Expanding the Spectrum of Selective IgM Deficiency: From Infections to Immune Dysregulation
Abstract
1. Introduction
2. Results
2.1. Patients’ Selection
2.2. Clinical and Immunological Characteristics of the sIgMD Cohort
2.3. Clinical and Immunological Characteristics of the IgMD Cohort
2.4. Comparison Between sIgMD and IgMD Groups
3. Discussion
4. Material and Methods
4.1. Patients
4.2. Definitions of IgM Deficiency Phenotypes
- -
- Chronic IgM deficiency: Persistently low serum IgM concentrations (<2SD) in all available determinations, without any evidence of normalization throughout follow-up.
- -
- Intermittent IgM deficiency: Initial diagnosis of IgM deficiency followed by at least one single subsequent measurement within the normal range, without sustained normalization.
- -
- Progressive IgM deficiency: Documentation of previously normal serum IgM concentrations that progressively declined to values below <2SD over time.
- -
- Resolved IgM deficiency: Documented normalization of serum IgM concentrations on at least two separate measurements following an initial diagnosis of IgM deficiency.
4.3. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ESID | European Society for Immunodeficiencies |
IEIs | Inborn errors of immunity |
IgMD | IgM deficiency |
IUIS | International Union of Immunological Societies |
sIgMD | Selective IgM Deficiency |
References
- Poli, C.M.; Aksentijevich, I.; Bousfiha, A.A.; Cunningham-Rundles, C.; Hambleton, S.; Klein, C.; Morio, T.; Picard, C.; Puel, A.; Rezaei, N.; et al. Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee. J. Hum. Immun. 2025, 1, e20250003. [Google Scholar] [CrossRef]
- Bousfiha, A.A.; Jeddane, L.; Moundir, A.; Poli, M.C.; Aksentijevich, I.; Cunning-ham-Rundles, C.; Hambleton, S.; Klein, C.; Morio, T.; Picard, C.; et al. The 2024 update of IUIS phenotypic classification of human inborn errors of immunity. J. Hum. Immun. 2025, 1, e20250002. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, A. Selective IgM Deficiency-An Underestimated Primary Immunodeficiency. Front. Immunol. 2017, 8, 1056. [Google Scholar] [CrossRef] [PubMed]
- ESID—European Society for Immunodeficiencies. Available online: https://esid.org/working-parties/registry-working-party/diagnosis-criteria/ (accessed on 4 August 2025).
- Taietti, I.; Votto, M.; De Filippo, M.; Naso, M.; Montagna, L.; Montagna, D.; Licari, A.; Marseglia, G.L.; Castagnoli, R. Selective IgM Deficiency: Evidence, Controversies, and Gaps. Diagnostics 2023, 13, 2861. [Google Scholar] [CrossRef]
- Saettini, F.; Fazio, G.; Moratto, D.; Galbiati, M.; Zucchini, N.; Ippolito, D.; Dinelli, M.E.; Imberti, L.; Mauri, M.; Melzi, M.L.; et al. Case Report: Hypomorphic Function and Somatic Reversion in DOCK8 Deficiency in One Patient With Two Novel Variants and Sclerosing Cholangitis. Front. Immunol. 2021, 12, 673487. [Google Scholar] [CrossRef]
- Saettini, F.; Fazio, G.; Corti, P.; Quadri, M.; Bugarin, C.; Gaipa, G.; Penco, F.; Moratto, D.; Chiarini, M.; Baronio, M.; et al. Two siblings presenting with novel ADA2 variants, lymphoproliferation, persistence of large granular lymphocytes, and T-cell perturbations. Clin. Immunol. 2020, 218, 108525. [Google Scholar] [CrossRef]
