Aldosterone: From Essential Tubular Regulator to Pathological Driver—Physiology, Disease, and Therapeutic Advances
Abstract
1. Introduction
2. The Pathophysiology of Aldosterone
2.1. Regulation of Aldosterone Synthesis
2.2. The Mineralocorticoid Receptor
2.3. Genomic and Non-Genomic Pathways
2.4. The Aldosterone-Sensitive Distal Nephron
Cell Type and Location | Transporters | Function | Regulation by Aldosterone | Net Physiological Consequence |
---|---|---|---|---|
DCT Cell | Apical: • Na+-Cl− Cotransporter (NCC; SLC12A3) Basolateral: • Na+/K+-ATPase • Cl− Channel (ClC-Kb) | Electroneutral Na+ and Cl− reabsorption. | • Ang II strongly activates NCC via the WNK-SPAK/OSR1 kinase pathway independent of aldosterone [84]. • Aldosterone can increase total NCC protein abundance [85] and does not require Ang II to do so via the WNK4-SPAK pathway [86]. • NCC activity is inhibited by high dietary K+ [87]. | Major site of action for thiazide diuretics. Critical for dissociating Na+ retention from K+ secretion. |
Principal Cell Connecting Tubule (CNT), Cortical Collecting Duct (CCD) | Apical: • Epithelial Na+ Channel (ENaC) • Renal Outer Medullary K+ Channel (ROMK; KCNJ1) • Big K+ (BK) Channel (Flow-dependent) Basolateral: • Na+/K+-ATPase | Na+ reabsorption K+ secretion | • Aldosterone increases transcription, translation, and membrane insertion/activity of ENaC subunits and the Na+/K+-ATPase [45]. • Aldosterone upregulates the serum- and glucocorticoid-induced kinase 1 (SGK1), which phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2, preventing ENaC degradation [45,88]. • Aldosterone promotes ROMK and BK channel activity for K+ secretion [45]. | Na+ retention and ECF volume expansion K+ excretion (kaliuresis) Contributes to hypertension in states of aldosterone excess. |
Type A (α) Intercalated Cell CNT, CCD, Outer Medullary Collecting Duct (OMCD) | Apical: • Vacuolar H+-ATPase (V-ATPase) • H+/K+-ATPase (HKA) Basolateral: • Cl−/HCO3− Exchanger 1 (AE1; SLC4A1) | H+ secretion HCO3− reabsorption K+ reabsorption (via HKA) | • Aldosterone increases activity and membrane density of the apical V-ATPase [89,90,91]. • Aldosterone upregulates HKA activity, particularly during hypokalemia [92,93]. | Systemic acid excretion and urine acidification Contributes to metabolic alkalosis and hypokalemia in states of aldosterone excess. |
Type B (β) Intercalated Cell, CNT, CCD | Apical: • Pendrin (Cl−/HCO3− Exchanger; SLC26A4) • Na+-driven Cl−/HCO3− exchanger (SLC4A8) Basolateral: • Vacuolar H+-ATPase (V-ATPase) | HCO3− secretion Cl− reabsorption H+ reabsorption | • Aldosterone (especially when co-signaled by low ang II) suppresses pendrin activity [94,95]. | Systemic base excretion and urine alkalinization. Correction of metabolic alkalosis. Aldosterone-mediated inhibition promotes Cl−-sparing Na+ retention. |
Non-A, Non-B Intercalated Cell, CNT, CCD | Apical: • Expresses both V-ATPase and Pendrin. | A hybrid phenotype capable of either H+ or HCO3− secretion. | Regulation is complex and less defined; thought to contribute to the fine-tuning of acid–base balance by adapting its function [4]. | Provides plasticity to the renal response to acid–base disturbances. |
3. Clinical Syndromes
Category | Condition or Syndrome | Core Pathophysiology | Plasma Aldosterone | Plasma Renin Activity | Aldosterone/Renin Ratio | Serum K+ | Blood Pressure |
---|---|---|---|---|---|---|---|
Primary hyperaldosteronism [98] | Conn’s Syndrome [103] Bilateral Adrenal Hyperplasia [104] | Autonomous aldosterone production | High | Suppressed/ Low | High | Low/ Normal | High |
Familial Hyperaldosteronism (FH I-IV) [105,106] | Genetic variants (CYP11B1/CYP11B2, CLCN2, KCNJ5, CACNA1H) causing autonomous aldosterone production | High | Suppressed/ Low | High | Low/ Normal | High | |
Secondary hyperaldosteronism [102] | Renovascular Hypertension [107] Reninoma [108] | Renin overproduction (physiological or neoplastic) | High | High | Low/ Normal | Low/ Normal | High |
Heart Failure [109] Cirrhosis [110,111] Nephrotic Syndrome [111] | RAAS activation due to low effective circulating volume | High | High | Low/ Normal | Normal/ High | Low/ Normal | |
Salt-Wasting Tubulopathies [112,113] | RAAS activation from renal salt wasting | High | High | Low/ Normal | Low | Low/ Normal | |
