, O.S.; Sperber, A.D.; Ford, A.C. Novel Irritable Bowel Syndrome Subgroups Are Reproducible in the Global Adult Population. Clin. Gastroenterol. Hepatol. 2025, 23, 1039–1048.e7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jin, W.-W.; Wang, H.-G. Correlation between the Neuroendocrine Axis, Microbial Species, Inflammatory Response, and Gastrointestinal Symptoms in Irritable Bowel Syndrome. World J. Gastroenterol. 2024, 30, 3985–3995. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Gravina, A.G. Irritable Bowel Syndrome Remains a Complex Disorder of Gut-Brain Interaction: Too Many Actors on Stage. World J. Gastroenterol. 2025, 31, 101357. [Google Scholar] [CrossRef]
- Arif, T.B.; Ali, S.H.; Bhojwani, K.D.; Sadiq, M.; Siddiqui, A.A.; Ur-Rahman, A.; Khan, M.Z.; Hasan, F.; Shahzil, M. Global Prevalence and Risk Factors of Irritable Bowel Syndrome from 2006 to 2024 Using the Rome III and IV Criteria: A Meta-Analysis. Eur. J. Gastroenterol. Hepatol. 2025. [Google Scholar] [CrossRef]
- Ionescu, V.A.; Gheorghe, G.; Georgescu, T.F.; Bacalbasa, N.; Gheorghe, F.; Diaconu, C.C. The Latest Data Concerning the Etiology and Pathogenesis of Irritable Bowel Syndrome. J. Clin. Med. 2024, 13, 5124. [Google Scholar] [CrossRef]
- Sulaimi, F.; Ong, T.S.K.; Tang, A.S.P.; Quek, J.; Pillay, R.M.; Low, D.T.; Lee, C.K.L.; Siah, K.T.H.; Ng, Q.X. Risk Factors for Developing Irritable Bowel Syndrome: Systematic Umbrella Review of Reviews. BMC Med. 2025, 23, 103. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, N. Sex-Gender Differences in Irritable Bowel Syndrome. J. Neurogastroenterol. Motil. 2018, 24, 544–558. [Google Scholar] [CrossRef]
- Jun, D.W.; Park, H.Y.; Lee, O.Y.; Lee, H.L.; Yoon, B.C.; Choi, H.S.; Hahm, J.S.; Lee, M.H.; Lee, D.H.; Kee, C.S. A Population-Based Study on Bowel Habits in a Korean Community: Prevalence of Functional Constipation and Self-Reported Constipation. Dig. Dis. Sci. 2006, 51, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Labus, J.S.; Wang, C.; Mayer, E.A.; Gupta, A.; Oughourlian, T.; Kilpatrick, L.; Tillisch, K.; Chang, L.; Naliboff, B.; Ellingson, B.M. Sex-Specific Brain Microstructural Reorganization in Irritable Bowel Syndrome. Pain 2023, 164, 292–304. [Google Scholar] [CrossRef]
- Marasco, G.; Maida, M.; Cremon, C.; Barbaro, M.R.; Stanghellini, V.; Barbara, G. Meta-analysis: Post-COVID-19 Functional Dyspepsia and Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2023, 58, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Grover, M.; Bercik, P.; Corsetti, M.; Ghoshal, U.C.; Ohman, L.; Rajilić-Stojanović, M. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology 2019, 156, 46–58.e7. [Google Scholar] [CrossRef]
- Balemans, D.; Mondelaers, S.U.; Cibert-Goton, V.; Stakenborg, N.; Aguilera-Lizarraga, J.; Dooley, J.; Liston, A.; Bulmer, D.C.; Vanden Berghe, P.; Boeckxstaens, G.E.; et al. Evidence for Long-Term Sensitization of the Bowel in Patients with Post-Infectious-IBS. Sci. Rep. 2017, 7, 13606. [Google Scholar] [CrossRef] [PubMed]
- Labanski, A.; Langhorst, J.; Engler, H.; Elsenbruch, S. Stress and the Brain-Gut Axis in Functional and Chronic-Inflammatory Gastrointestinal Diseases: A Transdisciplinary Challenge. Psychoneuroendocrinology 2020, 111, 104501. [Google Scholar] [CrossRef]
- Noorulain Hyder, N.; Raza, M.L. Stress and the Gut Microbiota-Brain Axis. Prog. Brain Res. 2025, 291, 175–203. [Google Scholar] [PubMed]
- Zhou, Q.; Verne, G.N. Molecular Mechanisms and Pathways in Visceral Pain. Cells 2025, 14, 1146. [Google Scholar] [CrossRef]
