Intra-Articular Administration of Recombinant Human Proteoglycan 4 (rhPRG4) as a Potential Therapy for Temporomandibular Joint Osteoarthritis: A Preclinical Histopathological Study
Abstract
1. Introduction
2. Results
2.1. Descriptive Histological Analysis of Articular Cartilage in the Rabbit Temporomandibular Joint Reveals Key Differences Between Healthy and Osteoarthritic Joints
2.2. Descriptive Histological Analysis of the Rabbit Osteoarthritic Temporomandibular Joint Suggests Beneficial Treatment Effects by Intra-Articular Administration of rhPRG4
2.3. Intra-Articular Administration of rhPRG4 as a Treatment Reduces the Severity of Osteoarthritis in the Articular Cartilage of the Rabbit Temporomandibular Joint
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. TMJ-OA Induction
4.3. Intra-Articular rhPRG4 Administration
4.4. Histological Processing
4.5. Histological Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OA | Osteoarthritis |
TMJ | Temporomandibular joint |
TMJ-OA | Temporomandibular joint osteoarthritis |
PRG4 | Proteoglycan 4 |
rhPRG4 | Recombinant human PRG4 |
rhPRG4-30 | rhPRG4 30 μg/mL |
rhPRG4-100 | rhPRG4 100 μg/mL |
SF | Synovial fluid |
HA | Hyaluronic acid |
PRP | Platelet-rich plasma |
GP | Growth factors |
NF-κB | Nuclear factor kappa B |
IL-1β | Interleukin-1 beta |
TNF-α | Tumor Necrosis Factor alpha |
MC | Mandibular condyle |
MF | Mandibular fossa |
SZ | Superficial zone |
MZ | Middle zone |
DZ | Deep zone |
AD | Articular disc |
CZ | Central zone |
PZ | Peripheral zone |
OARSI | Osteoarthritis Research Society International |
ARRIVE | Animal Research: Reporting of In Vivo Experiments |
EDTA | Ethylenediaminetetraacetic acid |
References
- Mason, C.; Dunnill, P. A brief definition of regenerative medicine. Regen. Med. 2008, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Berthiaume, F.; Maguire, T.J.; Yarmush, M.L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 403–430. [Google Scholar] [CrossRef] [PubMed]
- Iturriaga, V.; Vásquez, B.; Bornhardt, T.; del Sol, M. Effects of low and high molecular weight hyaluronic acid on the osteoarthritic temporomandibular joint in rabbit. Clin. Oral Investig. 2021, 25, 4507–4518. [Google Scholar] [CrossRef] [PubMed]
- Asadpour, N.; Shooshtari, Z.; Kazemian, M.; Gholami, M.; Vatanparast, N.; Samieirad, S. Combined platelet-rich plasma and hyaluronic acid can reduce pain in patients undergoing arthrocentesis for temporomandibular joint osteoarthritis. J. Oral Maxillofac. Surg. 2022, 80, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Haddad, C.; Zoghbi, A.; El Skaff, E.; Touma, J. Platelet-rich plasma injections for the treatment of temporomandibular joint disor-ders: A systematic review. J. Oral Rehabil. 2023, 50, 1330–1339. [Google Scholar] [CrossRef]
- Wen, S.; Iturriaga, V.; Vásquez, B.; del Sol, M. Comparison of four treatment protocols with intra-articular medium molecular weight hyaluronic acid in induced temporomandibular osteoarthritis: An experimental study. Int. J. Mol. Sci. 2023, 24, 14130. [Google Scholar] [CrossRef]
- Tjandra, K.C.; Novriansyah, R.; Sudiasa, I.N.S.; Ar, A.; Rahmawati, N.A.D.; Dilogo, I.H. Modified mesenchymal stem cell, plate-let-rich plasma, and hyaluronic acid intervention in early stage osteoarthritis: A systematic review, meta-analysis, and meta-regression of arthroscopic-guided intra-articular approaches. PLoS ONE 2024, 19, e0295876. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Lall, R.; Srivastava, A.; Sinha, A. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 2019, 6, 192. [Google Scholar] [CrossRef]