- Janssen, L.M.; van Hout, R.W.N.M.; de Vries, E.; SIMcal Consortium. Challenges in investigating patients with isolated decreased serum IgM: The SIMcal study. Scand. J. Immunol. 2019, 89, e12763. [Google Scholar] [CrossRef]
- Janssen, L.M.A.; Macken, T.; Creemers, M.C.W.; Pruijt, J.F.M.; Eijk, J.J.J.; de Vries, E. Truly selective primary IgM deficiency is probably very rare. Clin. Exp. Immunol. 2018, 191, 203–211. [Google Scholar] [CrossRef]
- Baronio, M.; Saettini, F.; Gazzurelli, L.; Rossi, S.; Marzollo, A.; Ricci, S.; Zama, D.; Palterer, B.; Canessa, C.; Lodi, L.; et al. Immunological Evaluation of Patients Affected with Jacobsen Syndrome Reveals Profound Not Age-Related Lymphocyte Alterations. J. Clin. Immunol. 2022, 42, 365–374. [Google Scholar] [CrossRef]
- Di Majo, B.E.; Guerra, F.; Mauri, M.; Coniglio, M.L.; Sieni, E.; Parolini, S.; Tabellini, G.; Bugarin, C.; Dell’Acqua, F.; Lucchini, G.; et al. The novel XIAP Lys396Ter variant alters mitochondrial membrane potential and endoplasmic reticulum intensity in monocytes of two XIAP-deficient patients. Pediatr. Hematol. Oncol. 2025, 42, 287–295. [Google Scholar] [CrossRef]
- Guerra, F.; L’Imperio, V.; Bonanomi, S.; Spinelli, M.; Coliva, T.A.; Dell’Acqua, F.; Ferrari, G.M.; Corti, P.; Balduzzi, A.C.; Biondi, A.; et al. Pediatric immune myelofibrosis (PedIMF) as a novel and distinct clinical pathological entity. Front. Pediatr. 2022, 10, 1031687. [Google Scholar] [CrossRef] [PubMed]
- Thalhammer, J.; Kindle, G.; Nieters, A.; Rusch, S.; Seppänen, M.R.J.; Fischer, A.; Grimbacher, B.; Edgar, D.; Buckland, M.; Mahlaoui, N.; et al. European Society for Immunodeficiencies Registry Working Party. Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations. J. Allergy Clin. Immunol. 2021, 148, 1332–1341.e5. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, M.; Dotta, L.; Cattalini, M.; Lougaris, V.; Soresina, A.; Badolato, R. Unmasking inborn errors of immunity: Identifying the red flags of immune dysregulation. Front. Immunol. 2024, 15, 1497921. [Google Scholar] [CrossRef]
- Louis, A.G.; Gupta, S. Primary selective IgM deficiency: An ignored immunodeficiency. Clin. Rev. Allergy Immunol. 2014, 46, 104–111. [Google Scholar] [CrossRef]
- Castagnoli, R.; Taietti, I.; Votto, M.; Naso, M.; De Filippo, M.; Marseglia, A.; Montagna, L.; De Amici, M.; Avanzini, M.A.; Montagna, D.; et al. Clinical and immunological phenotypes of selective IgM deficiency in children: Results from a multicenter study. Pediatr. Allergy Immunol. 2023, 34, e14015. [Google Scholar] [CrossRef] [PubMed]
- Caka, C.; Cimen, O.; Kahyaoğlu, P.; Tezcan, İ.; Cagdas, D. Selective IgM deficiency: Follow-up and outcome. Pediatr. Allergy Immunol. 2021, 32, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.F.; Goldstein, A.L.; Dunsky, E.H.; Dvorin, D.J.; Belecanech, G.A.; Shamir, K. Pediatric selective IgM immunodeficiency. J. Immunol. Res. 2008, 2008, e624850. [Google Scholar] [CrossRef]
- Hobbs, J.R. IgM deficiency. Birth Defects Orig. Artic. Ser. 1975, 11, 112–116. [Google Scholar]
- Similuk, M.; Kuijpers, T. Nature and nurture: Understanding phenotypic variation in inborn errors of immunity. Front. Cell. Infect. Microbiol. 2023, 13, 1183142. [Google Scholar] [CrossRef]