- Raskov, H.; Burcharth, J.; Pommergaard, H.-C.; Rosenberg, J. Irritable Bowel Syndrome, the Microbiota and the Gut-Brain Axis. Gut Microbes 2016, 7, 365–383. [Google Scholar] [CrossRef]
- Uranga, J.A.; Martínez, V.; Abalo, R. Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use. Molecules 2020, 25, 4314. [Google Scholar] [CrossRef]
- Soufan, F.; Ghosson, A.; Jaber, R.; Ghandour, A.; Uwishema, O. The Gut-Brain Axis in Irritable Bowel Syndrome: Implementing the Role of Microbiota and Neuroimmune Interaction in Personalized Prevention—A Narrative Review. Health Sci. Rep. 2025, 8, e70660. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Peng, S.; Huang, W.; Zhang, Y.; Liu, Y.; Yu, X.; Shen, L. The Role and Function of TRPM8 in the Digestive System. Biomolecules 2024, 14, 877. [Google Scholar] [CrossRef]
- Xie, Z.; Feng, J.; Hibberd, T.J.; Chen, B.N.; Zhao, Y.; Zang, K.; Hu, X.; Yang, X.; Chen, L.; Brookes, S.J.; et al. Piezo2 Channels Expressed by Colon-Innervating TRPV1-Lineage Neurons Mediate Visceral Mechanical Hypersensitivity. Neuron 2023, 111, 526–538.e4. [Google Scholar] [CrossRef]
- Kearns, R. Gut Modulation to Regulate NF-κB in Colorectal and Gastric Cancer Therapy and Inflammation. Cancer Immunol. Immunother. 2025, 74, 264. [Google Scholar] [CrossRef]
- Gabbia, D.; De Martin, S. Targeting the Adipose Tissue–Liver–Gut Microbiota Crosstalk to Cure MASLD. Biology 2023, 12, 1471. [Google Scholar] [CrossRef]
- Lin, M.; Chen, L.; Xiao, Y.; Yu, B. Activation of Cannabinoid 2 Receptor Relieves Colonic Hypermotility in a Rat Model of Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2019, 31, e13555. [Google Scholar] [CrossRef]
- Uranga, J.A.; Vera, G.; Abalo, R. Cannabinoid Pharmacology and Therapy in Gut Disorders. Biochem. Pharmacol. 2018, 157, 134–147. [Google Scholar] [CrossRef]
- Muro, P.; Zhang, L.; Li, S.; Zhao, Z.; Jin, T.; Mao, F.; Mao, Z. The Emerging Role of Oxidative Stress in Inflammatory Bowel Disease. Front. Endocrinol. 2024, 15, 1390351. [Google Scholar] [CrossRef]
- Ponti, D. Fabrizio Drug Development for the Irritable Bowel Syndrome: Current Challenges and Future Perspectives. Front. Pharmacol. 2013, 4, 42150. [Google Scholar] [CrossRef] [PubMed]
- Saidara, E.; Barlow, G.M.; Pimentel, M. The Evolution of Irritable Bowel Syndrome as a Group of Organic Diseases: A Narrative Review. Expert Rev. Gastroenterol. Hepatol. 2025, 19, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Labra, A.; Lytvyn, L.; Falck-Ytter, Y.; Surawicz, C.M.; Chey, W.D. AGA Technical Review on the Evaluation of Functional Diarrhea and Diarrhea-Predominant Irritable Bowel Syndrome in Adults (IBS-D). Gastroenterology 2019, 157, 859–880. [Google Scholar] [CrossRef] [PubMed]
- Sandberg-Janzon, A.; Karling, P. Drug Survival of Drugs Recommended for Irritable Bowel Syndrome: A Retrospective Observational Study. Neurogastroenterol. Motil. 2025, 37, e70063. [Google Scholar] [CrossRef]
- Hawthorn, M.; Ferrante, J.; Luchowski, E.; Rutledge, A.; Wei, X.Y.; Triggle, D.J. The Actions of Peppermint Oil and Menthol on Calcium Channel Dependent Processes in Intestinal, Neuronal and Cardiac Preparations. Aliment. Pharmacol. Ther. 1988, 2, 101–118. [Google Scholar] [CrossRef]
- Amato, A.; Liotta, R.; Mulè, F. Effects of Menthol on Circular Smooth Muscle of Human Colon: Analysis of the Mechanism of Action. Eur. J. Pharmacol. 2014, 740, 295–301. [Google Scholar] [CrossRef]
- Kim, H.J.; Wie, J.; So, I.; Jung, M.H.; Ha, K.-T.; Kim, B.J. Menthol Modulates Pacemaker Potentials through TRPA1 Channels in Cultured Interstitial Cells of Cajal from Murine Small Intestine. Cell. Physiol. Biochem. 2016, 38, 1869–1882. [Google Scholar] [CrossRef]