- Iturriaga, V.; Vásquez, B.; Veuthey, C.; del Sol, M. Temporomandibular joint arthrocentesis in a rabbit model: Technique and recommendations in the study of temporomandibular disorders. Pol. J. Vet. Sci. 2019, 22, 321–326. [Google Scholar] [CrossRef]
- Flannery, C.R.; Zollner, R.; Corcoran, C.; Jones, A.R.; Root, A.; Rivera-Bermúdez, M.A.; Blanchet, T.; Gleghorn, J.P.; Bonassar, L.J.; Bendele, A.M.; et al. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 2009, 60, 840–847. [Google Scholar] [CrossRef]
- Jay, G.D.; Waller, K.A. The biology of lubricin: Near frictionless joint motion. Matrix Biol. 2014, 39, 17–24. [Google Scholar] [CrossRef]
- Watkins, A.R.; Reesink, H.L. Lubricin in experimental and naturally occurring osteoarthritis: A systematic review. Osteoarthr. Cartil. 2020, 28, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, K.A.; Zhang, L.; Waller, K.; Tofte, J.; Teeple, E.; Fleming, B.C.; Jay, G.D. The impact of forced joint exercise on lubricin biosynthesis from articular cartilage following ACL transection and intra-articular lubricin’s effect in exercised joints following ACL transection. Osteoarthr. Cartil. 2012, 20, 940–948. [Google Scholar] [CrossRef]
- Elsaid, K.A.; Jay, G.D.; Liu-Bryan, R.; Terkeltaub, R. Proteoglycan 4 (PRG4)/Lubricin and the extracellular matrix in gout. Gout Urate Cryst. Depos. Dis. 2023, 1, 122–136. [Google Scholar] [CrossRef]
- Neu, C.P.; Komvopoulos, K.; Reddi, A.H. The interface of functional biotribology and regenerative medicine in synovial joints. Tissue Eng. Part B Rev. 2008, 14, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Qadri, M.; Jay, G.D.; Zhang, L.X.; Schmidt, T.A.; Totonchy, J.; Elsaid, K.A. Proteoglycan-4 is an essential regulator of synovial macrophage polarization and inflammatory macrophage joint infiltration. Arthritis Res. Ther. 2021, 23, 241. [Google Scholar] [CrossRef]
- Elsaid, K.A.; Fleming, B.C.; Oksendahl, H.L.; Machan, J.T.; Fadale, P.D.; Hulstyn, M.J.; Shalvoy, R.; Jay, G.D. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. 2008, 58, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Jay, G.D.; Fleming, B.C.; Watkins, B.A.; McHugh, K.A.; Anderson, S.C.; Zhang, L.X.; Teeple, E.; Waller, K.A.; Elsaid, K.A. Prevention of cartilage degeneration and restoration of chondroprotection by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. Arthritis Rheum. 2010, 62, 2382–2391. [Google Scholar] [CrossRef]
- Teeple, E.; Elsaid, K.A.; Jay, G.D.; Zhang, L.; Badger, G.J.; Akelman, M.; Bliss, T.F.; Fleming, B.C. Effects of supplemental intra-articular lubricin and hyaluronic acid on the progression of posttraumatic arthritis in the anterior cruciate ligament-deficient rat knee. Am. J. Sports Med. 2011, 39, 164–172. [Google Scholar] [CrossRef]
- Al-Sharif, A.; Jamal, M.; Zhang, L.X.; Larson, K.; Schmidt, T.A.; Jay, G.D.; Elsaid, K.A. Lubricin/Proteoglycan 4 binding to CD44 receptor: A mechanism of the suppression of proinflammatory cytokine-induced synoviocyte proliferation by lubricin. Arthritis Rheumatol. 2015, 67, 1503–1513. [Google Scholar] [CrossRef]
- Alquraini, A.; Jamal, M.; Zhang, L.; Schmidt, T.; Jay, G.D.; Elsaid, K.A. The autocrine role of proteoglycan-4 (PRG4) in modulating osteoarthritic synoviocyte proliferation and expression of matrix degrading enzymes. Arthritis Res. Ther. 2017, 19, 89. [Google Scholar] [CrossRef]
- Alquraini, A.; Garguilo, S.; Souza, G.D.; Zhang, L.X.; Schmidt, T.A.; Jay, G.D.; Elsaid, K.A. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: An anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res. Ther. 2015, 17, 353. [Google Scholar] [CrossRef] [PubMed]
