Indole–Pyrazole Hybrids: Synthesis, Structure, and Assessment of Their Hemolytic and Cytoprotective Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization of Indole Hybrids
2.2. X-Ray Analysis
2.3. Hemolytic Properties and Cytoprotective Activity Against Free Radical-Induced Hemolysis
2.4. Molecular Docking
- Similarities and Differences between Novel and Endogenous Ligands
2.5. Physicochemical Properties of Indole Derivatives—In Silico Study
3. Materials and Methods
3.1. Instrumentation and Chemicals
3.2. Synthesis of Indole Derivatives
- The general synthesis procedure for 2-16
- 3-((1H-pyrazol-1-yl)methyl)-1H-indole (2)
- 3-((4-methyl-1H-pyrazol-1-yl)methyl)-1H-indole (3)
- 3-((4-ethyl-1H-pyrazol-1-yl)methyl)-1H-indole (4)
- 3-((4-isopropyl-1H-pyrazol-1-yl)methyl)-1H-indole (5)
- 3-((5-isopropyl-1H-pyrazol-1-yl)methyl)-1H-indole (6)
- 3-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-1H-indole (7)
- 3-((4-ethynyl-1H-pyrazol-1-yl)methyl)-1H-indole (8)
- 3-((5-methoxy-1H-pyrazol-1-yl)methyl)-1H-indole (9)
- 3-((4-fluoro-1H-pyrazol-1-yl)methyl)-1H-indole (10)
- 3-((4-chloro-1H-pyrazol-1-yl)methyl)-1H-indole (11)
- 3-((4-bromo-1H-pyrazol-1-yl)methyl)-1H-indole (12)
- 3-((4-iodo-1H-pyrazol-1-yl)methyl)-1H-indole (13)
- 3-((4-bromo-5-methyl-1H-pyrazol-1-yl)methyl)-1H-indole (14)
- 3-((4-bromo-3-methyl-1H-pyrazol-1-yl)methyl)-1H-indole (15)
- 3-((3-bromo-5-methyl-1H-pyrazol-1-yl)methyl)-1H-indole (16)
- Synthesis of 18:
- 1-((1H-indol-3-yl)methyl)-5-nitro-1H-indazole (18)
3.3. X-Ray Data Collection and Refinement of the Structures
3.4. Biological Study
3.4.1. Human Red Blood Cells Preparation
3.4.2. Hemolytic Assay
3.4.3. Inhibition of Oxidative Stress-Induced Hemolysis
3.4.4. Statistical Analysis
3.5. Molecular Docking—Experimental
3.6. In Silico Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Assress, H.A.; Selvarajan, R.; Nyoni, H.; Mamba, B.B.; Msagati, T.A.M. Antifungal azoles and azole resistance in the environment: Current status and future perspectives—A review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 1011–1041. [Google Scholar] [CrossRef]
- Devasia, J.; Nizam, A.; Vasantha, V.L. Azole-Based Antibacterial Agents: A Review on Multistep Synthesis Strategies and Biology. Polycycl. Aromat. Compd. 2021, 42, 5474–5495. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M.; Zacconi, F.; Gupta, G.; Aljabali, A.A.; Mishra, V.; Tambuwala, M.M.; Kapoor, D.N.; Negi, P.; Pinto, T.D.J.A.; et al. Synthesis and Anticancer Properties of ‘Azole’ Based Chemotherapeutics as Emerging Chemical Moieties: A Comprehensive Review. Curr. Org. Chem. 2021, 25, 654–668. [Google Scholar] [CrossRef]
- Prasher, P.; Sharma, M. ‘Azole’ as privileged heterocycle for targeting the inducible cyclooxygenase enzyme. Drug Dev. Res. 2021, 82, 167–197. [Google Scholar] [CrossRef] [PubMed]
- Curutchet, C.; Poater, J.; Solà, M.; Elguero, J. Analysis of the Effects of N-Substituents on Some Aspects of the Aromaticity of Imidazoles and Pyrazoles. J. Phys. Chem. A 2011, 115, 8571–8577. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.C.; Portilla, J. Recent Advances in the Synthesis of New Pyrazole Derivatives. Targets Heterocycl. Syst. 2018, 22, 194–223. [Google Scholar] [CrossRef]