- Karashima, Y.; Damann, N.; Prenen, J.; Talavera, K.; Segal, A.; Voets, T.; Nilius, B. Bimodal Action of Menthol on the Transient Receptor Potential Channel TRPA1. J. Neurosci. 2007, 27, 9874–9884. [Google Scholar] [CrossRef]
- Mahieu, F.; Owsianik, G.; Verbert, L.; Janssens, A.; De Smedt, H.; Nilius, B.; Voets, T. TRPM8-Independent Menthol-Induced Ca2+ Release from Endoplasmic Reticulum and Golgi. J. Biol. Chem. 2007, 282, 3325–3336. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A Simple Monoterpene with Remarkable Biological Properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Husain, F.M.; Ahmad, I.; Khan, M.S.; Ahmad, E.; Tahseen, Q.; Khan, M.S.; Alshabib, N.A. Sub-MICs of Mentha Piperita Essential Oil and Menthol Inhibits AHL Mediated Quorum Sensing and Biofilm of Gram-Negative Bacteria. Front. Microbiol. 2015, 6, 420. [Google Scholar] [CrossRef]
- Ghasemi-Pirbaluti, M.; Motaghi, E.; Bozorgi, H. The Effect of Menthol on Acute Experimental Colitis in Rats. Eur. J. Pharmacol. 2017, 805, 101–107. [Google Scholar] [CrossRef]
- Chumpitazi, B.P.; Kearns, G.L.; Shulman, R.J. Review Article: The Physiological Effects and Safety of Peppermint Oil and Its Efficacy in Irritable Bowel Syndrome and Other Functional Disorders. Aliment. Pharmacol. Ther. 2018, 47, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Matsueda, K.; Fukudo, S.; Ogishima, M.; Naito, Y.; Nakamura, S. Efficacy and Safety of Peppermint Oil for the Treatment in Japanese Patients with Irritable Bowel Syndrome: A Prospective, Open-Label, and Single-Arm Study. Biopsychosoc. Med. 2024, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Allescher, H.-D.; Abdel-Aziz, H. Mechanism of Action of STW 5 in Functional Dyspepsia and IBS: The Origin of Multi-Target. Dig. Dis. 2017, 35 (Suppl. S1), 18–24. [Google Scholar] [CrossRef]
- Pop, D.; Pop, R.S.; Farcău, D. The Use of Fibers, Herbal Medicines and Spices in Children with Irritable Bowel Syndrome: A Narrative Review. Nutrients 2023, 15, 4351. [Google Scholar] [CrossRef]
- Allescher, H.-D.; Burgell, R.; Malfertheiner, P.; Mearin, F. Multi-Target Treatment for Irritable Bowel Syndrome with STW 5: Pharmacological Modes of Action. J. Gastrointestin Liver Dis. 2020, 29, 227–233. [Google Scholar] [CrossRef]
- Elbadawi, M.; Ammar, R.M.; Aziz-Kalbhenn, H.; Rabini, S.; Klauck, S.M.; Dawood, M.; Saeed, M.E.M.; Kampf, C.J.; Efferth, T. Anti-Inflammatory and Tight Junction Protective Activity of the Herbal Preparation STW 5-II on Mouse Intestinal Organoids. Phytomedicine 2021, 88, 153589. [Google Scholar] [CrossRef]
- Michael, R.; Bettina, V.; Eckehard, L. Functional Gastrointestinal Disorders in Children: Effectivity, Safety, and Tolerability of the Herbal Preparation STW-5 (Iberogast®) in General Practice. Complement. Ther. Med. 2022, 71, 102873. [Google Scholar] [CrossRef]
- Aguilar, A.; Benslaiman, B.; Serra, J. Effect of Iberogast (STW5) on Tolerance to Colonic Gas in Patients with Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo Control Clinical Trial. Neurogastroenterol. Motil. 2024, 36, e14765. [Google Scholar] [CrossRef]
- Tu, X.; Ren, H.; Bu, S. Therapeutic Effects of Curcumin on Constipation-Predominant Irritable Bowel Syndrome Is Associated with Modulating Gut Microbiota and Neurotransmitters. Front. Microbiol. 2023, 14, 1274559. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wu, S.; Li, J.; Wang, R.; Xie, X.; Yu, X.; Pan, J.; Xu, Y.; Zheng, L. The Effect of Curcumin on the Brain-Gut Axis in Rat Model of Irritable Bowel Syndrome: Involvement of 5-HT-Dependent Signaling. Metab. Brain Dis. 2015, 30, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.V.; Ganguly, R.; Jaiswal, K.; Yadav, A.K.; Kumar, R.; Pandey, A.K. Molecular Signalling during Cross Talk between Gut Brain Axis Regulation and Progression of Irritable Bowel Syndrome: A Comprehensive Review. World J. Clin. Cases 2023, 11, 4458–4476. [Google Scholar] [CrossRef]