Pseudo hyperaldosteronism [114] | Liddle Syndrome [115] | Gain-of-function variants in ENaC (SCNN1A, SCNN1B, SCNN1C) [116] | Suppressed/ Low | Suppressed/ Low | Low/Variable | Low | High |
Apparent Mineralocorticoid Excess (AME) [117] Licorice [118] | Impaired cortisol inactivation by 11β-HSD2 | Suppressed/ Low | Suppressed/ Low | Low/Variable | Low | High | |
Cushing’s Syndrome (severe) [119] | MR activation by cortisol excess | Suppressed/ Low | Suppressed/ Low | Low/Variable | Low | High | |
Exogenous Mineralocorticoids (Fludrocortisone) [120] | Exogenous MR agonist | Suppressed/ Low | Suppressed/ Low | Low/Variable | Low | High |
4. Treatment of Hyperaldosteronism in Chronic Kidney Disease
4.1. Molecular Rationale for Mineralocorticoid Receptor Antagonists
Feature | Steroidal MRAs (Spironolactone, Eplerenone) | Non-Steroidal MRA (Finerenone) | Emerging Non-Steroidal MRAs (Esaxerenone, Apararenone) |
---|---|---|---|
Structure | Steroidal | Non-steroidal (Dihydropyridine-based) | Non-steroidal |
MR Selectivity | Spironolactone: Low Eplerenone: Moderate–High | High | Generally High |
Androgen/Progesterone Receptor Binding | Spironolactone: Significant Eplerenone: Minimal | Minimal/Negligible | Minimal/Negligible |
Mechanism at MR | Competitive Antagonist (Potentially Partial Agonist) | Competitive Antagonist/Inverse Agonist (Blocks pathological co-factor recruitment) | Competitive Antagonist (mechanisms may vary) |
Potency (vs. Spironolactone) | Eplerenone: Lower | Similar/Higher | Variable |
Metabolites | Spironolactone: Active, long half-life Eplerenone: Inactive | Inactive, short half-life | Generally inactive, half-lives vary |
Tissue Distribution | Preferential Kidney Accumulation | Balanced Heart/Kidney Distribution | Variable/Under investigation |
BP Lowering Effect | Spironolactone: effective, cornerstone therapy for resistant hypertension [150] Eplerenone: modest [136,138] | Modest [151] | Significant [150,152] |
Proven CKD Progression Benefit (Hard Outcomes) | No (BARACK-D negative) [139] | Yes (FIDELIO-DKD, FIDELITY) | Limited/Under investigation |
Proven CV Benefit in CKD | No (BARACK-D negative [139]), Yes (in HFrEF [140]) | Yes (FIGARO-DKD, FIDELITY) | Limited/Under investigation |
Albuminuria Reduction | Yes [152] | Yes (proven in trials) | Yes (Esaxerenone [147], Apararenone [148]) |
Hyperkalemia Risk in CKD | High, often dose-limiting [140] | Moderate, manageable with monitoring (lower relative risk vs. steroidal likely) | Appears lower than steroidal, requires confirmation in large trials |
Hormonal Side Effects | Spironolactone: Common [153] Eplerenone: Rare [153] | Rare/Absent | Rare/Absent |
Primary Indication in CKD Context | HFrEF [154], Resistant HTN (with caution) | Cardiorenal risk reduction in T2D with albuminuric CKD (ACR > 30 mg/g) | Hypertension/DKD (Esaxerenone, Japan); DKD (Apararenone, Japan); Uncontrolled HTN (Ocedurenone, failed Phase III) |
4.2. Selective Aldosterone Synthase Inhibitors
4.3. Future Therapeutic Frontiers
Target/Pathway | Key Molecular Components | Primary Mechanism(s) | Implicated Pathologies |
---|---|---|---|
Non-Genomic Signaling (Membrane MR/Scaffolds) [178] | MR, Striatin, Cav-1, Kinases (ERK, PKC), EGFR | Rapid kinase activation (ERK, PKC), Ion flux modulation, EGFR transactivation | CV remodeling, Renal transport regulation |
GPER Signaling [7] | GPER (GPR30), Gs, GRKs, ERK, PI3K | Aldosterone binding, Rapid kinase activation (ERK), Potential cAMP/PI3K modulation | Hypertension, Vascular dysfunction, Inflammation, Apoptosis |
Inflammation/Fibrosis [179] (General) | Immune cells (Macs, T cells), Cytokines (TNFα, IL-6, IL-1β), Chemokines, Adhesion molecules, ROS, Fibroblasts, ECM | Immune cell activation/infiltration, Cytokine release, Oxidative stress, Fibroblast proliferation, ECM deposition | CV inflammation/fibrosis, Renal inflammation/fibrosis |
NLRP3 Inflammasome [64] | NLRP3, ASC, Caspase-1, IL-1β, IL-18 | Aldosterone-induced ROS/NF-κB activation, Inflammasome assembly, Cytokine maturation | Vascular dysfunction/remodeling, Podocyte injury, Renal inflammation |
Biglycan/TLR Signaling [72] | Biglycan, TLR4, TLR2, MyD88, TRIF, NF-κB, Chemokines (CCL3, CXCL9/10, CCL20) | MR-induced Biglycan upregulation, TLR activation by soluble Biglycan, Immune cell recruitment (Macs, Th1/Th17) | Glomerular injury, Renal inflammation/fibrosis |
