Determination of a New Biomarker at the Level of Gene Alteration in Cisplatin Ototoxicity
Abstract
1. Introduction
2. Results
2.1. Preliminary Study Results
2.2. Results of 82 Analyzed Cases with Seven Candidate Genes
2.3. Gene Alterations and Correlation with Ototoxicity
3. Discussion
4. Materials and Methods
4.1. Preliminary Study
4.2. Informed Consent
4.3. Ethics Committee Approval
4.4. Collection of Samples
4.5. Mononuclear Cell (PBMC) Isolation from Peripheral Blood Samples
4.6. DNA Isolation
4.7. Comparative Genomic Analysis (CGH)
4.8. Real-Time PCR
4.9. Evaluation of Hearing Functions of Patients
4.10. Statistical Evaluation of Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chattaraj, A.; Syed, M.P.; Low, C.A.; Owonikoko, T.K. Cisplatin-Induced Ototoxicity: A Concise Review of the Burden, Prevention, and Interception Strategies. JCO Oncol. Pract. 2023, 19, 278–283. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Hurkmans, E.G.E.; Klumpers, M.J.; Dello Russo, C.; De Witte, W.; Guchelaar, H.J.; Gelderblom, H.; Cleton-Jansen, A.M.; Vermeulen, S.H.; Kaal, S.; van der Graaf, W.T.A.; et al. Genome-wide analyses of platinum-induced ototoxicity in childhood cancer patients: Results of GO-CAT and United Kingdom MAGIC consortia. Front. Pharmacol. 2023, 13, 980309. [Google Scholar] [CrossRef]
- Clemens, E.; Broer, L.; Langer, T.; Uitterlinden, A.G.; de Vries, A.C.H.; van Grotel, M.; Pluijm, S.F.M.; Binder, H.; Byrne, J.; Broeder, E.V.D.; et al. Genetic variation of cisplatin-induced ototoxicity in non-cranial-irradiated pediatric patients using a candidate gene approach: The International PanCareLIFE Study. Pharmacogenom. J. 2020, 20, 294–305. [Google Scholar] [CrossRef]
- Clemens, E.; van der Kooi, A.L.F.; Broer, L.; van Dulmen-den Broeder, E.; Visscher, H.; Kremer, L.; Tissing, W.; Loonen, J.; Ronckers, C.M.; Pluijm, S.M.F.; et al. The influence of genetic variation on late toxicities in childhood cancer survivors: A review. Crit. Rev. Oncol. Hematol. 2018, 126, 154–167. [Google Scholar] [CrossRef]
- Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection. Front. Cell. Neurosci. 2017, 11, 338. [Google Scholar] [CrossRef]
- Ross, C.J.D.; Katzov-Eckert, H.; Dubé, M.P.; Brooks, B.; Rassekh, S.R.; Barhdadi, A.; Feroz-Zada, Y.; Visscher, H.; Brown, A.M.K.; Rieder, M.J.; et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat. Genet. 2009, 41, 1345–1349. [Google Scholar] [CrossRef]
- Breglio, A.M.; Rusheen, A.E.; Shide, E.D.; Fernandez, K.A.; Spielbauer, K.K.; McLachlin, K.M.; Hall, M.D.; Amable, L.; Cunningham, L.L. Cisplatin is retained in the cochlea indefinitely, leading to progressive hearing loss. Nat. Commun. 2017, 8, 1654. [Google Scholar] [CrossRef]
- Rasheed, A.; Ghaffar, M.; Salahuddin, H. Pharmacogenomics of Cisplatin-Induced Toxicity in Children. In Essentials of Cancer Genomics, Computational Approaches and Precision Medicine; Masood, N., Shakil Malik, S., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Riedemann, L.; Lanvers, C.; Deuster, D.; Peters, U.; Boos, J.; Jürgens, H.; am Zehnhoff-Dinnesen, A. Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogenom. J. 2008, 8, 23–28. [Google Scholar] [CrossRef]