- Thavorn, K.; Wolfe, D.; Faust, L.; Shorr, R.; Akkawi, M.; Isaranuwatchai, W.; Klinger, C.; Chai-Adisaksopa, C.; Tanvejsilp, P.; Nochaiwong, S.; et al. A Systematic Review of the Efficacy and Safety of Turmeric in the Treatment of Digestive Disorders. Phytother. Res. 2024, 38, 2687–2706. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.C.; de Holanda-Angelin-Alves, C.M.; Pereira-Gonçalves, Á.; Kennedy-Feitosa, E.; Evangelista-Costa, E.; Bezerra, M.A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antispasmodic Effects of the Essential Oil of Croton Zehnteneri, Anethole, and Estragole, on Tracheal Smooth Muscle. Heliyon 2020, 6, e05445. [Google Scholar] [CrossRef]
- Evans, C.; Lorentz, W.P. Efficacy and Safety of a Colic Relief Remedy in Infantile Colic. Glob. Pediatr. Health 2022, 9, 2333794X221100810. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Scribano, M.L.L.; Kohn, A.; Caporaso, N.; Festi, D.; Campanale, M.C.; Di Rienzo, T.; Guarino, M.; Taddia, M.; et al. Curcumin and Fennel Essential Oil Improve Symptoms and Quality of Life in Patients with Irritable Bowel Syndrome. J. Gastrointest. Liver Dis. 2016, 25, 151–157. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Portincasa, P.; Maes, N.; Albert, A. Efficacy of Bio-Optimized Extracts of Turmeric and Essential Fennel Oil on the Quality of Life in Patients with Irritable Bowel Syndrome. Ann. Gastroenterol. 2018, 31, 685–691. [Google Scholar] [CrossRef]
- Ghayur, M.N.; Gilani, A.H. Pharmacological Basis for the Medicinal Use of Ginger in Gastrointestinal Disorders. Dig. Dis. Sci. 2005, 50, 1889–1897. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Y.; Li, P.; Chen, X.; Liu, F.; Hou, Q. Ginger Relieves Intestinal Hypersensitivity of Diarrhea Predominant Irritable Bowel Syndrome by Inhibiting Proinflammatory Reaction. BMC Complement. Med. Ther. 2020, 20, 279. [Google Scholar] [CrossRef] [PubMed]
- van Tilburg, M.A.L.; Palsson, O.S.; Ringel, Y.; Whitehead, W.E. Is Ginger Effective for the Treatment of Irritable Bowel Syndrome? A Double Blind Randomized Controlled Pilot Trial. Complement. Ther. Med. 2014, 22, 17–20. [Google Scholar] [CrossRef]
- Kazemian, A.; Toghiani, A.; Shafiei, K.; Afshar, H.; Rafiei, R.; Memari, M.; Adibi, P. Evaluating the Efficacy of Mixture of Boswellia Carterii, Zingiber Officinale, and Achillea Millefolium on Severity of Symptoms, Anxiety, and Depression in Irritable Bowel Syndrome Patients. J. Res. Med. Sci. 2017, 22, 120. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Chun, J.; Park, S.; Lee, H.J.; Im, J.P.; Kim, J.S. Aloe Vera Is Effective and Safe in Short-Term Treatment of Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. J. Neurogastroenterol. Motil. 2018, 24, 528–535. [Google Scholar] [CrossRef]
- Guo, X.; Mei, N. Aloe Vera: A Review of Toxicity and Adverse Clinical Effects. J. Environ. Sci. Health Part C 2016, 34, 77–96. [Google Scholar] [CrossRef]
- Ahluwalia, B.; Magnusson, M.K.; Böhn, L.; Störsrud, S.; Larsson, F.; Öhman, L.; Simrén, M. Aloe Barbadensis Mill. Extract Improves Symptoms in IBS Patients with Diarrhoea: Post Hoc Analysis of Two Randomized Double-Blind Controlled Studies. Ther. Adv. Gastroenterol. 2021, 14, 17562848211048133. [Google Scholar] [CrossRef]