MR Co-regulators/GR Interaction [74] | SRCs, p300/CBP, GR | Modulation of MR transcription initiation/efficiency, GR potentiation of MR activity | Tissue-specific aldosterone sensitivity |
MicroRNAs [76] | miR-192, miR-802, miR-194, miR-181a, miR-663, miR-483 etc. | Post-transcriptional regulation of RAAS components and effectors (mRNA degradation/translation inhibition) | Hypertension, Kidney disease, Electrolyte balance |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, H.W. From Fish to Philosopher, 1st ed.; Little, Brown and Company: Boston, MA, USA, 1953. [Google Scholar]
- Tait, S.A.S.; Tait, J.F.; Coghlan, J.P. The Discovery, Isolation and Identification of Aldosterone: Reflections on Emerging Regulation and Function. Mol. Cell. Endocrinol. 2004, 217, 1–21. [Google Scholar] [CrossRef]
- Rossier, B.C.; Baker, M.E.; Studer, R.A. Epithelial Sodium Transport and Its Control by Aldosterone: The Story of Our Internal Environment Revisited. Physiol. Rev. 2015, 95, 297–340. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.A. Effect of Mineralocorticoids on Acid-Base Balance. Nephron Physiol. 2014, 128, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Colombo, L.; Valle, L.D.; Fiore, C.; Armanini, D.; Belvedere, P. Aldosterone and the Conquest of Land. J. Endocrinol. Investig. 2006, 29, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.E.; Katsu, Y. 30 Years of the Mineralocorticoid Receptor: Evolution of the Mineralocorticoid Receptor: Sequence, Structure and Function. J. Endocrinol. 2017, 234, T1–T16. [Google Scholar] [CrossRef]
- Brown, N.J. Contribution of Aldosterone to Cardiovascular and Renal Inflammation and Fibrosis. Nat. Rev. Nephrol. 2013, 9, 459–469. [Google Scholar] [CrossRef]
- Brown, J.M. Adverse Effects of Aldosterone: Beyond Blood Pressure. J. Am. Heart Assoc. 2024, 13, e030142. [Google Scholar] [CrossRef]
- Funder, J.W. Aldosterone and Mineralocorticoid Receptors: A Personal Reflection. Mol. Cell. Endocrinol. 2012, 350, 146–150. [Google Scholar] [CrossRef]
- Curnow, K.M.; Tusie-Luna, M.-T.; Pascoe, L.; Natarajan, R.; Gu, J.-L.; Nadler, J.L.; White, P.C. The Product of the CYP11B2 Gene Is Required for Aldosterone Biosynthesis in the Human Adrenal Cortex. Mol. Endocrinol. 1991, 5, 1513–1522. [Google Scholar] [CrossRef]
- Bollag, W.B. Regulation of Aldosterone Synthesis and Secretion. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2014; pp. 1017–1055. ISBN 978-0-470-65071-4. [Google Scholar]
- Peti-Peterdi, J.; Harris, R.C. Macula Densa Sensing and Signaling Mechanisms of Renin Release. J. Am. Soc. Nephrol. 2010, 21, 1093–1096. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Saijonmaa, O. Reninangiotensin System Revisited. J. Intern. Med. 2008, 264, 224–236. [Google Scholar] [CrossRef]
- Nogueira, E.F.; Xing, Y.; Morris, C.A.V.; Rainey, W.E. Role of Angiotensin II-Induced Rapid Response Genes in the Regulation of Enzymes Needed for Aldosterone Synthesis. J. Mol. Endocrinol. 2009, 42, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Volonte, D.; Sedorovitz, M.; Cespedes, V.E.; Beecher, M.L.; Galbiati, F. Cell Autonomous Angiotensin II Signaling Controls the Pleiotropic Functions of Oncogenic K-Ras. J. Biol. Chem. 2021, 296, 100242. [Google Scholar] [CrossRef] [PubMed]
- Palmer, L.G.; Frindt, G. Aldosterone and Potassium Secretion by the Cortical Collecting Duct. Kidney Int. 2000, 57, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Rusin, C.G.; Tan, Z.; Guagliardo, N.A.; Barrett, P.Q. Zona Glomerulosa Cells of the Mouse Adrenal Cortex Are Intrinsic Electrical Oscillators. J. Clin. Investig. 2012, 122, 2046–2053. [Google Scholar] [CrossRef]
- El Ghorayeb, N.; Bourdeau, I.; Lacroix, A. Role of ACTH and Other Hormones in the Regulation of Aldosterone Production in Primary Aldosteronism. Front. Endocrinol. 2016, 7, 72. [Google Scholar] [CrossRef]
- Spät, A.; Hunyady, L. Control of Aldosterone Secretion: A Model for Convergence in Cellular Signaling Pathways. Physiol. Rev. 2004, 84, 489–539. [Google Scholar] [CrossRef]
- Ryoyu, T.; Isamu, M.; Masatoshi, I.; Hideo, K.; Yoshiyu, T.; Shuichiro, Y.; Toshio, M.; Hiroaki, T. Circadian Rhythm of Plasma Aldosterone and Time Dependent Alterations of Aldosterone Regulators. J. Steroid Biochem. 1984, 20, 321–323. [Google Scholar] [CrossRef]