- Brown, A.L.; Lupo, P.J.; Okcu, M.F.; Lau, C.C.; Rednam, S.; Scheurer, M. SOD2 genetic variant associated with treatment-related ototoxicity in cisplatin-treated pediatric medulloblastoma. Cancer Med. 2015, 4, 1679–1686. [Google Scholar] [CrossRef]
- Spracklen, T.F.; Vorster, A.A.; Ramma, L.; Dalvie, S.; Ramesar, R.S. Promoter region variation in NFE2L2 influences susceptibility to ototoxicity in patients exposed to high cumulative doses of cisplatin. Pharmacogenom. J. 2017, 17, 515–520. [Google Scholar] [CrossRef]
- Stephens, P.J.; Greenman, C.D.; Fu, B.; Yang, F.; Bignell, G.R.; Mudie, L.J.; Pleasance, E.D.; Lau, K.W.; Beare, D.; Stebbings, L.A.; et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011, 144, 27–40. [Google Scholar] [CrossRef]
- Lagutin, O.V.; Zhu, C.C.; Kobayashi, D.; Topczewski, J.; Shimamura, K.; Puelles, L.; Russell, H.R.C.; McKinnon, P.J.; Solnica-Krezel, L.; Oliver, G. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 2003, 17, 368–379. [Google Scholar] [CrossRef]
- Ohkura, N.; Ohkubo, T.; Maruyama, K.; Tsukada, T.; Yamaguchi, K. The orphan nuclear receptor NOR-1 interacts with the homeobox containing protein Six3. Dev. Neurosci. 2001, 23, 17–24. [Google Scholar] [CrossRef]
- Çakır, D.Ü.; Altun, Z.; Olgun, N. Cytotoxic and Molecular Mechanisms in Ototoxicity of Cisplatin. J. Sci. Perspect. 2018, 2, 43–60. [Google Scholar] [CrossRef]
- Olgun, Y.; Aktaş, S.; Altun, Z.; Kırkım, G.; Kızmazoğlu, D.Ç.; Erçetin, A.P.; Demir, B.; İnce, D.; Mutafoğlu, K.; Demirağ, B.; et al. Analysis of genetic and non genetic risk factors for cisplatin ototoxicity in pediatric patients. Int. J. Pediatr. Otorhinolaryngol. 2016, 90, 64–69. [Google Scholar] [CrossRef]
- Tserga, E.; Nandwani, T.; Edvall, N.K.; Bulla, J.; Patel, P.; Canlon, B.; Cederroth, C.R.; Baguley, D.M. The genetic vulnerability to cisplatin ototoxicity: A systematic review. Sci. Rep. 2019, 9, 3455. [Google Scholar] [CrossRef]
- Downing, J.R.; Wilson, R.K.; Zhang, J.; Mardis, E.R.; Pui, C.H.; Ding, L.; Ley, T.J.; Evans, W.E. The Pediatric Cancer Genome Project. Nat. Genet. 2012, 44, 619–622. [Google Scholar] [CrossRef]
- Sweet-Cordero, E.A.; Biegel, J.A. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019, 363, 1170–1175. [Google Scholar] [CrossRef]
- Chen, X.; Pappo, A.; Dyer, M.A. Pediatric solid tumor genomics and developmental pliancy. Oncogene 2015, 34, 5207–5215. [Google Scholar] [CrossRef]
- Burdach, S.E.G.; Westhoff, M.A.; Steinhauser, M.F.; Debatin, K.M. Precision medicine in pediatric oncology. Mol. Cell. Pediatr. 2018, 5, 6. [Google Scholar] [CrossRef]