- Wallace, J.L.; Flannigan, K.L.; McKnight, W.; Wang, L.; Ferraz, J.G.P.; Tuitt, D. Pro-Resolution, Protective and Anti-Nociceptive Effects of a Cannabis Extract in the Rat Gastrointestinal Tract. J. Physiol. Pharmacol. 2013, 64, 167–175. [Google Scholar] [PubMed]
- Anderson, B.D.; Sepulveda, D.E.; Nachnani, R.; Cortez-Resendiz, A.; Coates, M.D.; Beckett, A.; Bisanz, J.E.; Kellogg, J.J.; Raup-Konsavage, W.M. High Cannabigerol Hemp Extract Moderates Colitis and Modulates the Microbiome in an Inflammatory Bowel Disease Model. J. Pharmacol. Exp. Ther. 2024, 390, 331–341. [Google Scholar] [CrossRef]
- Bento, A.F.; Marcon, R.; Dutra, R.C.; Claudino, R.F.; Cola, M.; Pereira Leite, D.F.; Calixto, J.B. β-Caryophyllene Inhibits Dextran Sulfate Sodium-Induced Colitis in Mice through CB2 Receptor Activation and PPARγ Pathway. Am. J. Pathol. 2011, 178, 1153–1166. [Google Scholar] [CrossRef]
- Svendsen, K.; Bradaia, A.; Gandini, M.A.; Defaye, M.; Matisz, C.; Abdullah, N.S.; Gruber, A.; Zamponi, G.W.; Sharkey, K.A.; Altier, C. Entourage Effects of Nonpsychotropic Cannabinoids on Visceral Sensitivity in Experimental Colitis. J. Pharmacol. Exp. Ther. 2025, 392, 103389. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.S.; Camilleri, M.; Busciglio, I.; Carlson, P.; Szarka, L.A.; Burton, D.; Zinsmeister, A.R. Pharmacogenetic Trial of a Cannabinoid Agonist Shows Reduced Fasting Colonic Motility in Patients With Nonconstipated Irritable Bowel Syndrome. Gastroenterology 2011, 141, 1638–1647.e7. [Google Scholar] [CrossRef]
- Klooker, T.K.; Leliefeld, K.E.M.; Van Den Wijngaard, R.M.; Boeckxstaens, G.E.E. The Cannabinoid Receptor Agonist Delta-9-Tetrahydrocannabinol Does Not Affect Visceral Sensitivity to Rectal Distension in Healthy Volunteers and IBS Patients. Neurogastroenterol. Motil. 2011, 23, 30–35.e2. [Google Scholar] [CrossRef] [PubMed]
- van Orten-Luiten, A.-C.B.; de Roos, N.M.; Majait, S.; Witteman, B.J.M.; Witkamp, R.F. Effects of Cannabidiol Chewing Gum on Perceived Pain and Well-Being of Irritable Bowel Syndrome Patients: A Placebo-Controlled Crossover Exploratory Intervention Study with Symptom-Driven Dosing. Cannabis Cannabinoid Res. 2022, 7, 436–444. [Google Scholar] [CrossRef]
- Santonicola, A.; Moscato, P.; Soldaini, C.; Loi, G.; Merchionda, A.; D’Addieco, P.; Lauritano, A.; Pellegrino, G.; Sarzi-Puttini, P.; Iovino, P. The Effect of Medical Cannabis on Gastrointestinal Symptoms in Fibromyalgia and Disorders of Gut-Brain Interaction: A Patient-centred Real-world Observational Study. Clin. Exp. Rheumatol. 2025, 43, 1074–1081. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yau, C.Y.; Loh, C.Y.L.; Lim, W.S.; Teoh, S.E.; Yau, C.E.; Ong, C.; Thumboo, J.; Namasivayam, V.S.O.; Ng, Q.X. Examining the Association between Coffee Intake and the Risk of Developing Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4745. [Google Scholar] [CrossRef] [PubMed]
- Clevers, E.; Launders, D.; Helme, D.; Nybacka, S.; Störsrud, S.; Corsetti, M.; Van Oudenhove, L.; Simrén, M.; Tack, J. Coffee, Alcohol, and Artificial Sweeteners Have Temporal Associations with Gastrointestinal Symptoms. Dig. Dis. Sci. 2024, 69, 2522–2529. [Google Scholar] [CrossRef] [PubMed]
- Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Esmaillzadeh, A.; Adibi, P. Association of Coffee and Caffeine Intake With Irritable Bowel Syndrome in Adults. Front. Nutr. 2021, 8, 632469. [Google Scholar] [CrossRef]
- Brown, S.R.; Cann, P.A.; Read, N.W. Effect of Coffee on Distal Colon Function. Gut 1990, 31, 450–453. [Google Scholar] [CrossRef]
- Roshini, K.V.; Anjitha Anil Arif, K.; Faisal Maneesha, N.A.; Nahmath, K.S. Spasmolytic Effects of Medicinal Plants—A Review. Int. J. Pharm. Sci. 2024, 02, 1. [Google Scholar] [CrossRef]