- Mortada, S.; Karrouchi, K.; Hamza, E.H.; Oulmidi, A.; Bhat, M.A.; Mamad, H.; Aalilou, Y.; Radi, S.; Ansar, M.; Masrar, A.; et al. Synthesis, structural characterizations, in vitro biological evaluation, and computational investigations of pyrazole derivatives as potential antidiabetic and antioxidant agents. Sci. Rep. 2024, 14, 1312. [Google Scholar] [CrossRef]
- Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Abbes Fauzi, M.E. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem. 2020, 97, 103470. [Google Scholar] [CrossRef]
- Costa, R.F.; Turones, L.C.; Cavalcante, K.V.N.; Rosa Júnior, I.A.; Xavier, C.H.; Rosseto, L.P.; Napolitano, H.B.; Castro, P.F.d.S.; Neto, M.L.F.; Galvão, G.M.; et al. Heterocyclic Compounds: Pharmacology of Pyrazole Analogs From Rational Structural Considerations. Front. Pharmacol. 2021, 12, 666725. [Google Scholar] [CrossRef]
- Suliphuldevara Mathada, B.; Gunavanthrao Yernale, N.; Basha, J.N. The Multi-Pharmacological Targeted Role of Indole and Its Derivatives: A Review. ChemistrySelect 2023, 8, e202204181. [Google Scholar] [CrossRef]
- Umer, S.M.; Solangi, M.; Khan, K.M.; Saleem, R.S.Z. Indole-Containing Natural Products 2019–2022: Isolations, Reappraisals, Syntheses, and Biological Activities. Molecules 2022, 27, 7586. [Google Scholar] [CrossRef]
- Nisha; Singh, S.; Sharma, N.; Chandra, R. The Indole Nucleus as a Selective COX-2 Inhibitor and Anti-Inflammatory Agent (2011–2022). Org. Chem. Front. 2022, 9, 3624–3639. [Google Scholar] [CrossRef]
- Lima, E.; Medeiros, J. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Mar. Drugs 2022, 20, 75. [Google Scholar] [CrossRef]
- Chiu, Y.-J.; Lin, C.-H.; Lin, C.-Y.; Yang, P.-N.; Lo, Y.-S.; Chen, Y.-C.; Chen, C.-M.; Wu, Y.-R.; Yao, C.-F.; Chang, K.-H.; et al. Investigating Therapeutic Effects of Indole Derivatives Targeting Inflammation and Oxidative Stress in Neurotoxin-Induced Cell and Mouse Models of Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 2642. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, J.; Luo, L.; Gao, Y.; Bao, H.; Li, P.; Zhang, H. Research Progress of Indole Compounds with Potential Antidiabetic Activity. Eur. J. Med. Chem. 2021, 223, 113665. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, C.; Zhu, J.; Li, E.; Xu, Z. Therapeutic Potential of Indole Derivatives as Anti-HIV Agents: A Mini-Review. Curr. Top. Med. Chem. 2022, 22, 993–1008. [Google Scholar] [CrossRef]
- Girgis, A.S.; Panda, S.S.; Kariuki, B.M.; Bekheit, M.S.; Barghash, R.F.; Aboshouk, D.R. Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2. Molecules 2023, 28, 6603. [Google Scholar] [CrossRef]
- Fabitha, K.; Chandrakanth, M.; Pramod, R.N.; Arya, C.G.; Li, Y.; Banothu, J. Recent Developments in the Synthesis of Indole-Pyrazole Hybrids. ChemistrySelect 2022, 7, e202201064. [Google Scholar] [CrossRef]
- Khatab, T.K.; Hassan, A.S. Computational molecular docking and in silico ADMET prediction studies of pyrazole derivatives as Covid-19 main protease (MPRO) and papain-like protease (PLPRO) inhibitors. Bull. Chem. Soc. Ethiop. 2023, 37, 449–461. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Ibrahim, N.S.; Saddiq, A.A.; Abdelhamid, I.A. Novel 3-(pyrazol-4-yl)-2-(1H-indole-3-carbonyl)acrylonitrile derivatives induce intrinsic and extrinsic apoptotic death mediated P53 in HCT116 colon carcinoma. Sci. Rep. 2023, 13, 22486. [Google Scholar] [CrossRef]
