Catalyst-Free Assembly of δ-Lactam-Based Hydrazide–Hydrazone Compounds from 3-Arylglutaconic Anhydrides and Aldazines
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Preparation of Lactams 3a-f and Their Analytical Data
3.2.1. Methyl (2RS,3RS)-4-(4-Fluorophenyl)-1-(((E)-4-methoxybenzylidene)amino)-2-(4-methoxyphenyl)-6-oxo-1,2,3,6-tetrahydropyridine-3-carboxylate (3a)
3.2.2. Methyl (2RS,3RS)-1-(((E)-4-Methoxybenzylidene)amino)-2-(4-methoxyphenyl)-6-oxo-4-(4-(pyrrolidin-1-ylsulfonyl)phenyl)-1,2,3,6-tetrahydropyridine-3-carboxylate (3b)
3.2.3. Methyl (2RS,3RS)-1-(((E)-4-Methoxybenzylidene)amino)-2,4-bis(4-methoxyphenyl)-6-oxo-1,2,3,6-tetrahydropyridine-3-carboxylate (3c)
3.2.4. Methyl (2RS,3RS)-1-(((E)-4-Methoxybenzylidene)amino)-2-(4-methoxyphenyl)-6-oxo-4-phenyl-1,2,3,6-tetrahydropyridine-3-carboxylate (3d)
3.2.5. Methyl (2RS,3RS)-4-(4-Fluorophenyl)-2-isopropyl-1-(((E)-2-methylpropylidene)amino)-6-oxo-1,2,3,6-tetrahydropyridine-3-carboxylate (3e)
3.2.6. Methyl (2RS,3RS)-4-(4-Fluorophenyl)-1-(((E)-4-methylbenzylidene)amino)-6-oxo-2-(p-tolyl)-1,2,3,6-tetrahydropyridine-3-carboxylate (3f)
3.3. Synthesis of Lactams 4a–j and Their Analytical Data
3.3.1. (E)-4-(4-Fluorophenyl)-1-((4-methoxybenzylidene)amino)-6-(4-methoxyphenyl)-3,6-dihydropyridin-2(1H)-one (4a)
3.3.2. (E)-1-((4-Methoxybenzylidene)amino)-4,6-bis(4-methoxyphenyl)-3,6-dihydropyridin-2(1H)-one (4b)
3.3.3. (E)-4-(4-Fluorophenyl)-6-isopropyl-1-((2-methylpropylidene)amino)-3,6-dihydropyridin-2(1H)-one (4c)
3.3.4. (E)-1-((4-Methoxybenzylidene)amino)-6-(4-methoxyphenyl)-4-(4-nitrophenyl)-3,6-dihydropyridin-2(1H)-one (4d)
3.3.5. (E)-1-((4-Methoxybenzylidene)amino)-6-(4-methoxyphenyl)-4-phenyl-3,6-dihydropyridin-2(1H)-one (4e)
3.3.6. (E)-1-((4-Methoxybenzylidene)amino)-6-(4-methoxyphenyl)-4-(4-(pyrrolidin-1-ylsulfonyl)phenyl)-3,6-dihydropyridin-2(1H)-one (4f)
3.3.7. (E)-4-(4-Chlorophenyl)-1-((4-methoxybenzylidene)amino)-6-(4-methoxyphenyl)-3,6-dihydropyridin-2(1H)-one (4g)
3.3.8. (E)-1-((4-(Dimethylamino)benzylidene)amino)-6-(4-(dimethylamino)phenyl)-4-(4-fluorophenyl)-3,6-dihydropyridin-2(1H)-one (4h)
3.3.9. Crystallographic Data for 4h
3.3.10. (E)-4-(4-Fluorophenyl)-1-((4-methylbenzylidene)amino)-6-(p-tolyl)-3,6-dihydropyridin-2(1H)-one (4i)
3.3.11. (E)-1-((4-Chlorobenzylidene)amino)-6-(4-chlorophenyl)-4-(4-fluorophenyl)-3,6-dihydropyridin-2(1H)-one (4j)
3.3.12. (E)-4-(4-Fluorophenyl)-1-((4-methoxybenzylidene)amino)-6-(4-methoxyphenyl)-5,6-dihydropyridin-2(1H)-one (4aa)
3.4. Preparation of Compounds 5–9
3.4.1. (E)-4-(4-fluorophenyl)-5-(hydroxymethyl)-1-((4-methoxybenzylidene)amino)-6-(4-methoxyphenyl)-5,6-dihydropyridin-2(1H)-one (5)
3.4.2. Methyl 4-(4-fluorophenyl)-1-((4-methoxybenzyl)amino)-2-(4-methoxyphenyl)-6-oxo-1,2,3,6-tetrahydropyridine-3-carboxylate (6)
3.4.3. (E)-4-(4-Fluorophenyl)-6-isopropyl-1-((4-nitrobenzylidene)amino)-5,6-dihydropyridin-2(1H)-one (7)