- Galicia, K.; Thorson, C.; Banos, A.; Rondina, M.; Hopkinson, W.; Hoppensteadt, D.; Fareed, J. Inflammatory biomarker profiling in total joint arthroplasty and its relevance to circulating levels of lubricin, a novel proteoglycan. Clin. Appl. Thromb. Hemost. 2018, 24, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, K.A.; Zhang, L.; Shaman, Z.; Patel, C.; Schmidt, T.A.; Jay, G.D. The impact of early intra-articular administration of interleukin-1 receptor antagonist on lubricin metabolism and cartilage degeneration in an anterior cruciate ligament transection model. Osteoarthr. Cartil. 2015, 23, 114–121. [Google Scholar] [CrossRef]
- Das, N.; Schmidt, T.A.; Krawetz, R.J.; Dufour, A. Proteoglycan 4: From mere lubricant to regulator of tissue homeostasis and inflammation: Does proteoglycan 4 have the ability to buffer the inflammatory response? Bioessays 2019, 41, e1800166. [Google Scholar] [CrossRef]
- Leonardi, R.; Rusu, M.C.; Loreto, F.; Loreto, C.; Musumeci, G. Immunolocalization and expression of lubricin in the bilaminar zone of the human temporomandibular joint disc. Acta Histochem. 2012, 114, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Fang, W.; Li, Y.; Ke, J.; Deng, M.; Meng, Q.; Li, J.; Long, X. Up-regulation of proteoglycan 4 in temporomandibular osteoarthritic synovial cells by hyaluronic acid. J. Oral Pathol. Med. 2015, 44, 622–627. [Google Scholar] [CrossRef]
- Hill, A.; Duran, J.; Purcell, P. Lubricin protects the temporomandibular joint surfaces from degeneration. PLoS ONE 2014, 9, e106497. [Google Scholar] [CrossRef]
- Leonardi, R.; Perrotta, R.E.; Almeida, L.E.; Loreto, C.; Musumeci, G. Lubricin in synovial fluid of mild and severe temporomandibular joint internal derangements. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e793–e799. [Google Scholar] [CrossRef]
- Koyama, E.; Saunders, C.; Salhab, I.; Decker, R.S.; Chen, I.; Um, H.; Pacifici, M.; Nah, H.D. Lubricin is required for the structural integrity and post-natal maintenance of TMJ. J. Dent. Res. 2014, 93, 663–670. [Google Scholar] [CrossRef]
- Cardoneanu, A.; Macovei, L.A.; Burlui, A.M.; Mihai, I.R.; Bratoiu, I.; Rezus, I.I.; Richter, P.; Tamba, B.I.; Rezus, E. Temporomandibular joint osteoarthritis: Pathogenic mechanisms involving the cartilage and subchondral bone, and potential therapeutic strategies for joint regeneration. Int. J. Mol. Sci. 2022, 24, 171. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Z.; Yang, H.; Zhong, H.; Peng, W.; Xie, R. Recent advances in understanding the role of cartilage lubrication in osteoarthritis. Molecules 2021, 26, 6122. [Google Scholar] [CrossRef]
- Waller, K.A.; Zhang, L.X.; Elsaid, K.A.; Fleming, B.C.; Warman, M.L.; Jay, G.D. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc. Natl. Acad. Sci. USA 2013, 110, 5852–5857. [Google Scholar] [CrossRef] [PubMed]
- Pritzker, K.P.; Gay, S.; Jimenez, S.A.; Ostergaard, K.; Pelletier, J.P.; Revell, P.A.; Salter, D.; van den Berg, W.B. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthr. Cartil. 2006, 14, 13–29. [Google Scholar] [CrossRef]
- Pritzker, K.P.; Aigner, T. Terminology of osteoarthritis cartilage and bone histopathology—A proposal for a consensus. Osteoarthr. Cartil. 2010, 18, S7–S9. [Google Scholar] [CrossRef] [PubMed]
- Estrella, R.P.; Whitelock, J.M.; Packer, N.H.; Karlsson, N.G. The glycosylation of human synovial lubricin: Implications for its role in inflammation. Biochem. J. 2010, 429, 359–367. [Google Scholar] [CrossRef]
- de Souza, R.F.; Lovato da Silva, C.H.; Nasser, M.; Fedorowicz, Z.; Al-Muharraqi, M.A. Interventions for the management of temporomandibular joint osteoarthritis. Cochrane Database Syst. Rev. 2012, 2012, CD007261. [Google Scholar]