- Hassan, A.S.; Moustafa, G.O.; Awad, H.M.; Nossier, E.S.; Mady, M.F. Design, Synthesis, Anticancer Evaluation, Enzymatic Assays, and a Molecular Modeling Study of Novel Pyrazole–Indole Hybrids. ACS Omega 2021, 6, 12361–12374. [Google Scholar] [CrossRef]
- El-Mekabaty, A.; Etman, H.A.; Mosbah, A. Synthesis of Some New Fused Pyrazole Derivatives Bearing Indole Moiety as Antioxidant Agents. J. Heterocycl. Chem. 2016, 53, 894–900. [Google Scholar] [CrossRef]
- Kerzare, D.R.; Menghani, S.S.; Rarokar, N.R.; Khedekar, P.B. Development of novel indole-linked pyrazoles as anticonvulsant agents: A molecular hybridization approach. Arch. Der Pharm. 2021, 354, 2000100. [Google Scholar] [CrossRef]
- Jasiewicz, B.; Babijczuk, K.; Warżajtis, B.; Rychlewska, U.; Starzyk, J.; Cofta, G.; Mrówczyńska, L. Indole Derivatives Bearing Imidazole, Benzothiazole-2-Thione or Benzoxazole-2-Thione Moieties—Synthesis, Structure and Evaluation of Their Cytoprotective, Antioxidant, Antibacterial and Fungicidal Activities. Molecules 2023, 28, 708. [Google Scholar] [CrossRef]
- Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, Antioxidant and Cytoprotective Activity Evaluation of C-3 Substituted Indole Derivatives. Sci. Rep. 2021, 11, 15425. [Google Scholar] [CrossRef] [PubMed]
- Babijczuk, K.; Berdzik, N.; Nowak, D.; Warżajtis, B.; Rychlewska, U.; Starzyk, J.; Mrówczyńska, L.; Jasiewicz, B. Novel C3-Methylene-Bridged Indole Derivatives with and without Substituents at N1: The Influence of Substituents on Their Hemolytic, Cytoprotective, and Antimicrobial Activity. Int. J. Mol. Sci. 2024, 25, 5364. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Fujii, J.; Homma, T.; Kobayashi, S.; Warang, P.; Madkaikar, M.; Mukherjee, M.B. Erythrocytes as a Preferential Target of Oxidative Stress in Blood. Free Radic. Res. 2021, 55, 781–799. [Google Scholar] [CrossRef]
- Kwiatek, D.; Mrówczyńska, L.; Stopikowska, N.; Runowski, M.; Lesicki, A.; Lis, S. Surface Modification of Luminescent LnIII Fluoride Core-Shell Nanoparticles with Acetylsalicylic acid (Aspirin): Synthesis, Spectroscopic and in vitro Hemocompatibility Studies. ChemMedChem 2020, 15, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Malczewska-Jaskóła, K.; Jasiewicz, B.; Mrówczyńska, L. Nicotine alkaloids as antioxidant and potential protective agents against in vitro oxidative haemolysis. Chem.-Biol. Interact. 2016, 243, 62–71. [Google Scholar] [CrossRef]
- Kargapolova, Y.; Geissen, S.; Zheng, R.; Baldus, S.; Winkels, H.; Adam, M. The Enzymatic and Non-Enzymatic Function of Myeloperoxidase (MPO) in Inflammatory Communication. Antioxidants 2021, 10, 562. [Google Scholar] [CrossRef]
- Berry, C.E.; Hare, J.M. Xanthine Oxidoreductase and Cardiovascular Disease: Molecular Mechanisms and Pathophysiological Implications. J. Physiol. 2004, 555, 589–606. [Google Scholar] [CrossRef]