- Mazzocchi, G.; Malendowicz, L.K.; Rebuffat, P.; Robba, C.; Gottardo, G.; Nussdorfer, G.G. Short- and Long-Term Effects of ACTH on the Adrenal Zona Glomerulosa of the Rat. Cell Tissue Res. 1986, 243, 303–310. [Google Scholar] [CrossRef]
- Sonoyama, T.; Sone, M.; Tamura, N.; Honda, K.; Taura, D.; Kojima, K.; Fukuda, Y.; Kanamoto, N.; Miura, M.; Yasoda, A.; et al. Role of Endogenous ACTH on Circadian Aldosterone Rhythm in Patients with Primary Aldosteronism. Endocr. Connect. 2014, 3, 173–179. [Google Scholar] [CrossRef]
- Lim, J.S.; Plaska, S.W.; Rege, J.; Rainey, W.E.; Turcu, A.F. Aldosterone-Regulating Receptors and Aldosterone-Driver Somatic Mutations. Front. Endocrinol. 2021, 12, 644382. [Google Scholar] [CrossRef]
- Flier, J.S.; Underhill, L.H.; Laragh, J.H. Atrial Natriuretic Hormone, the Renin–Aldosterone Axis, and Blood Pressure–Electrolyte Homeostasis. N. Engl. J. Med. 1985, 313, 1330–1340. [Google Scholar] [CrossRef]
- Johnston, C.I.; Hodsman, P.G.; Kohzuki, M.; Casley, D.J.; Fabris, B.; Phillips, P.A. Interaction between Atrial Natriuretic Peptide and the Renin Angiotensin Aldosterone System. Am. J. Med. 1989, 87, 24S–28S. [Google Scholar] [CrossRef]
- Chong, C.; Hamid, A.; Yao, T.; Garza, A.E.; Pojoga, L.H.; Adler, G.K.; Romero, J.R.; Williams, G.H. Regulation of Aldosterone Secretion by Mineralocorticoid Receptor–Mediated Signaling. J. Endocrinol. 2017, 232, 525–534. [Google Scholar] [CrossRef]
- Pang, Y.; Gong, S.; Tetti, M.; Sun, Z.; Mir-Bashiri, S.; Bidlingmaier, M.; Knösel, T.; Wolf, E.; Reincke, M.; Kemter, E.; et al. EGR1 Regulates Oxidative Stress and Aldosterone Production in Adrenal Cells and Aldosterone-Producing Adenomas. Redox Biol. 2025, 80, 103498. [Google Scholar] [CrossRef]
- Takeda, Y.; Demura, M.; Kometani, M.; Karashima, S.; Yoneda, T.; Takeda, Y. Molecular and Epigenetic Control of Aldosterone Synthase, CYP11B2 and 11-Hydroxylase, CYP11B1. Int. J. Mol. Sci. 2023, 24, 5782. [Google Scholar] [CrossRef]
- Takeda, Y.; Demura, M.; Wang, F.; Karashima, S.; Yoneda, T.; Kometani, M.; Hashimoto, A.; Aono, D.; Horike, S.; MeguroHorike, M.; et al. Epigenetic Regulation of Aldosterone Synthase Gene by Sodium and Angiotensin II. J. Am. Heart Assoc. 2018, 7, e008281. [Google Scholar] [CrossRef] [PubMed]
- Takeda, Y.; Demura, M.; Wang, F.; Karashima, S.; Yoneda, T.; Kometani, M.; Aomo, D.; Hashimoto, A.; Horike, S.; Meguro-Horike, M.; et al. Effect of Potassium on DNA Methylation of Aldosterone Synthase Gene. J. Hypertens. 2021, 39, 1018. [Google Scholar] [CrossRef] [PubMed]
- Funder, J.W. Mineralocorticoid Receptors: Distribution and Activation. Heart Fail. Rev. 2005, 10, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Farman, N.; Bocchi, B. Mineralocorticoid Selectivity: Molecular and Cellular Aspects. Kidney Int. 2000, 57, 1364–1369. [Google Scholar] [CrossRef][Green Version]
- Bauersachs, J.; Jaisser, F.; Toto, R. Mineralocorticoid Receptor Activation and Mineralocorticoid Receptor Antagonist Treatment in Cardiac and Renal Diseases. Hypertension 2015, 65, 257–263. [Google Scholar] [CrossRef]
- Bertocchio, J.-P.; Warnock, D.G.; Jaisser, F. Mineralocorticoid Receptor Activation and Blockade: An Emerging Paradigm in Chronic Kidney Disease. Kidney Int. 2011, 79, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Rickard, A.J.; Morgan, J.; Tesch, G.; Funder, J.W.; Fuller, P.J.; Young, M.J. Deletion of Mineralocorticoid Receptors from Macrophages Protects against Deoxycorticosterone/Salt-Induced Cardiac Fibrosis and Increased Blood Pressure. Hypertension 2009, 54, 537–543. [Google Scholar] [CrossRef]
- Brilla, C.G.; Matsubara, L.S.; Weber, K.T. Anti-Aldosterone Treatment and the Prevention of Myocardial Fibrosis in Primary and Secondary Hyperaldosteronism. J. Mol. Cell. Cardiol. 1993, 25, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Garnier, A.; Bendall, J.K.; Fuchs, S.; Escoubet, B.; Rochais, F.; Hoerter, J.; Nehme, J.; Ambroisine, M.-L.; De Angelis, N.; Morineau, G.; et al. Cardiac Specific Increase in Aldosterone Production Induces Coronary Dysfunction in Aldosterone Synthase–Transgenic Mice. Circulation 2004, 110, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Cardiac Fibrosis. Cardiovasc. Res. 2020, 117, 1450. [Google Scholar] [CrossRef]