- Poole, R.; Blake, S.; Buschmann, M.; Goldring, S.; Laverty, S.; Lockwood, S.; Matyas, J.; McDougall, J.; Pritzker, K.; Rudolphi, K.; et al. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthr. Cartil. 2010, 18, S10–S16. [Google Scholar] [CrossRef] [PubMed]
- Colbath, A.; Haubruck, P. Closing the gap: Sex-related differences in osteoarthritis and the ongoing need for translational studies. Ann. Transl. Med. 2023, 11, 339. [Google Scholar] [CrossRef]
- Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Universities Federation for Animal Welfare: Wheathampstead, UK, 1959; Reprinted in 1992. [Google Scholar]
- Duygu, G.; Güler, N.; Cam, B.; Kürkcü, M. The effects of high molecular weight hyaluronic acid (Hylan G-F 20) on experimentally induced temporomandibular joint osteoartrosis: Part II. Int. J. Oral Maxillofac. Surg. 2011, 40, 1406–1413. [Google Scholar] [CrossRef]
- Laverty, S.; Girard, C.A.; Williams, J.M.; Hunziker, E.B.; Pritzker, K.P. The OARSI histopathology initiative recommendations for histological assessments of osteoarthritis in the rabbit. Osteoarthr. Cartil. 2010, 18, S53–S65. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Tominaga, K.; Takano, H.; Ariyoshi, W.; Habu, M.; Fukuda, J.; Maeda, H. A decrease in the molecular weight of hyaluronic acid in synovial fluid from patients with temporomandibular disorders. J. Oral Pathol. Med. 2004, 33, 224–229. [Google Scholar] [CrossRef] [PubMed]
Structure | TMJ-C | TMJ-OA | TMJ-OA-WT | rhPRG4-30 | rhPRG4-100 | |
---|---|---|---|---|---|---|
Mandibular condyle | SZ | Smooth and continuous surface. Flattened surface cells and a thin layer of fibrous connective tissue. | Abrasion, matrix focal discontinuity. Fibrillations towards the deep zone. | Abrasion, matrix focal discontinuity. Fibrillations towards the deep zone covering the entire articular cartilage. | Slightly irregular surface. Abrasion of the surface layer in some areas. Small and flat or round chondrocytes, aligned parallel to the collagen fibers and the surface. | Slightly irregular surface. In some sectors it is possible to observe abrasion. Small and flat or round cells. In some samples it is observed, focally, areas of collagen condensation whose fibers are directed to the middle and/or deep zone. |
MZ | Undifferentiated cells and spherical chondrocytes in a proteoglycan matrix. | Reduced cellularity with deep fibrillations. | Reduced cellularity, more deep and higher density fibrillations. | Proliferation of chondrocytes, arranged in isolation. | Anisocytosis and proliferation of undifferentiated cells. Clusters of chondrocytes are seen in some samples. Matrix rarefaction, with areas of increased cationic staining around the chondrons. Condensation of collagen fibers. | |
DZ | It presents round and larger chondrocytes, organized in isogenic groups. Deep hypertrophic chondrocytes are observed. | Less cellularity. Hypertrophic chondrocytes, forming clusters. Rarefaction and condensation of collagen fibers. | Less cellularity and chondrocyte clusters. Rarefaction and condensation of collagen fibers. | Vestiges of deep fibrillations. Focal rarefaction, increased collagen formation and cationic staining around the chondrons. Some hypertrophic chondrocytes. | Loss of orientation of the chondrons in a disorganized matrix. Increased density of chondrocytes, with decreased cell size. Vestiges of deep fibrillations. | |