- Mustillo, P.J.; Sullivan, K.E.; Chinn, I.K.; Notarangelo, L.D.; Haddad, E.; Davies, E.G.; de la Morena, M.T.; Hartog, N.; Yu, J.E.; Hernandez-Trujillo, V.P.; et al. Clinical Practice Guidelines for the Immunological Management of Chromosome 22q11.2 Deletion Syndrome and Other Defects in Thymic Development. J. Clin. Immunol. 2023, 43, 247–270, Erratum in J. Clin. Immunol. 2024, 44, 53. [Google Scholar] [CrossRef]
- Castagnoli, R.; Lougaris, V.; Giardino, G.; Volpi, S.; Leonardi, L.; La Torre, F.; Federici, S.; Corrente, S.; Cinicola, B.L.; Soresina, A.; et al. Inborn errors of immunity with atopic phenotypes: A practical guide for allergists. World Allergy Organ. J. 2021, 14, 100513. [Google Scholar] [CrossRef] [PubMed]
- Pillay, B.A.; Fusaro, M.; Gray, P.E.; Statham, A.L.; Burnett, L.; Bezrodnik, L.; Kane, A.; Tong, W.; Abdo, C.; Winter, S.; et al. Somatic reversion of pathogenic DOCK8 variants alters lymphocyte differentiation and function to effectively cure DOCK8 deficiency. J. Clin. Invest 2021, 131, e142434. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Erlacher, M.; Wlodarski, M.W. Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: From variant interpretation to patient management. Blood 2025, 145, 475–485. [Google Scholar] [CrossRef]
- Carrabba, M.; Salvi, M.; Baselli, L.A.; Serafino, S.; Zarantonello, M.; Trombetta, E.; Pietrogrande, M.C.; Fabio, G.; Dellepiane, R.M. Long-term follow-up in common variable immunodeficiency: The pediatric-onset and adult-onset landscape. Front. Pediatr. 2023, 11, 1125994. [Google Scholar] [CrossRef]
- Al-Herz, W.; McGeady, S.J.; Gripp, K.W. 22q11.2 deletion syndrome and selective igm deficiency: An association of a common chromosomal abnormality with a rare immunodeficiency. Am. J. Med. Genet. Part A 2004, 127A, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Kung, S.-J.; Gripp, K.W.; Stephan, M.J.; Fairchok, M.P.; McGeady, S.J. Selective IgM deficiency and 22q11.2 deletion syndrome. Ann. Allergy Asthma Immunol. 2007, 99, 87–92. [Google Scholar] [CrossRef]
- Malle, L.; Patel, R.S.; Martin-Fernandez, M.; Stewart, O.J.; Philippot, Q.; Buta, S.; Richardson, A.; Barcessat, V.; Taft, J.; Bastard, P.; et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c+ B cells. Nature 2023, 615, 305–314. [Google Scholar] [CrossRef]
- Saettini, F.; Herriot, R.; Prada, E.; Nizon, M.; Zama, D.; Marzollo, A.; Romaniouk, I.; Lougaris, V.; Cortesi, M.; Morreale, A.; et al. Prevalence of Immunological Defects in a Cohort of 97 Rubinstein-Taybi Syndrome Patients. J. Clin. Immunol. 2020, 40, 851–860. [Google Scholar] [CrossRef]
- Saettini, F.; Guerra, F.; Fazio, G.; Bugarin, C.; McMillan, H.J.; Ohtake, A.; Ardissone, A.; Itoh, M.; Giglio, S.; Cappuccio, G.; et al. Antibody Deficiency in Patients with Biallelic KARS1 Mutations. J. Clin. Immunol. 2023, 43, 2115–2125. [Google Scholar] [CrossRef]
- Di Majo, B.E.; Leoni, C.; Cartisano, E.; Fossati, C.; Viscogliosi, G.; Trevisan, V.; Bruno, L.P.; Conti, F.; Moratti, M.; Monaco, E.; et al. Cardiofaciocutaneous syndrome and immunodeficiency: Data from an international multicenter cohort. Front. Immunol. 2025, 16, 1598896. [Google Scholar] [CrossRef] [PubMed]
- Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Coban Akdemir, Z.H.; Walkiewicz, M.; Bi, W.; Xiao, R.; Ding, Y.; et al. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N. Engl. J. Med. 2017, 376, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Stray-Pedersen, A.; Sorte, H.S.; Samarakoon, P.; Gambin, T.; Chinn, I.K.; Coban Akdemir, Z.H.; Erichsen, H.C.; Forbes, L.R.; Gu, S.; Yuan, B.; et al. Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J. Allergy Clin. Immunol. 2017, 139, 232–245, Erratum in J. Allergy Clin. Immunol. 2018, 141, 832. [Google Scholar] [CrossRef] [PubMed]
- Saettini, F.; L’Imperio, V.; Fazio, G.; Cazzaniga, G.; Mazza, C.; Moroni, I.; Badolato, R.; Biondi, A.; Corti, P. More than an ‘atypical’ phenotype: Dual molecular diagnosis of autoimmune lymphoproliferative syndrome and Becker muscular dystrophy. Br. J. Haematol. 2020, 191, 291–294. [Google Scholar] [CrossRef] [PubMed]
Onset | Diagnosis of Decreased IgM Concentrations | Last Follow-Up | |
---|---|---|---|
Gender, male | 11/15 (73.3) | ||
Age, years | 5.0 (0–14.3) | 8.6 (0.9–17.8) | 11.7 (2–24) |
Follow-up, years | 3.3 (0.3–9.4) | ||
Infections | 9/15 (60.0) | 13/15 (86.7) | 15/15 (100) |
Allergy | 3/15 (20.0) | 5/15 (33.3) | 5/15 (33.3) |
Autoimmunity | 1/15 (6.7) | 3/15 (20.0) | 6/15 (40.0) |
Inflammation | 0/15 (0.0) | 3/15 (20.0) | 5/15 (33.3) |
Cytopenia | 1/15 (6.7) | 11/15 (73.3) | 14/15 (93.3) |
Lymphoproliferation | 1/15 (6.7) | 3/15 (33.3) | 3/15 (20.0) |
Treatment | 6/15 (40.0) | ||
Molecular diagnosis | 5/15 (33.3) | ||
IEI diagnosis | 4/15 (26.7) | ||
IgM concentrations over time | |||
Chronic | 5/15 (33.3) | ||
Progressive | 4/15 (26.7) | ||
Intermittent | 5/15 (33.3) | ||
Resolved | 1/15 (6.7) |
Low | Normal | High | |
---|---|---|---|
CD3+ | 4/15 (26.7) | 11/15 (73.3) | 0/15 (0.0) |
CD4+ | 2/15 (13.3) | 13/15 (86.7) | 0/15 (0.0) |
Recent thymic emigrants | 2/9 (22.2) | 7/9 (77.8) | 0/9 (0.0) |
Naïve | 1/10 (10.0) | 9/10 (90.0) | 0 (0.0) |
Central memory | 0/10 (0.0) | 9/10 (90.0) | 1/10 (10.0) |
Effector memory | 0/10 (0.0) | 9/10 (90.0) | 1/10 (10.0) |
Terminally differentiated | 1/10 (10.0) | 9/10 (90.0) | 0/10 (0.0) |
CD8+ | 4/15 (26.7) | 11/15 (73.3) | 0/15 (0.0) |
Naïve | 0/10 (0.0) | 9/10 (90.0) | 1/10 (10.0) |
Central memory | 1/10 (10.0) | 9/10 (90.0) | 0/10 (0.0) |
Effector memory | 2/10 (20.0) | 8/10 (80.0) | 0/10 (0.0) |
Terminally differentiated | 0/10 (0.0) | 10/10 (100) | 0/10 (0.0) |
CD19+ | 1/14 (7.1) | 13/14 (92.9) | 0/10 (0.0) |
Transitional | 0/9 (0.0) | 9/9 (100) | 0/9 (0.0) |
Naïve | 0/10 (0.0) | 9/10 (90.0) | 1/10 (10.0) |
CD19hiCD21lo | 0/9 (0.0) | 9/9 (100) | 0/9 (0.0) |
Unswitched | 0/10 (0.0) | 10/10 (100) | 0/10 (0.0) |
Switched | 0/10 (0.0) | 10/10 (100) | 0/10 (0.0) |
Terminally differentiated | 0/10 (0.0) | 9/10 (90.0) | 1/10 (10.0) |
CD3−CD16+CD56+ | 2/15 (13.3) | 13/15 (86.7) | 0/15 (0.0) |
Onset | Diagnosis of Decreased IgM Concentrations | Last Follow-Up | |
---|---|---|---|
Gender, male | 18/24 | ||
Age, years | 5.2 (0–14.3) | 7.6 (0.4–14.4) | 11.2 (2–18) |
Follow-up, years | 3.0 (0.3–9.3) | ||
Infections | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) |
Allergy | 0/24 (0.0) | 2/24 (7.1) | 4/24 (14.3) |
Autoimmunity | 4/24 (14.3) | 4/24 (14.3) | 7/24 (29.2) |
Inflammation | 3/24 (10.7) | 4/24 (14.3) | 4/24 (14.3) |
Cytopenia | 16/24 (66.7) | 19/24 (67.9) | 23/24 (95.8) |
Lymphoproliferation | 0/24 (0.0) | 2/24 (7.1) | 2/24 (7.1) |
Treatment | 7/24 (29.2) | ||
Molecular diagnosis | 6/24 (25.0) | ||
IEI diagnosis | 2/24 (7.1) | ||
IgM concentrations over time | |||