- Ukmar, G.; Melloni, G.E.M.; Raddrizzani, L.; Rossi, P.; Di Bella, S.; Pirchio, M.R.; Vescovi, M.; Leone, A.; Callari, M.; Cesarini, M.; et al. PATRI, a Genomics Data Integration Tool for Biomarker Discovery. BioMed Res. Int. 2018, 2018, 2012078. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; She, X.; Wang, Z.; Chen, S.; Deng, Z.; Zhang, Y.; Liu, Q.; Liu, Q.; Zhao, C.; et al. SIX3, a tumor suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of AURKA/B. J. Hematol. Oncol. 2017, 10, 115. [Google Scholar] [CrossRef]
- Aslan, S.G.; Tezel, K.; Ordu-Gökkaya, N.K. Fibrous dysplasia and McCune-Albright syndrome: A case report with review of literature on the rehabilitation approach. Turk. J. Phys. Med. Rehabil. 2023, 69, 252–256. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Luan, J.; Liu, R.; Wang, Y.; Liu, Y.; Xu, A.; Zhou, B.; Han, F.; Shang, W. Effect of downregulated citrate synthase on oxidative phosphorylation signaling pathway in HEI-OC1 cells. Proteome Sci. 2022, 20, 14. [Google Scholar] [CrossRef]
- Chen, H.; Guan, Q.; Guo, H.; Miao, L.; Zhuo, Z. The genetic changes of hepatoblastoma. Front. Oncol. 2021, 11, 690641. [Google Scholar] [CrossRef]
- Basingab, F.; Alsaiary, A.; Almontashri, S.; Alrofaidi, A.; Alharbi, M.; Azhari, S.; Algothmi, K.; Alhazmi, S. Alterations in Immune-Related Defensin Alpha 4 (DEFA4) Gene Expression in Health and Disease. Int. J. Inflamm. 2022, 2022, 9099136. [Google Scholar] [CrossRef]
- Kim, J.; Bergmann, A.; Lucas, S.; Stone, R.; Stubbs, L. Lineage-specific imprinting and evolution of the zinc-finger gene ZIM2. Genomics 2004, 84, 47–58. [Google Scholar] [CrossRef]
- He, H.; Kim, J. Regulation and function of the PEG3 imprinted domain. Genom. Inform. 2014, 12, 105–113. [Google Scholar] [CrossRef]
- Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.-C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.-M.; Wu, J.; et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491, 399–405. [Google Scholar] [CrossRef]
- Szymczuk, V.; Florenzano, P.; de Castro, L.F.; Collins, M.T.; Boyce, A.M. Fibrous Dysplasia/McCune-Albright Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993–2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK274564/ (accessed on 9 September 2025).
- Thiaville, M.M.; Kim, H.; Frey, W.D.; Kim, J. Identification of an Evolutionarily Conserved Cis-Regulatory Element Controlling the Peg3 Imprinted Domain. PLoS ONE 2013, 8, e75417. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, Y.; Wang, D.; Wang, Y.; Zhou, Z.; Ma, X.; Liu, X.; Dong, Y. Cisplatin-induced ototoxicity: From signaling network to therapeutic targets. Biomed. Pharmacother. 2023, 157, 114045. [Google Scholar] [CrossRef] [PubMed]
- Olgun, Y.; Demir, A.B.; Altun, Z.; Kırkım, G.; Güneri, E.A.; Aktaş, S. Comparative Genomic Hybridization Analysis Results in Patients Developing Severe Cisplatin-Induced Ototoxicity. In Proceedings of the 38th Turkish National Otorhinolaryngology Head and Neck Surgery Congress, Antalya, Turkey, 26–30 October 2016. [Google Scholar]
Diagnoses | (%) | Patients (n) |
---|---|---|
Neuroblastoma | 42.7 | 35 |
Central Nervous System Tumors | 14.6 | 12 |