- Desai, S.J.; Prickril, B.; Rasooly, A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr. Cancer 2018, 70, 350–375. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Demartin, F.; Palmisano, G.; Penoni, A.; Radice, T.; Tollari, S. Novel cyclometallated Pd(II) and Pt(II) complexes with indole derivatives and their use as catalysts in Heck reaction. J. Organomet. Chem. 2005, 690, 2017–2026. [Google Scholar] [CrossRef]
- Ballesteros, P.; Claramunt, R.M.; López, M.C.; Elguero, J.; Gómez-Alarcón, G. Synthesis and antifungal properties of some N,N’-bis-azolylarylmethanes. Chem. Pharm. Bull. 1988, 36, 2036–2041. [Google Scholar] [CrossRef]
- Secrieru, A.; O’Neill, P.M.; Cristiano, M.L.S. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules 2020, 25, 42. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.; Dias, I.F.C.; Cocchioni, M.; Marini, F.; Santi, C.; Bagnoli, L. Vinylation of N-Heteroarenes through Addition/Elimination Reactions of Vinyl Selenones. Molecules 2023, 28, 6026. [Google Scholar] [CrossRef]
- Haydl, A.M.; Xu, K.; Breit, B. Regio- and Enantioselective Synthesis of N-Substituted Pyrazoles by Rhodium-Catalyzed Asymmetric Addition to Allenes. Angew. Chem. Int. Ed. 2015, 54, 7149–7153. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Foces-Foces, C.; Infantes, L. Classification of hydrogen-bond motives in crystals of NH-pyrazoles: A mixed empirical and theoretical approach. Arkivoc 2006, 2, 15–30. [Google Scholar] [CrossRef]
- Nath, N.K.; Nangia, A. Isomorphous Crystals by Chloro–Methyl Exchange in Polymorphic Fuchsones. Cryst. Growth Des. 2012, 12, 5411–5425. [Google Scholar] [CrossRef]
- Vo, Q.V.; Mechler, A. In Silico Study of the Radical Scavenging Activities of Natural Indole-3-Carbinols. J. Chem. Inf. Model. 2020, 60, 316–321. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Soares, J.S.; Victoria, F.N.; Martinez, D.M.; Savegnago, L. Synthesis and antioxidant activity of new C-3 sulfenyl indoles. Tetrahedron Lett. 2013, 54, 4926–4929. [Google Scholar] [CrossRef]
- Estevão, M.S.; Carvalho, L.C.; Ferreira, L.M.; Fernandes, E.; Marques, M.M.B. Analysis of the antioxidant activity of an indole library: Cyclic voltammetry versus ROS scavenging activity. Tetrahedron Lett. 2011, 52, 101–106. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods. J. Phys. Chem. A 1998, 102, 3762–3772. [Google Scholar] [CrossRef]
- Schöning-Stierand, K.; Diedrich, K.; Ehrt, C.h.; Flachsenberg, F.; Graef, J.; Sieg, J.; Penner, P.; Poppinga, M.; Ungethum, A.; Rarey, M. ProteinsPlus: A comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 2022, 50, W611–W615. [Google Scholar] [CrossRef]
- Stierand, K.; Maaß, P.C.; Rarey, M. Molecular Complexes at a Glance: Automated Generation of Two-Dimensional Complex Diagrams. Bioinformatics 2006, 22, 1710–1716. [Google Scholar] [CrossRef]
- Diedrich, K.; Krause, B.; Berg, O.; Rarey, M. PoseEdit: Enhanced Ligand Binding Mode Communication by Interactive 2D Diagrams. J. Comput. Aided Mol. Des. 2023, 37, 491–503. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef] [PubMed]
- Herschlag, D.; Pinney, M.M. Hydrogen Bonds: Simple after All? Biochemistry 2018, 57, 3338–3352. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- USA SAINT, version 8.40B. Area Detector Control and Integration Software. Bruker AXS Inc.: Madison, WI, USA, 2021.