Chronic | 14/24 (58.3) | ||
Progressive | 2/24 (7.1) | ||
Intermittent | 4/24 (14.3) | ||
Resolved | 4/24 (14.3) |
Low | Normal | High | |
---|---|---|---|
CD3+ | 7/21 (33.3) | 13/21 (61.9) | 1 (4.8) |
CD4+ | 7/21 (33.3) | 13/21 (61.9) | 1 (4.8) |
Recent thymic emigrants | 1/5 (20.0) | 3/5 (60.0) | 1/5 (20.0) |
Naïve | 2/5 (40.0) | 3/5 (60.0) | 0 (0.0) |
Central memory | 1/5 (20.0) | 4/5 (80.0) | 0/5 (0.0) |
Effector memory | 1/5 (20.0) | 4/5 (80.0) | 0/5 (0.0) |
Terminally differentiated | 0/5 (0.0) | 4/5 (80.0) | 1/5 (20.0) |
CD8+ | 7/21 (33.3) | 13/21 (61.9) | 0/21 (0.0) |
Naïve | 0/5 (0.0) | 5/5 (100) | 0/5 (0.0) |
Central memory | 1/5 (20.0) | 4/5 (80.0) | 0/5 (0.0) |
Effector memory | 1/5 (20.0) | 4/5 (80.0) | 0/5 (0.0) |
Terminally differentiated | 0/5 (0.0) | 4/5 (80.0) | 1/5 (20.0) |
CD19+ | 5/21 (23.8) | 14/21 (66.7) | 2/21 (9.5) |
Transitional | 1/5 (20.0) | 4/5 (80.0) | 0/5 (0.0) |
Naïve | 0/5 (0.0) | 5/5 (100) | 0/5 (0.0) |
CD19hiCD21lo | 0/5 (0.0) | 4/5 (80.0) | 1/5 (20.0) |
Unswitched | 0/5 (0.0) | 4/5 (80.0) | 1/5 (20.0) |
Switched | 2/5 (40.0) | 2/5 (40.0) | 1/5 (20.0) |
Terminally differentiated | 0/5 (0.0) | 3/5 (60.0) | 2/5 (40.0) |
CD3−CD16+CD56+ | 3/21 (14.3) | 16/21 (76.2) | 2/21 (9.5) |
Onset | Diagnosis of Decreased IgM Concentrations | Last Follow-Up | ||||
---|---|---|---|---|---|---|
Gender, male | 11/15 vs. 18/24 | >0.99 | ||||
Age, years | 5.0 vs. 5.2 | 0.84 | 8.6 vs. 7.6 | 0.57 | 12.5 vs. 11.2 | 0.52 |
Follow-up, years | 3.2 vs. 3.0 | 0.74 | ||||
Infections | 6/15 vs. 0/24 | <0.0001 | 13/15 vs. 0/24 | <0.0001 | 15/15 vs. 0/24 | <0.0001 |
Allergy | 3/15 vs. 0/24 | 0.05 | 5/15 vs. 2/24 | 0.08 | 5/15 vs. 4/24 | 0.27 |
Autoimmunity | 1/15 vs. 4/20 | 0.63 | 3/15 vs. 4/20 | >0.99 | 6/15 vs. 7/24 | 0.51 |
Inflammation | 0/15 vs. 3/21 | 0.27 | 3/15 vs. 4/20 | >0.99 | 5/15 vs. 4/20 | 0.27 |
Cytopenia | 1/15 vs. 16/24 | 0.0002 | 11/15 vs. 19/24 | 0.71 | 14/15 vs. 23/24 | >0.99 |
Lymphoproliferation | 1/15 vs. 0/24 | 0.38 | 3/15 vs. 2/24 | 0.35 | 3/15 vs. 2/24 | 0.35 |
Treatment | 6/15 vs. 7/24 | 0.51 | ||||
Molecular diagnosis | 5/15 vs. 6/24 | 0.73 | ||||
IEI diagnosis | 4/15 vs. 2/24 | 0.18 | ||||
IgM concentrations over time | 0.17 | |||||
Chronic | 5/15 vs. 14/24 | |||||
Progressive | 4/15 vs. 2/24 | |||||
Intermittent | 5/15 vs. 4/24 | |||||
Resolved | 1/15 vs. 4/24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fumagalli, R.; Saettini, F. Expanding the Spectrum of Selective IgM Deficiency: From Infections to Immune Dysregulation. Int. J. Mol. Sci. 2025, 26, 9003. https://doi.org/10.3390/ijms26189003
Fumagalli R, Saettini F. Expanding the Spectrum of Selective IgM Deficiency: From Infections to Immune Dysregulation. International Journal of Molecular Sciences. 2025; 26(18):9003. https://doi.org/10.3390/ijms26189003
Chicago/Turabian StyleFumagalli, Rebecca, and Francesco Saettini. 2025. "Expanding the Spectrum of Selective IgM Deficiency: From Infections to Immune Dysregulation" International Journal of Molecular Sciences 26, no. 18: 9003. https://doi.org/10.3390/ijms26189003
APA StyleFumagalli, R., & Saettini, F. (2025). Expanding the Spectrum of Selective IgM Deficiency: From Infections to Immune Dysregulation. International Journal of Molecular Sciences, 26(18), 9003. https://doi.org/10.3390/ijms26189003