Germ Cell Tumors | 11 | 9 |
Hepatoblastoma | 11 | 9 |
Nasopharyngeal Carcinoma | 6.1 | 5 |
Osteosarcoma | 4.9 | 4 |
Non-Rhabdomyosarcoma(Soft Tissue Sarcoma) | 2.4 | 2 |
Langerhans Cell Histiocytosis | 2.4 | 2 |
Thyroid Carcinoma | 2.4 | 2 |
Rhabdomyosarcoma | 1.2 | 1 |
Malignant Melanoma | 1.2 | 1 |
Case No. | Sex | Age (Months) | Diagnosis | Cisplatindose (mg/m2) | Hearing Loss | Ototoxicity * | Brock | Muenster | Gene Mutation |
---|---|---|---|---|---|---|---|---|---|
CO33 | M | 13 | Neuroblastoma | 300 | Severe | Positive | GRADE 2 | grade 3a | H19del, GNASdel |
CO19 | F | 20 | Neuroblastoma | 100 | Mild | Negative | GRADE 0 | grade 2a | ADAM6amp, H19amp, SIX3amp |
CO42 | F | 16 | Neuroblastoma | 300 | Mild | Negative | GRADE 0 | grade 2a | DEFA4del, NDUFV1del, ADAM6del |
CO27 | M | 21 | Neuroblastoma | 600 | Severe | Positive | GRADE 1 | grade 2c | NDUFV1amp, ADAM6amp, SIX3amp |
CO41 | M | 51 | Neuroblastoma | 300 | Severe | Positive | GRADE 1 | grade 2c | ADAM6amp, SIX3amp |
CO46 | M | 48 | Neuroblastoma | 600 | Severe | Positive | GRADE 1 | grade 2b | NDUFV1amp, ADAM6amp, SIX3amp |
CO30 | M | 35 | Neuroblastoma | 450 | Severe | Positive | GRADE 2 | grade 3c | GNASamp, SIX3amp |
YCO2 | F | 76 | Neuroblastoma | 300 | Mild | Positive | GRADE 2 | grade 1 | ZIM2del, H19del |
CO28 | M | 29 | Neuroblastoma | 300 | Severe | Positive | GRADE 1 | grade 2b | DEFA4amp |
CO53 | F | 2 | Neuroblastoma | 400 | Mild | Negative | GRADE 0 | grade 2a | H19del |
CO34 | F | 31 | Neuroblastoma | 300 | Severe | Positive | GRADE 2 | grade 2b | SIX3del |
CO18 | M | 18 | Neuroblastoma | 300 | Severe | Positive | GRADE 2 | grade 2c | ZIM2amp |
CO36 | M | 71 | Neuroblastoma | 600 | Severe | Positive | GRADE 1 | grade 2b | H19del |
CO21 | M | 23 | Neuroblastoma | 675 | Mild | Negative | GRADE 1 | grade 2a | - |
CO12 | F | 20 | Neuroblastoma | 100 | Mild | Negative | GRADE 0 | grade 2a | - |
CO20 | F | 50 | Neuroblastoma | 450 | Severe | Positive | GRADE 2 | grade 2c | - |
CO9 | M | 60 | Neuroblastoma | 450 | Mild | Positive | GRADE 0 | grade 2a | - |
CO11 | M | 27 | Hepatoblastoma | 560 | Severe | Positive | GRADE 2 | grade 2b | DEFA4amp |
CO44 | F | 18 | Hepatoblastoma | 480 | Mild | Negative | GRADE 0 | grade 2a | SIX3del |
CO54 | M | 12 | Hepatoblastoma | 400 | Severe | Positive | GRADE 2 | grade 2c | ZIM2amp |
CO97 | M | 23 | Hepatoblastoma | 400 | Mild | Positive | GRADE 1 | grade 2a | DEFA4amp |
CO40 | M | 83 | Hepatoblastoma | 430 | Severe | Positive | GRADE 1 | grade 2b | DEFA4del, H19del, GNASdel, SIX3del |
YCO1 | M | 134 | CNS Tumor | 120 | Severe | Positive | GRADE 3 | grade 2c | ZIM2amp |
YCO9 | M | 68 | CNS Tumor | 300 | Severe | Positive | GRADE 3 | grade 3b | GNASamp, SIX3del |
CO65 | F | 100 | CNS Tumor | 75 | Mild | Positive | GRADE 0 | grade 1 | NDUFV1amp, H19amp, SIX3 amp |
YCO4 | F | 169 | CNS Tumor | 175 | Mild | Positive | GRADE 2 | grade 2a | ZIM2del, NDUFV1amp |
CO39 | M | 152 | Nasopharynx CA | 425 | Severe | Positive | GRADE 4 | grade 2a | ZIM2amp, NDUFV1del, H19del |