- Moss, M.E.; Lu, Q.; Iyer, S.L.; Engelbertsen, D.; Marzolla, V.; Caprio, M.; Lichtman, A.H.; Jaffe, I.Z. Endothelial Mineralocorticoid Receptors Contribute to Vascular Inflammation in Atherosclerosis in a Sex-Specific Manner. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1588–1601. [Google Scholar] [CrossRef]
- Fraccarollo, D.; Geffers, R.; Galuppo, P.; Bauersachs, J. Mineralocorticoid Receptor Promotes Cardiac Macrophage Inflammaging. Basic Res. Cardiol. 2024, 119, 243–260. [Google Scholar] [CrossRef]
- Jaisser, F.; Farman, N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol. Rev. 2016, 68, 49–75. [Google Scholar] [CrossRef]
- Galigniana, M.D.; Erlejman, A.G.; Monte, M.; Gomez-Sanchez, C.; Piwien-Pilipuk, G. The Hsp90-FKBP52 Complex Links the Mineralocorticoid Receptor to Motor Proteins and Persists Bound to the Receptor in Early Nuclear Events. Mol. Cell. Biol. 2010, 30, 1285–1298. [Google Scholar] [CrossRef]
- Storer, C.L.; Dickey, C.A.; Galigniana, M.D.; Rein, T.; Cox, M.B. FKBP51 and FKBP52 in Signaling and Disease. Trends Endocrinol. Metab. 2011, 22, 481–490. [Google Scholar] [CrossRef]
- Kamynina, E.; Staub, O. Concerted Action of ENaC, Nedd4-2, and Sgk1 in Transepithelial Na(+) Transport. Am. J. Physiol. Renal Physiol. 2002, 283, F377–F387. [Google Scholar] [CrossRef]
- Valinsky, W.C.; Touyz, R.M.; Shrier, A. Aldosterone, SGK1, and Ion Channels in the Kidney. Clin. Sci. 2018, 132, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, V.; Daidié, D.; Li, H.; Pao, A.C.; LaGrange, L.P.; Wang, J.; Vandewalle, A.; Stockand, J.D.; Staub, O.; Pearce, D. Serum- and Glucocorticoid-Regulated Kinase 1 Regulates Ubiquitin Ligase Neural Precursor Cell-Expressed, Developmentally Down-Regulated Protein 4-2 by Inducing Interaction with 14-3-3. Mol. Endocrinol. 2005, 19, 3073–3084. [Google Scholar] [CrossRef]
- Masilamani, S.; Kim, G.H.; Mitchell, C.; Wade, J.B.; Knepper, M.A. Aldosterone-Mediated Regulation of ENaC Alpha, Beta, and Gamma Subunit Proteins in Rat Kidney. J. Clin. Investig. 1999, 104, R19–R23. [Google Scholar] [CrossRef] [PubMed]
- Verrey, F.; Kraehenbuhl, J.P.; Rossier, B.C. Aldosterone Induces a Rapid Increase in the Rate of Na,K-ATPase Gene Transcription in Cultured Kidney Cells. Mol. Endocrinol. 1989, 3, 1369–1376. [Google Scholar] [CrossRef]
- Garty, H. Regulation of the Epithelial Na+ Channel by Aldosterone: Open Questions and Emerging Answers. Kidney Int. 2000, 57, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Summa, V.; Mordasini, D.; Roger, F.; Bens, M.; Martin, P.Y.; Vandewalle, A.; Verrey, F.; Féraille, E. Short Term Effect of Aldosterone on Na,K-ATPase Cell Surface Expression in Kidney Collecting Duct Cells. J. Biol. Chem. 2001, 276, 47087–47093. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Z.; Yang, Y.; Mack, A.; Rodgers, M.; Aroor, A.; Jia, G.; Sowers, J.R.; Hill, M.A. Endothelial Cell Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Mediates Vascular Stiffening. Metabolism 2024, 154, 155831. [Google Scholar] [CrossRef]
- Gekle, M.; Silbernagl, S.; Wünsch, S. Non-Genomic Action of the Mineralocorticoid Aldosterone on Cytosolic Sodium in Cultured Kidney Cells. J. Physiol. 1998, 511, 255–263. [Google Scholar] [CrossRef]
- Funder, J.W. The Nongenomic Actions of Aldosterone. Endocr. Rev. 2005, 26, 313–321. [Google Scholar] [CrossRef]
- Falkenstein, E.; Christ, M.; Feuring, M.; Wehling, M. Specific Nongenomic Actions of Aldosterone. Kidney Int. 2000, 57, 1390–1394. [Google Scholar] [CrossRef]
- Harvey, B.J.; Higgins, M. Nongenomic Effects of Aldosterone on Ca2+ in M-1 Cortical Collecting Duct Cells. Kidney Int. 2000, 57, 1395–1403. [Google Scholar] [CrossRef]
- Grossmann, C.; Gekle, M. New Aspects of Rapid Aldosterone Signaling. Mol. Cell. Endocrinol. 2009, 308, 53–62. [Google Scholar] [CrossRef]
- Gekle, M.; Bretschneider, M.; Meinel, S.; Ruhs, S.; Grossmann, C. Rapid Mineralocorticoid Receptor Trafficking. Steroids 2014, 81, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Chun, T.-Y.; Pratt, J.H. Non-Genomic Effects of Aldosterone: New Actions and Questions. Trends Endocrinol. Metab. 2004, 15, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kuang, W.; Qiu, Z.; Zhou, Z. G Protein–Coupled Estrogen Receptor: A Promising Therapeutic Target for Aldosterone-Induced Hypertension. Front. Endocrinol. 2023, 14, 1226458. [Google Scholar] [CrossRef] [PubMed]