- Rauf, A.; Akram, M.; Semwal, P.; Mujawah, A.A.H.; Muhammad, N.; Riaz, Z.; Munir, N.; Piotrovsky, D.; Vdovina, I.; Bouyahya, A.; et al. Antispasmodic Potential of Medicinal Plants: A Comprehensive Review. Oxidative Med. Cell. Longev. 2021, 2021, 4889719. [Google Scholar] [CrossRef]
- Capili, B.; Anastasi, J.K.; Chang, M. Addressing the Role of Food in Irritable Bowel Syndrome Symptom Management. J. Nurse Pract. 2016, 12, 324–329. [Google Scholar] [CrossRef]
- Zheng, H.; Jin, S.; Shen, Y.-L.; Peng, W.-Y.; Ye, K.; Tang, T.-C.; Zhao, J.; Chen, M.; Li, Z.-G. Chinese Herbal Medicine for Irritable Bowel Syndrome: A Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials. Front. Pharmacol. 2021, 12, 694741. [Google Scholar] [CrossRef]
- Chen, M.; Tang, T.-C.; Wang, Y.; Shui, J.; Xiao, X.-H.; Lan, X.; Yu, P.; Zhang, C.; Wang, S.-H.; Yao, J.; et al. Randomised Clinical Trial: Tong-Xie-Yao-Fang Granules versus Placebo for Patients with Diarrhoea-Predominant Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2018, 48, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, F.; Xu, X.; Liu, Y.; Liu, J. Based on Proteomics Data Revealing the Potential of Traditional Chinese Medicine in Treating Irritable Bowel Syndrome. Mediat. Inflamm. 2025, 2025, 7748351. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.-Y.; Zang, K.-H.; Zuo, X.; Wu, X.-A.; Bian, Z.-X. Quercetin Attenuates Visceral Hypersensitivity and 5-Hydroxytryptamine Availability in Postinflammatory Irritable Bowel Syndrome Rats: Role of Enterochromaffin Cells in the Colon. J. Med. Food 2019, 22, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Abdollahi, M. Herbal Medicines for the Management of Irritable Bowel Syndrome: A Comprehensive Review. World J. Gastroenterol. 2012, 18, 589–600. [Google Scholar] [CrossRef]
- Malfertheiner, P. STW 5 (Iberogast) Therapy in Gastrointestinal Functional Disorders. Dig. Dis. 2017, 35 (Suppl. S1), 25–29. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Shah, A.; Morrison, M.; Koloski, N.; Gwee, K.A.; Chen, M.; Kim, Y.; Ayaki, K.; Efferth, T.; Holtmann, G. Mechanisms of Action and Clinical Effectiveness of Herbal Treatments for Disorders of Gut-Brain Interaction. Dig. Liver Dis. 2025, 57, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
Cluster (%) 1 | GI Symptoms | Psychological Burden |
---|---|---|
1 (6%) | Diarrhea and urgency | Low |
2 (33%) | Low bowel symptom severity with abdominal pain | High |
3 (36%) | Low overall GI symptom severity | Low |
4 (10%) | Diarrhea, abdominal pain, and urgency | High |
5 (3%) | Constipation, abdominal pain, and bloating | High |
6 (4%) | High overall GI symptom severity | High |
7 (9%) | Constipation and bloating | Low |
Herbal-Based Remedy | Observed Effects | Study Type | Bioactive Compounds | IBS Subtype | Refs. |
---|---|---|---|---|---|
Peppermint oil (Mentha piperita) | Smooth muscle relaxation due to blockade of Ca2+ channels, pain modulation via TRPM8 and TRPA1, anti-inflammatory, anti-microbial due to the modulation of the immune system, improvement of the patient’s global assessment, IBS symptom severity score and stool frequency score | Preclinical and Clinical | Menthol, limonene, menthofuran, a-pinene, b-pinene, neomenthol, isomenthone, 1,8-cineole | Not specified | [61,62,63,64,65,66,67,68,69,70] |
Iberogast (STW 5) | Smooth muscle relaxation, gastric secretion stimulation, anti-inflammatory effect due to NF-κB, STAT1, and iNOS inhibition, improvement of tight junction disruption due to ZO-1 modulation, improvement of GI symptoms, IBS symptom severity score, and colonic gas tolerance in patients | Preclinical and Clinical | Phytochemicals from 9 plants including bitter candytuft, angelica root, milk thistle fruit, celandine herb, peppermint herb, caraway fruit, liquorice root, balm leaf, and chamomile flower | Not specified | [71,72,73,74,75,76] |