3.4.4. (E)-4-(4-Fluorophenyl)-1-((4-methoxybenzylidene)amino)-6-(4-methoxyphenyl)pyridin-2(1H)-one (8)
3.4.5. 1-Amino-4-(4-fluorophenyl)-6-(4-methoxyphenyl)pyridin-2(1H)-one (9)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira, S.; Castanheira, E.M.S.; Carvalho, M.A. Hydrazides as Powerful Tools in Medicinal Chemistry: Synthesis, Reactivity, and Biological Applications. Molecules 2025, 30, 2852. [Google Scholar] [CrossRef]
- Wahbeh, J.; Milkowski, S. The Use of Hydrazones for Biomedical Applications. SLAS Technol. Transl. Life Sci. Innov. 2019, 24, 161–168. [Google Scholar] [CrossRef]
- Tafere, D.A.; Gebrezgiabher, M.; Elemo, F.; Sani, T.; Atisme, T.B.; Ashebr, T.G.; Ahmed, I.N. Hydrazones, hydrazones-based coinage metal complexes, and their biological applications. RSC Adv. 2025, 15, 6191–6207. [Google Scholar] [CrossRef]
- Du, Y.; Chen, W.; Fu, X.; Deng, H.; Deng, J. Synthesis and biological evaluation of heterocyclic hydrazone transition metal complexes as potential anticancer agents. RSC Adv. 2016, 6, 109718–109725. [Google Scholar] [CrossRef]
- Yancheva, D.; Argirova, M.; Georgieva, I.; Milanova, V.; Guncheva, M.; Rangelov, M.; Todorova, N.; Tzoneva, R. Antiproliferative and Pro-Apoptotic Activity and Tubulin Dynamics Modulation of 1H-Benzimidazol-2-yl Hydrazones in Human Breast Cancer Cell Line MDA-MB-231. Molecules 2024, 29, 2400. [Google Scholar] [CrossRef]
- Raucci, A.; Zwergel, C.; Valente, S.; Mai, A. Advancements in Hydrazide-Based HDAC Inhibitors: A Review of Recent Developments and Therapeutic Potential. J. Med. Chem. 2025, 68, 14171–14194. [Google Scholar] [CrossRef]
- Kajal, A.; Bala, S.; Sharma, N.; Kamboj, S.; Saini, V. Therapeutic potential of hydrazones as anti-inflammatory agents. Int. J. Med. Chem. 2014, 2014, 761030. [Google Scholar] [CrossRef] [PubMed]
- Schuster, D.; Zederbauer, M.; Langer, T.; Kubin, A.; Furtmuller, P.G. Pharmacophore-based discovery of 2-(phenylamino)aceto-hydrazides as potent eosinophil peroxidase (EPO) inhibitors. J. Enzym. Inhib. Med. Chem. 2018, 33, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.C.; Sharma, D.; Sharma, A.; Saini, N.; Goyal, R.; Ola, M.; Chawla, R.; Thakur, V.K. Hydrazone comprising compounds as promising anti-infective agents: Chemistry and structure-property relationship. Mater. Today Chem. 2020, 18, 100349. [Google Scholar] [CrossRef]
- Yang, Z.; Li, P.; Gan, X. Novel Pyrazole-Hydrazone Derivatives Containing an Isoxazole Moiety: Design, Synthesis, and Antiviral Activity. Molecules 2018, 23, 1798. [Google Scholar] [CrossRef] [PubMed]
- Popiolek, L. Hydrazide-hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res. 2017, 26, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, N.; Correia, I. A review of hydrazide-hydrazone metal complexes’ antitumor potential. Front. Chem. Biol. 2024, 3, 1398873. [Google Scholar] [CrossRef]