- Rigaku, O.D. CrysAlis PRO, version 1.171.43; Rigaku Oxford Diffraction: Yarnton, UK, 2024.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 389–397. [Google Scholar] [CrossRef]
- Mrówczyńska, L.; Hägerstrand, H. Platelet-activating factor interaction with the human erythrocyte membrane. J. Biochem. Mol. Toxicol. 2009, 23, 345–348. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Morley, C.; Hutchison, G.R. Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit. Chem. Cent. J. 2008, 2, 5. [Google Scholar] [CrossRef]
- Raschka, S. BioPandas: Working with molecular structures in pandas DataFrames. J. Open Source Softw. 2017, 2, 279. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Blair-Johnson, M.; Fiedler, T.; Fenna, R. Human Myeloperoxidase: Structure of a Cyanide Complex and Its Interaction with Bromide and Thiocyanate Substrates at 1.9 Å Resolution. Biochemistry 2001, 40, 13990–13997. [Google Scholar] [CrossRef]
- Blair-Johnson, M.; Fiedler, T.; Fenna, R. Structural analyses of human myeloperoxidase-thiocyanate complex. Biochemistry 2001, 40, 13990–13997. [Google Scholar] [CrossRef]
- Okamoto, K.; Eger, B.T.; Nishino, T.; Kondo, S.; Pai, E.F.; Nishino, T. An Extremely Potent Inhibitor of Xanthine Oxidoreductase: Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J. Biol. Chem. 2003, 278, 1848–1855. [Google Scholar] [CrossRef]
- Okamoto, K.; Eger, B.T.; Kondo, S.; Pai, E.F.; Nishino, T. Xanthine Dehydrogenase from Bovine Milk with Inhibitor TEI-6720 Bound. J. Biol. Chem. 2002, 278, 1848–1855. [Google Scholar] [CrossRef]
- Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1966, 384, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Kurumbail, R.G.; Stallings, W.C. Cyclooxygenase-2 (prostaglandin synthase-2) complexed with a non-selective inhibitor, indomethacin. Nature 1996, 384, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- ProteinsPlus Development Team. ProteinsPlus. Available online: https://proteins.plus (accessed on 26 November 2024).
Chemical formula | φ1 | φ2 | |
2 | −53.5(4) 56.5(4) | 124.5(3) −124.0(3) | |
3 | −75.46(18) | −55.5(2) | |
4 | −67.77(13) −77.64(13) | 121.04(11) −43.77(14) | |
5 | −74.5(3) | −60.3(3) | |
6 | −68.4(6) | 112.6(5) | |
7 | −60.3(2) | 118.9(2) | |
10 | −72.93(15) −70.32(14) | −41.00(16) −66.78(15) | |
11 | −75.36(16) | −56.63(19) | |
12 | −70.8(3) | −24.5(4) | |
13 | −73.3(4) | −54.1(4) | |
16 | 97.7(3) | 97.7(3) | |
17 | 97.7(3) | 97.7(3) |
Compound | MW [g/mol] | logP | HBD | HBA | RTB | TPSA [Å2] | GI Absorption | BBB Permeant | LogS | Solubility * |
---|---|---|---|---|---|---|---|---|---|---|
Melatonin | 232.28 | 1.83 | 2 | 2 | 5 | 54.12 | High | Yes | −3.10 | Soluble |
Febuxostan | 316.37 | 3.28 | 1 | 5 | 5 | 11.45 | High | No | −4.95 | Moderately |
Indomethacin | 357.79 | 3.63 | 1 | 4 | 5 | 68.53 | High | Yes | −5.36 | Moderately |
PDB ID | Compound | Average Binding Energy [kcal/mol] | Standard Deviation of Binding Energy [kcal/mol] | Ligand Efficiency [kcal/mol] |
---|---|---|---|---|
1DNU | Melatonin | −5.5 | 0.09 | −0.32 |
2 | −5.6 | 0.15 | −0.37 | |
3 | −6.0 | 0.19 | −0.38 | |
10 | −5.8 | 0.18 | −0.36 | |
1N5X | Febuxostat | −7.7 | 0.55 | −0.35 |
2 | −8.6 | 0.76 | −0.57 | |
3 | −8.9 | 0.70 | −0.56 | |
10 | −8.8 | 0.70 | −0.55 | |
4COX | Indomethacin | −9.0 | 0.27 | −0.36 |