Turmeric (Curcuma longa) | Anti-inflammatory and antioxidant effects, GI motility regulation via 5-HT modulation, improvement in gut microbiota alteration | In vivo animal studies | Curcumin | IBS-C (animal model) | [77,78,79,80] |
Fennel essential oil (Foeniculum vulgare) | Smooth muscle relaxation due to K+ channel opening, anti-inflammatory effects, antispasmodic activity, reduction in abdominal pain and other IBS symptoms in patients with mild-to-moderate IBS, enhanced quality of life | Preclinical and Clinical | Anethole, fenchone, estragole, flavonoids | All patients’ subtypes | [81,82,83,84] |
Ginger (Zingiber officinale) | Debate efficacy on IBS: spasmolytic and spasmogenic effects due to the inhibition of cholinergic response and K+-induced contractions, reduction in colonic edema and inflammation via NF-κB modulation, Decreased abdominal pain severity and frequency, bloating, depression, and anxiety scores in patients treated with an herbal mixture containing ginger | In vivo animal study and Clinical | Saponins, flavonoids, alkaloids, 6-gingerol | IBS-D (animal model) | [85,86,87,88] |
Aloe (Aloe vera) | Laxative effect for IBS-induced constipation, increased intestinal motility and permeability, stimulation of mucus secretion, and release of prostaglandin-like compounds in the colon | Clinical | Barbaloin | IBS-D | [89,90,91] |
Hemp (Cannabis sativa) | Modulation of gut motility, anti-inflammatory effects, improved gastric-distension pain and colitis recovery, pain reduction through action on CB1 and CB2 receptors and on TRP ion channels and PPAR-α/γ. In humans, improvement of multiple IBS symptoms (limited evidence) | Preclinical and Clinical | THC, CBD, CBG and β-caryophyllene | IBS-D, IBS-A, IBS-M | [92,93,94,95,96,97,98,99] |
Coffee (Coffea arabica and other spp.) | Potential preventive effects, but may aggravate symptoms in diagnosed patients due to stimulation of intestinal motility, increased gastric secretion, and inflammation mediators | Observational | Caffeine, polyphenols, diterpenes, melanoidins | In women, overweight individuals and IBS-C patients may aggravate symptoms | [100,101,102,103] |
Yellow gentian (Gentiana lutea) | Antispasmodic, stimulation of bile and digestive enzyme production | In vitro | Gentiopicroside, gentisin, swertiamarin | Not specified | [104] |
Herbal-Based Remedy | Study Type | Study Duration | Number of Patients | Observed Efficacy and Adverse Effects | Refs./Clinical Trials’ ID |
---|---|---|---|---|---|
Peppermint oil (Mentha piperita) | Multi-center, open-label, single-arm, phase 3 trial | 4 weeks (3 times a day before meals) | 69 Japanese IBS patients (17–60 years of age) | Improved patients’ global assessment (PtGA) starting from week 2 Reduced IBS symptom severity Non-serious adverse effects in 20% of subjects | [70] |
Iberogast (STW 5) | Prospective observational study | 1 week | 980 children (3–14 years of age) | Improved gastrointestinal symptom score (GIS) Good or very good tolerability for 95% of subjects | [75] |
Iberogast (STW 5) | Meta-analysis of 5 clinical trials | 4–8 weeks | 900 patients | Improved GI symptoms vs. placebo | [112] |
Iberogast (STW 5) | Cross-over, randomized, double-blind, placebo-controlled trial | 2 weeks | 10 patients | Improved colonic gas tolerance | [76] |