- Angelova, V.; Karabeliov, V.; Andreeva-Gateva, P.A.; Tchekalarova, J. Recent Developments of Hydrazide/Hydrazone Derivatives and Their Analogs as Anticonvulsant Agents in Animal Models. Drug Dev. Res. 2016, 77, 379–392. [Google Scholar] [CrossRef]
- Murugappan, S.; Dastari, S.; Jungare, K.; Barve, N.M.; Shankaraiah, N. Hydrazide-hydrazone/hydrazone as enabling linkers in anti-cancer drug discovery: A comprehensive review. J. Mol. Struct. 2024, 1307, 138012. [Google Scholar] [CrossRef]
- Sonawane, S.J.; Kalhapure, R.S.; Govender, T. Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci. 2017, 99, 45–65. [Google Scholar] [CrossRef]
- Popiolek, L. The application of hydrazones and hydrazide-hydrazones in the synthesis of bioactive azetidin-2-one derivatives: A mini review. Biomed. Pharmacother. 2023, 163, 114853. [Google Scholar] [CrossRef]
- Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010, 14, 347–361. [Google Scholar] [CrossRef]
- Cao, J.; Gillard, R.; Jahanbakhsh, A.; Breugst, M.; Lupton, D.W. Enantioselective N-Heterocyclic Carbene Catalysis via Acyl Azolium without Exogenous Oxidants. ACS Catal. 2020, 10, 11791–11796. [Google Scholar] [CrossRef]
- Sun, B.; Gao, L.; Shen, S.; Yu, C.; Li, T.; Xie, Y.; Yao, C. NHC-catalyzed [4 + 2] annulation of 2-bromo-2-enals with acylhydrazones: Enantioselective synthesis of delta-lactams. Org. Biomol. Chem. 2017, 15, 991–997. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Wang, Y.; Ke, J.; Jeret, M.; Reddi, R.N.; Yang, S.; Song, B.A.; Chi, Y.R. Polyhalides as Efficient and Mild Oxidants for Oxidative Carbene Organocatalysis by Radical Processes. Angew. Chem. 2017, 56, 2942–2946. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.-Q.; Zhang, H.-M.; Zhang, C.-L.; Gao, Z.-H.; Ye, S. N-Heterocyclic carbene-catalyzed [4 + 2] annulation of α,β-unsaturated carboxylic acids: Enantioselective synthesis of dihydropyridinones and spirocyclic oxindolodihydropyridinones. Org. Chem. Front. 2016, 3, 77–81. [Google Scholar] [CrossRef]
- Xu, J.; Jin, Z.; Chi, Y.R. Organocatalytic enantioselective gamma-aminoalkylation of unsaturated ester: Access to pipecolic acid derivatives. Org. Lett. 2013, 15, 5028–5031. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, W.; Lan, J.; Zhu, T. Electroredox carbene organocatalysis with iodide as promoter. Nat. Commun. 2022, 13, 3827. [Google Scholar] [CrossRef]
- Li, M.; Kong, W.; Wen, L.-R.; Liu, F.-H. Facile isocyanide-based one-pot three-component regioselective synthesis of highly substituted pyridin-2(1H)-one derivatives at ambient temperature. Tetrahedron 2012, 68, 4838–4845. [Google Scholar] [CrossRef]
- Ramiro, J.L.; Martinez-Caballero, S.; Neo, A.G.; Diaz, J.; Marcos, C.F. The Castagnoli-Cushman Reaction. Molecules 2023, 28, 2654. [Google Scholar] [CrossRef]