Articular disc | CZ | Chondrocyte stacking and arrangement in parallel (rows) as to collagen fibers. | Focal edema. Increased number and density of collagen fibers. Disorganized fibers. Less cellularity, with randomly arranged hypertrophic chondrocytes. | Focal edema. Increased number and density of collagen fibers. Disorganized fibers. Less cellularity, with randomly arranged hypertrophic chondrocytes. | Collagen fibers arranged in parallel with chondrocytes aligned to them. Chondrocytes are found within cartilage matrix. | Disorganization of collagen fibers and edema. Less cellularity, with some chondrocytes arranged randomly and others parallel to the collagen fibers. |
PZ | More abundant and dense chondrocyte rows. | Randomly arranged hypertrophic chondrocytes within disorganized collagen fibers. Presence of connective tissue with abundant fibroblasts. | Less peripheral connective tissue. Hypertrophy of the synovial membrane. | Randomly arranged hypertrophic chondrocytes within disorganized collagen fibers. | Some hypertrophic chondrocytes randomly arranged among disorganized collagen fibers. | |
Mandibular fossa | SZ | Fibrous connective tissue, collagen fibers parallel to the surface with intermingled fibrocytes. | Thickness, fiber disorganization, and edema. Rarefaction. Fibrillations that reach the deep zone of the cartilage. | Thickness, fiber disorganization and rarefaction. Fibrillations that reach the deep zone of the cartilage. | Slightly irregular surface. The limits between SZ and MZ are not very evident. Hypocellularity. | Slightly irregular surface. Unclear boundaries between SZ and MZ. Scarce cellularity with anisocytosis. |
MZ | Undifferentiated cells. | Diffuse, with reduced thickness and scarce cellularity. | Diffuse, reduced thickness, and scarce cellularity. | Less thickness and hypocellularity, with rarefaction and edema. | Heterogeneous matrix, with focal edema, low cellularity, and anisocytosis. | |
DZ | Chondrocytes immersed in matrix rich in collagen fibers. | Clusters of hypertrophic chondrocytes. Rarefaction and condensation of collagen fibers. Presence of deep fibrillations. | Deep fibrillations. rarefaction and collagen condensation. Clusters of hypertrophic chondrocytes. | Osteoarthritic features are observed, similar to MZ. | Heterogeneous matrix, traces of focal fibrillations. Small chondrocytes distributed mainly in isolation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iturriaga, V.; Vásquez, B.; Wen, S.; Bornhardt, T.; Navarrete, J.; del Sol, M. Intra-Articular Administration of Recombinant Human Proteoglycan 4 (rhPRG4) as a Potential Therapy for Temporomandibular Joint Osteoarthritis: A Preclinical Histopathological Study. Int. J. Mol. Sci. 2025, 26, 9305. https://doi.org/10.3390/ijms26199305
Iturriaga V, Vásquez B, Wen S, Bornhardt T, Navarrete J, del Sol M. Intra-Articular Administration of Recombinant Human Proteoglycan 4 (rhPRG4) as a Potential Therapy for Temporomandibular Joint Osteoarthritis: A Preclinical Histopathological Study. International Journal of Molecular Sciences. 2025; 26(19):9305. https://doi.org/10.3390/ijms26199305
Chicago/Turabian StyleIturriaga, Veronica, Bélgica Vásquez, Schilin Wen, Thomas Bornhardt, Javiera Navarrete, and Mariano del Sol. 2025. "Intra-Articular Administration of Recombinant Human Proteoglycan 4 (rhPRG4) as a Potential Therapy for Temporomandibular Joint Osteoarthritis: A Preclinical Histopathological Study" International Journal of Molecular Sciences 26, no. 19: 9305. https://doi.org/10.3390/ijms26199305
APA StyleIturriaga, V., Vásquez, B., Wen, S., Bornhardt, T., Navarrete, J., & del Sol, M. (2025). Intra-Articular Administration of Recombinant Human Proteoglycan 4 (rhPRG4) as a Potential Therapy for Temporomandibular Joint Osteoarthritis: A Preclinical Histopathological Study. International Journal of Molecular Sciences, 26(19), 9305. https://doi.org/10.3390/ijms26199305