Turmeric (Curcuma longa) | Meta-analysis on randomized controlled trials and comparative observational studies | 4–18 weeks | 551 adult IBS patients | Improved general quality of life Improved IBS score Reduced abdominal pain | [80] |
Fennel essential oil (Foeniculum vulgare) | Randomized, double-blind, placebo-controlled trial | 1 month | 121 adult patients | Improved symptoms and quality of life Good tolerability and safety | [83] |
Combination of turmeric and essential fennel oil | Observational, prospective, non-controlled, non-randomized study | 2 months | 211 adult patients | Improved symptoms and quality of life | [84] |
Ginger (Zingiber officinale) | Double blind randomized controlled trial | 4 weeks | 45 adult patients | No difference with respect to placebo Well tolerated | [87] |
Combination of Boswellia carterii, Zingiber officinale, and Achillea millefolium | Randomized controlled trial | 3 months | 60 adult patients | Improved symptoms Reduction in IBS-related anxiety and depression | [88] |
Aloe (Aloe vera) | Meta-analysis on randomized controlled trials | 1–3 months | 151 patients | Improved IBS symptom score No difference in adverse events vs. placebo | [89] |
Aloe (Aloe vera) | Post hoc analysis of two randomized double-blind controlled studies | 4 weeks | 213 patients | Improved symptoms in IBS-D patients Safe and well tolerated | [91] |
Cannabidiol chewing gum | Randomized, double-blinded, placebo-controlled cross-over trial | 8 weeks | 32 female patients | No significant difference in pain scores vs. placebo High intra- and inter-individual variation | [98] |
Bedrocan® cannabis treatment | Prospective study | 6 months | 56 fibromyalgia patients with dyspepsia and/or IBS | Improved IBS symptoms | [99] |
Coffee (Coffea arabica and other spp.) | Meta-analysis | regular coffee consumption | 432,022 patients | Potential preventive effects and reduced likelihood of IBS development | [100] |
Coffee (Coffea arabica and other spp.) | Observational study | regular coffee consumption | 99 healthy subjects | Increased motility index within four minutes after coffee consumption | [103] |
Coffee (Coffea arabica and other spp.) | Meta-analysis | regular coffee consumption | 3362 Iranian adults | Association between regular coffee consumption and IBS | [102] |
Tong-Xie-Yao-Fang | Double-blind, placebo-controlled randomized trial | 4 weeks | 155 patients | Improved symptoms in IBS-D patients | [108] |
Chinese herbal medicine | Meta-analysis of 10 randomized controlled trials | 4–8 weeks | 2501 adult patients with IBS-D | Improved IBS symptoms Higher rate of adverse events vs. placebo | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abalo, R.; Gallego-Barceló, P.; Gabbia, D. Natural Remedies for Irritable Bowel Syndrome: A Comprehensive Review of Herbal-Based Therapies. Int. J. Mol. Sci. 2025, 26, 9345. https://doi.org/10.3390/ijms26199345
Abalo R, Gallego-Barceló P, Gabbia D. Natural Remedies for Irritable Bowel Syndrome: A Comprehensive Review of Herbal-Based Therapies. International Journal of Molecular Sciences. 2025; 26(19):9345. https://doi.org/10.3390/ijms26199345
Chicago/Turabian StyleAbalo, Raquel, Paula Gallego-Barceló, and Daniela Gabbia. 2025. "Natural Remedies for Irritable Bowel Syndrome: A Comprehensive Review of Herbal-Based Therapies" International Journal of Molecular Sciences 26, no. 19: 9345. https://doi.org/10.3390/ijms26199345
APA StyleAbalo, R., Gallego-Barceló, P., & Gabbia, D. (2025). Natural Remedies for Irritable Bowel Syndrome: A Comprehensive Review of Herbal-Based Therapies. International Journal of Molecular Sciences, 26(19), 9345. https://doi.org/10.3390/ijms26199345