- Ashton, A.W.; Le, T.Y.L.; Gomez-Sanchez, C.E.; Morel-Kopp, M.-C.; McWhinney, B.; Hudson, A.; Mihailidou, A.S. Role of Nongenomic Signaling Pathways Activated by Aldosterone During Cardiac Reperfusion Injury. Mol. Endocrinol. 2015, 29, 1144–1155. [Google Scholar] [CrossRef]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef]
- Leopold, J.A. Aldosterone, Mineralocorticoid Receptor Activation, and Cardiovascular Remodeling. Circulation 2011, 124, e466–e468. [Google Scholar] [CrossRef]
- Pacurari, M.; Kafoury, R.; Tchounwou, P.B.; Ndebele, K. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling. Int. J. Inflamm. 2014, 2014, 689360. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.S.; Tostes, R.C.; Paradis, P.; Schiffrin, E.L. Aldosterone, Inflammation, Immune System, and Hypertension. Am. J. Hypertens. 2021, 34, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Chen, Y.; Zhao, M.; Zhang, Y.; He, J.C.-J.; Huang, S.; Jia, Z.; Zhang, A. NLRP3 Inflammasome Activation Contributes to Aldosterone-Induced Podocyte Injury. Am. J. Physiol. Ren. Physiol. 2017, 312, F556–F564. [Google Scholar] [CrossRef]
- Toldo, S.; Mezzaroma, E.; Buckley, L.F.; Potere, N.; Di Nisio, M.; Biondi-Zoccai, G.; Van Tassell, B.W.; Abbate, A. Targeting the NLRP3 Inflammasome in Cardiovascular Diseases. Pharmacol. Ther. 2022, 236, 108053. [Google Scholar] [CrossRef] [PubMed]
- Leroy, V.A.A.; De Seigneux, S.; Agassiz, V.; Hasler, U.; Rafestin-Oblin, M.-E.; Vinciguerra, M.; Martin, P.-Y.; Féraille, E. Aldosterone Activates NF-κB in the Collecting Duct. J. Am. Soc. Nephrol. 2009, 20, 131. [Google Scholar] [CrossRef]
- Ong, G.S.Y.; Cole, T.J.; Tesch, G.H.; Morgan, J.; Dowling, J.K.; Mansell, A.; Fuller, P.J.; Young, M.J. Novel Mineralocorticoid Receptor Mechanisms Regulate Cardiac Tissue Inflammation in Male Mice. J. Endocrinol. 2020, 246, 123–134. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Li, C.; Shen, Z.-X.; Zhang, W.-C.; Ai, T.-J.; Du, L.-J.; Zhang, Y.-Y.; Yao, G.-F.; Liu, Y.; Sun, S.; et al. Mineralocorticoid Receptor Deficiency in Macrophages Inhibits Neointimal Hyperplasia and Suppresses Macrophage Inflammation Through SGK1-AP1/NF-κB Pathways. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 874–885. [Google Scholar] [CrossRef]
- Herrada, A.A.; Contreras, F.J.; Marini, N.P.; Amador, C.A.; González, P.A.; Cortés, C.M.; Riedel, C.A.; Carvajal, C.A.; Figueroa, F.; Michea, L.F.; et al. Aldosterone Promotes Autoimmune Damage by Enhancing Th17-Mediated Immunity. J. Immunol. 2010, 184, 191–202. [Google Scholar] [CrossRef]
- Liu, Y.; Rafferty, T.M.; Rhee, S.W.; Webber, J.S.; Song, L.; Ko, B.; Hoover, R.S.; He, B.; Mu, S. CD8+ T Cells Stimulate Na-Cl Co-Transporter NCC in Distal Convoluted Tubules Leading to Salt-Sensitive Hypertension. Nat. Commun. 2017, 8, 14037. [Google Scholar] [CrossRef]
- Nakamura, T.; Bonnard, B.; Palacios-Ramirez, R.; Fernández-Celis, A.; Jaisser, F.; López-Andrés, N. Biglycan Is a Novel Mineralocorticoid Receptor Target Involved in Aldosterone/Salt-Induced Glomerular Injury. Int. J. Mol. Sci. 2022, 23, 6680. [Google Scholar] [CrossRef]
- Hsieh, L.T.-H.; Nastase, M.-V.; Zeng-Brouwers, J.; Iozzo, R.V.; Schaefer, L. Soluble Biglycan as a Biomarker of Inflammatory Renal Diseases. Int. J. Biochem. Cell Biol. 2014, 54, 223–235. [Google Scholar] [CrossRef]
- Johnson, T.A.; Fettweis, G.; Wagh, K.; Ceacero-Heras, D.; Krishnamurthy, M.; Sánchez De Medina, F.; Martínez-Augustin, O.; Upadhyaya, A.; Hager, G.L.; Alvarez De La Rosa, D. The Glucocorticoid Receptor Potentiates Aldosterone-Induced Transcription by the Mineralocorticoid Receptor. Proc. Natl. Acad. Sci. USA 2024, 121, e2413737121. [Google Scholar] [CrossRef]
- Fuller, P.J.; Yang, J.; Young, M.J. 30 Years of the Mineralocorticoid Receptor: Coregulators as Mediators of Mineralocorticoid Receptor Signalling Diversity. J. Endocrinol. 2017, 234, T23–T34. [Google Scholar] [CrossRef]
- Ozbaki-Yagan, N.; Liu, X.; Bodnar, A.J.; Ho, J.; Butterworth, M.B. Aldosterone-induced microRNAs Act as Feedback Regulators of Mineralocorticoid Receptor Signaling in Kidney Epithelia. FASEB J. 2020, 34, 11714–11728. [Google Scholar] [CrossRef]