2 | −7.7 | 0.24 | −0.51 | |
3 | −8.4 | 0.19 | −0.53 | |
10 | −8.2 | 0.16 | −0.51 |
Compound | Protein Domain | Amino Acid Residues | Distance [Å] | Is it a Compound Donor or Acceptor? |
---|---|---|---|---|
2 | 1N5X | THR 1010 A SER 876 A | 2.23 3.21 | Donor Acceptor |
3 | 1N5X | THR 1010 A SER 876 A | 2.25 3.24 | Donor Acceptor |
10 | 1N5X | THR 1010 A SER 876 A | 2.18 3.30 | Donor Acceptor |
2 | 4COX | TYR 385 A | 2.53 | Donor |
10 | 4COX | TYR 385 A | 2.56 | Donor |
Compound | MW [g/mol] | logP | HBD | HBA | RTB | TPSA [Å2] | GI Absorption | BBB Permeant | LogS | Solubility * |
---|---|---|---|---|---|---|---|---|---|---|
2 | 197.24 | 1.97 | 1 | 1 | 2 | 33.61 | High | Yes | −3.06 | Soluble |
3 | 211.26 | 2.34 | 1 | 1 | 2 | 33.61 | High | Yes | −3.47 | Soluble |
4 | 225.29 | 2.64 | 1 | 1 | 3 | 33.61 | High | Yes | −3.84 | Soluble |
5 | 239.32 | 2.95 | 1 | 1 | 3 | 33.61 | High | Yes | −4.05 | Moderately |
6 | 239.32 | 2.94 | 1 | 1 | 3 | 33.61 | High | Yes | −4.07 | Moderately |
7 | 225.29 | 2.67 | 1 | 1 | 2 | 33.61 | High | Yes | −3.85 | Soluble |
8 | 221.26 | 2.37 | 1 | 1 | 2 | 33.61 | High | Yes | −3.31 | Soluble |
9 | 227.26 | 2.14 | 1 | 1 | 3 | 42.84 | High | Yes | −3.41 | Soluble |
10 | 215.23 | 2.32 | 1 | 1 | 2 | 33.61 | High | Yes | −3.29 | Soluble |
11 | 231.68 | 2.57 | 1 | 1 | 2 | 33.61 | High | Yes | −3.73 | Soluble |
12 | 276.13 | 2.64 | 1 | 1 | 2 | 33.61 | High | Yes | −3.94 | Soluble |
13 | 323.13 | 2.67 | 1 | 1 | 2 | 33.61 | High | Yes | −4.03 | Moderately |
14 | 290.16 | 2.96 | 1 | 1 | 2 | 33.61 | High | Yes | −4.30 | Moderately |
15 | 290.16 | 2.99 | 1 | 1 | 2 | 33.61 | High | Yes | −4.30 | Moderately |
16 | 290.16 | 3.02 | 1 | 1 | 2 | 33.61 | High | Yes | −4.49 | Moderately |
17 | 290.16 | 3.02 | 1 | 1 | 2 | 33.61 | High | Yes | −4.49 | Moderately |
18 | 292.29 | 2.40 | 1 | 3 | 3 | 79.43 | High | No | −4.59 | Moderately |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babijczuk, K.; Wawrzyniak, K.; Warżajtis, B.; Rychlewska, U.; Nowak, D.; da Victoria Banda, Y.; Mrówczyńska, L.; Jasiewicz, B. Indole–Pyrazole Hybrids: Synthesis, Structure, and Assessment of Their Hemolytic and Cytoprotective Properties. Int. J. Mol. Sci. 2025, 26, 9018. https://doi.org/10.3390/ijms26189018
Babijczuk K, Wawrzyniak K, Warżajtis B, Rychlewska U, Nowak D, da Victoria Banda Y, Mrówczyńska L, Jasiewicz B. Indole–Pyrazole Hybrids: Synthesis, Structure, and Assessment of Their Hemolytic and Cytoprotective Properties. International Journal of Molecular Sciences. 2025; 26(18):9018. https://doi.org/10.3390/ijms26189018
Chicago/Turabian StyleBabijczuk, Karolina, Klaudia Wawrzyniak, Beata Warżajtis, Urszula Rychlewska, Damian Nowak, Yunna da Victoria Banda, Lucyna Mrówczyńska, and Beata Jasiewicz. 2025. "Indole–Pyrazole Hybrids: Synthesis, Structure, and Assessment of Their Hemolytic and Cytoprotective Properties" International Journal of Molecular Sciences 26, no. 18: 9018. https://doi.org/10.3390/ijms26189018
APA StyleBabijczuk, K., Wawrzyniak, K., Warżajtis, B., Rychlewska, U., Nowak, D., da Victoria Banda, Y., Mrówczyńska, L., & Jasiewicz, B. (2025). Indole–Pyrazole Hybrids: Synthesis, Structure, and Assessment of Their Hemolytic and Cytoprotective Properties. International Journal of Molecular Sciences, 26(18), 9018. https://doi.org/10.3390/ijms26189018