C037 | M | 149 | Nasopharynx CA | 300 | Severe | Positive | GRADE 1 | grade 2c | DEFA4amp |
CO63 | M | 174 | Nasopharynx CA | 375 | Severe | Positive | GRADE 1 | grade 3a | H19del, SIX3del |
CO35 | F | 75 | Osteosarcoma | 240 | Severe | Positive | GRADE 1 | grade 2b | DEFA4amp, GNASamp |
CO62 | M | 187 | Germ Cell Tumor | 400 | Mild | Negative | GRADE 0 | grade 2a | ZIM2del |
Mutation | ADAM6 | SIX3 | GNAS | NDUFV1 | H19 | DEFA4 | ZIM2 | |
---|---|---|---|---|---|---|---|---|
All cases (N: 82) | Amplification Deletion | 15 2 | 16 18 | 8 12 | 13 3 | 7 24 | 12 2 | 10 11 |
Ototoxicity (N: 24) | Amplification Deletion | 3 - | 6 3 | 3 2 | 4 1 | 1 6 | 5 1 | 4 2 |
Severe hearing loss (N: 19) | Amplification Deletion | 3 - | 5 3 | 3 2 | 2 1 | - 5 | 4 1 | 4 - |
Mild hearing loss (N: 12) | Amplification Deletion | 1 1 | 2 1 | - - | 2 1 | 2 2 | 1 1 | - 3 |
Gene | Forward Primer (5′→3′) Reverse Primer (5′→3′) Probe (5′→3′) |
---|---|
DEFA4 | 5′-CCAGGCAAGAGGTGATGAG-3′ |
5′-TGAAACCTGAAGAAGCAGAGC-3′ | |
5′-FAM-TGGGCCAGAAGACCAGGACATATCTA-BBQ-3′ | |
NDUFV1 | 5′-GATCTTACGCCATGATCCTCAC-3′ |
5′-GAGGCCTCATTGTAGAATTCCC-3′ | |
5′-FAM-ATGTAGATATAGGCAGCGCGGGC-BBQ-3′ | |
ADAM6 | 5′-CTGTCCTACAGCCTGTGTTT-3′ |
5′-CTGAGTTGTCACCAGCAGAT-3′ | |
5′-FAM-TCACATGCGGAGGAAACACCTTCT-BBQ-3′ | |
H19 | 5′-ACGTGTCGCTATCTCTAGGT-3′ |
5′-GCTGTTCCGATGGTGTCTT-3′ | |
5′-FAM-AACCAGACCTCATCAGCCCAACAT-BBQ-3′ | |
ZIM2 | 5′-CCCTTTGAATGTGGTAGTGAGA-3′ |
5′-TTGGCTGTGACTCGGTAAAG-3′ | |
5′-FAM-AAAGCCATGAGCGTGAGCAGC-BBQ-3′ | |
GNAS | 5′-CGAAGGTGCGTTACCAGATT-3′ |
5′-TTTCAGCACGGGTAGAGTTAA-3′ | |
5′-FAM-TTTGTGCTGGGTCATCAGAGCAGA-BBQ-3′ | |
SIX3 | 5′-CCTCTTCCTCCTCTTCCTTCT-3′ |
5′-GAGTGTGTGTGGACTTGTATGT-3′ | |
5′-FAM-ACAAACCGAAATCAGGATACCCAACCA-BBQ-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kızmazoğlu, D.; Erol, A.; Aktaş, T.Ç.; Olgun, Y.; Demir, A.B.; Altun, Z.; Aktaş, S.; Olgun, N. Determination of a New Biomarker at the Level of Gene Alteration in Cisplatin Ototoxicity. Int. J. Mol. Sci. 2025, 26, 8880. https://doi.org/10.3390/ijms26188880
Kızmazoğlu D, Erol A, Aktaş TÇ, Olgun Y, Demir AB, Altun Z, Aktaş S, Olgun N. Determination of a New Biomarker at the Level of Gene Alteration in Cisplatin Ototoxicity. International Journal of Molecular Sciences. 2025; 26(18):8880. https://doi.org/10.3390/ijms26188880
Chicago/Turabian StyleKızmazoğlu, Deniz, Aylin Erol, Tekincan Çağrı Aktaş, Yüksel Olgun, Ayşe Banu Demir, Zekiye Altun, Safiye Aktaş, and Nur Olgun. 2025. "Determination of a New Biomarker at the Level of Gene Alteration in Cisplatin Ototoxicity" International Journal of Molecular Sciences 26, no. 18: 8880. https://doi.org/10.3390/ijms26188880
APA StyleKızmazoğlu, D., Erol, A., Aktaş, T. Ç., Olgun, Y., Demir, A. B., Altun, Z., Aktaş, S., & Olgun, N. (2025). Determination of a New Biomarker at the Level of Gene Alteration in Cisplatin Ototoxicity. International Journal of Molecular Sciences, 26(18), 8880. https://doi.org/10.3390/ijms26188880