- Hagiwara, S.; Gohda, T.; Kantharidis, P.; Okabe, J.; Murakoshi, M.; Suzuki, Y. Potential of Modulating Aldosterone Signaling and Mineralocorticoid Receptor with microRNAs to Attenuate Diabetic Kidney Disease. Int. J. Mol. Sci. 2024, 25, 869. [Google Scholar] [CrossRef]
- O’Donnell, E.; Floras, J.S.; Harvey, P.J. Estrogen Status and the Renin Angiotensin Aldosterone System. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R498–R500. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Schulman, I.; Raij, L. Salt Sensitivity and Hypertension after Menopause: Role of Nitric Oxide and Angiotensin II. Am. J. Nephrol. 2006, 26, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Rossello, X.; Ferreira, J.P.; Pocock, S.J.; McMurray, J.J.V.; Solomon, S.D.; Lam, C.S.P.; Girerd, N.; Pitt, B.; Rossignol, P.; Zannad, F. Sex Differences in Mineralocorticoid Receptor Antagonist Trials: A Pooled Analysis of Three Large Clinical Trials. Eur. J. Heart Fail. 2020, 22, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.M.; Regolisti, G.; Peyronel, F.; Fiaccadori, E. Recent Insights into Sodium and Potassium Handling by the Aldosterone-Sensitive Distal Nephron: A Review of the Relevant Physiology. J. Nephrol. 2020, 33, 431–445. [Google Scholar] [CrossRef]
- Soi, V.; Yee, J. Sodium Homeostasis in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2017, 24, 325–331. [Google Scholar] [CrossRef]
- Van Der Lubbe, N.; Zietse, R.; Hoorn, E.J. Effects of Angiotensin II on Kinase-Mediated Sodium and Potassium Transport in the Distal Nephron. Curr. Opin. Nephrol. Hypertens. 2013, 22, 120–126. [Google Scholar] [CrossRef]
- Van Der Lubbe, N.; Lim, C.H.; Fenton, R.A.; Meima, M.E.; Jan Danser, A.H.; Zietse, R.; Hoorn, E.J. Angiotensin II Induces Phosphorylation of the Thiazide-Sensitive Sodium Chloride Cotransporter Independent of Aldosterone. Kidney Int. 2011, 79, 66–76. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, Y.; Shao, N.; Wang, Y.; Zhuang, Z.; Wu, P.; Lee, M.J.; Liu, Y.; Wang, X.; Zhuang, J.; et al. Aldosterone Modulates Thiazide-Sensitive Sodium Chloride Cotransporter Abundance via DUSP6-Mediated ERK1/2 Signaling Pathway. Am. J. Physiol. Ren. Physiol. 2015, 308, F1119–F1127. [Google Scholar] [CrossRef]
- van der Lubbe, N.; Lim, C.H.; Meima, M.E.; van Veghel, R.; Rosenbaek, L.L.; Mutig, K.; Danser, A.H.J.; Fenton, R.A.; Zietse, R.; Hoorn, E.J. Aldosterone Does Not Require Angiotensin II to Activate NCC through a WNK4-SPAK-Dependent Pathway. Pflugers Arch. 2012, 463, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Kortenoeven, M.L.A.; Esteva-Font, C.; Dimke, H.; Poulsen, S.B.; Murali, S.K.; Fenton, R.A. High Dietary Potassium Causes Ubiquitin-Dependent Degradation of the Kidney Sodium-Chloride Cotransporter. J. Biol. Chem. 2021, 297, 100915. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Campbell, C.R.; Cook, D.I.; Dinudom, A. Regulation of Epithelial Na+ Channels by Aldosterone: Role of Sgk1. Clin. Exp. Pharmacol. Physiol. 2008, 35, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.; Schulz, N.; Giebisch, G.; Geibel, J.P.; Wagner, C.A. Nongenomic Stimulation of Vacuolar H-ATPases in Intercalated Renal Tubule Cells by Aldosterone. Proc. Natl. Acad. Sci. USA 2004, 101, 2636–2641. [Google Scholar] [CrossRef]
- Brown, D.; Paunescu, T.G.; Breton, S.; Marshansky, V. Regulation of the V-ATPase in Kidney Epithelial Cells: Dual Role in Acid–Base Homeostasis and Vesicle Trafficking. J. Exp. Biol. 2009, 212, 1762–1772. [Google Scholar] [CrossRef]
- Winter, C.; Kampik, N.B.; Vedovelli, L.; Rothenberger, F.; Păunescu, T.G.; Stehberger, P.A.; Brown, D.; John, H.; Wagner, C.A. Aldosterone Stimulates Vacuolar H+-ATPase Activity in Renal Acid-Secretory Intercalated Cells Mainly via a Protein Kinase C-Dependent Pathway. Am. J. Physiol.-Cell Physiol. 2011, 301, C1251–C1261. [Google Scholar] [CrossRef]
- Nakamura, S. H+-ATPase Activity in Selective Disruption of H+-K+-ATPase Alpha 1 Gene of Mice under Normal and K-Depleted Conditions. J. Lab. Clin. Med. 2006, 147, 45–51. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Physiology and Pathophysiology of Potassium Homeostasis: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S. Role of Pendrin in the Pathophysiology of Aldosterone-Induced Hypertension. Am. J. Hypertens. 2019, 32, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, S.; Wagner, C.A. Regulation of Renal Pendrin Activity by Aldosterone. Curr. Opin. Nephrol. Hypertens. 2021, 30, 131–137. [Google Scholar] [CrossRef]