- Mikheyev, A.; Kantin, G.; Krasavin, M. Aldazines in the Castagnoli–Cushman Reaction. Synthesis 2018, 50, 2076–2086. [Google Scholar] [CrossRef]
- Krasavin, M.; Dar’in, D. Current diversity of cyclic anhydrides for the Castagnoli–Cushman-type formal cycloaddition reactions: Prospects and challenges. Tetrahedron Lett. 2016, 57, 1635–1640. [Google Scholar] [CrossRef]
- Firsov, A.; Bakulina, O.; Dar’in, D.; Guranova, N.; Krasavin, M. Further Insight into the Castagnoli-Cushman-type Synthesis of 1,4,6-Trisubstituted 1,6-Dihydropyridin-2-(3H)-ones from 3-Arylglutaconic Acid Anhydrides. J. Org. Chem. 2020, 85, 6822–6829. [Google Scholar] [CrossRef]
- Bannykh, A.; Levashova, E.; Bakulina, O.; Krasavin, M. New reagent space and new scope for the Castagnoli-Cushman reaction of oximes and 3-arylglutaconic anhydrides. Org. Biomol. Chem. 2022, 20, 8643–8648. [Google Scholar] [CrossRef]
- Firsov, A.; Chupakhin, E.; Dar’in, D.; Bakulina, O.; Krasavin, M. Three-Component Castagnoli-Cushman Reaction of 3-Arylglutaconic Acids with Aromatic Aldehydes and Amines Delivers Rare 4,6-Diaryl-1,6-dihydropyridin-2(3H)-ones. Org. Lett. 2019, 21, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Peshkov, A.A.; Bakulina, O.; Dar’in, D.; Kantin, G.; Bannykh, A.; Peshkov, V.A.; Krasavin, M. Three-Component Castagnoli-Cushman Reaction of 3-Arylglutaconic Acid Anhydrides, Carbonyl Compounds, and Ammonium Acetate: A Quick and Flexible Way to Assemble Polysubstituted NH-delta-lactams. Eur. J. Org. Chem. 2021, 2021, 1726–1731. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71 Pt 1, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71 Pt 1, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ananeva, A.; Karchuganova, E.; Spiridonova, D.; Kantin, G.; Bakulina, O. Catalyst-Free Assembly of δ-Lactam-Based Hydrazide–Hydrazone Compounds from 3-Arylglutaconic Anhydrides and Aldazines. Int. J. Mol. Sci. 2025, 26, 8834. https://doi.org/10.3390/ijms26188834
Ananeva A, Karchuganova E, Spiridonova D, Kantin G, Bakulina O. Catalyst-Free Assembly of δ-Lactam-Based Hydrazide–Hydrazone Compounds from 3-Arylglutaconic Anhydrides and Aldazines. International Journal of Molecular Sciences. 2025; 26(18):8834. https://doi.org/10.3390/ijms26188834
Chicago/Turabian StyleAnaneva, Anna, Elizaveta Karchuganova, Dar’ya Spiridonova, Grigory Kantin, and Olga Bakulina. 2025. "Catalyst-Free Assembly of δ-Lactam-Based Hydrazide–Hydrazone Compounds from 3-Arylglutaconic Anhydrides and Aldazines" International Journal of Molecular Sciences 26, no. 18: 8834. https://doi.org/10.3390/ijms26188834
APA StyleAnaneva, A., Karchuganova, E., Spiridonova, D., Kantin, G., & Bakulina, O. (2025). Catalyst-Free Assembly of δ-Lactam-Based Hydrazide–Hydrazone Compounds from 3-Arylglutaconic Anhydrides and Aldazines. International Journal of Molecular Sciences, 26(18), 8834. https://doi.org/10.3390/ijms26188834