- Meneton, P.; Loffing, J.; Warnock, D.G. Sodium and Potassium Handling by the Aldosterone-Sensitive Distal Nephron: The Pivotal Role of the Distal and Connecting Tubule. Am. J. Physiol. Ren. Physiol. 2004, 287, F593–F601. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, J.P.; Ronzaud, C.; Lagnaz, D.; Staub, O.; Gamba, G. Aldosterone Paradox: Differential Regulation of Ion Transport in Distal Nephron. Physiology 2011, 26, 115–123. [Google Scholar] [CrossRef]
- Reincke, M.; Bancos, I.; Mulatero, P.; Scholl, U.I.; Stowasser, M.; Williams, T.A. Diagnosis and Treatment of Primary Aldosteronism. Lancet Diabetes Endocrinol. 2021, 9, 876–892. [Google Scholar] [CrossRef]
- Buffolo, F.; Monticone, S.; Pecori, A.; Pieroni, J.; Losano, I.; Cavaglià, G.; Tetti, M.; Veglio, F.; Mulatero, P. The Spectrum of Low-Renin Hypertension. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101399. [Google Scholar] [CrossRef]
- Buffolo, F.; Tetti, M.; Mulatero, P.; Monticone, S. Aldosterone as a Mediator of Cardiovascular Damage. Hypertension 2022, 79, 1899–1911. [Google Scholar] [CrossRef]
- Adler, G.K.; Stowasser, M.; Correa, R.R.; Khan, N.; Kline, G.; McGowan, M.J.; Mulatero, P.; Murad, M.H.; Touyz, R.M.; Vaidya, A.; et al. Primary Aldosteronism: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2025, 110, 2453–2495. [Google Scholar] [CrossRef]
- Corry, D.B.; Tuck, M.L. Secondary Aldosteronism. Endocrinol. Metab. Clin. N. Am. 1995, 24, 511–529. [Google Scholar] [CrossRef]
- Schirpenbach, C.; Reincke, M. Primary Aldosteronism: Current Knowledge and Controversies in Conn’s Syndrome. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bourdeau, I.; Parisien-La Salle, S.; Lacroix, A. Adrenocortical Hyperplasia: A Multifaceted Disease. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101386. [Google Scholar] [CrossRef] [PubMed]
- Korah, H.E.; Scholl, U.I. An Update on Familial Hyperaldosteronism. Horm. Metab. Res. 2015, 47, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Mulatero, P.; Scholl, U.I.; Fardella, C.E.; Charmandari, E.; Januszewicz, A.; Reincke, M.; Gomez-Sanchez, C.E.; Stowasser, M.; Dekkers, O.M. Familial Hyperaldosteronism: An European Reference Network on Rare Endocrine Conditions Clinical Practice Guideline. Eur. J. Endocrinol. 2024, 190, G1–G14. [Google Scholar] [CrossRef]
- Textor, S.C.; Lerman, L. Renovascular Hypertension and Ischemic Nephropathy. Am. J. Hypertens. 2010, 23, 1159–1169. [Google Scholar] [CrossRef]
- Hayes, A.G.; Stowasser, M.; Umapathysivam, M.M.; Falhammar, H.; Torpy, D.J. Approach to the Patient: Reninoma. J. Clin. Endocrinol. Metab. 2024, 109, e809–e816. [Google Scholar] [CrossRef]
- Struthers, A.D. Aldosterone in Heart Failure: Pathophysiology and Treatment. Curr. Heart Fail. Rep. 2004, 1, 171–175. [Google Scholar] [CrossRef]
- Biggins, S.W.; Angeli, P.; Garcia-Tsao, G.; Ginès, P.; Ling, S.C.; Nadim, M.K.; Wong, F.; Kim, W.R. Diagnosis, Evaluation, and Management of Ascites, Spontaneous Bacterial Peritonitis and Hepatorenal Syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1014–1048. [Google Scholar] [CrossRef]
- Hinrichs, G.R.; Jensen, B.L.; Svenningsen, P. Mechanisms of Sodium Retention in Nephrotic Syndrome. Curr. Opin. Nephrol. Hypertens. 2020, 29, 207–212. [Google Scholar] [CrossRef]
- Blanchard, A.; Bockenhauer, D.; Bolignano, D.; Calò, L.A.; Cosyns, E.; Devuyst, O.; Ellison, D.H.; Karet Frankl, F.E.; Knoers, N.V.A.M.; Konrad, M.; et al. Gitelman Syndrome: Consensus and Guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 24–33. [Google Scholar] [CrossRef]
- Kleta, R.; Bockenhauer, D. Salt-Losing Tubulopathies in Children: What’s New, What’s Controversial? J. Am. Soc. Nephrol. 2018, 29, 727–739. [Google Scholar] [CrossRef]
- Rizzolo, K.; Beck, N.M.; Ambruso, S.L. Syndromes of Pseudo-Hyperaldosteronism. Clin. J. Am. Soc. Nephrol. 2022, 17, 581–584. [Google Scholar] [CrossRef]
- Liddle, G. A Familial Renal Disorder Simulating Primary Aldosteronism but with Negligible Aldosterone Secretion. Trans Assoc Physicians 1966, 76, 199–213. [Google Scholar]
- Shimkets, R.A.; Warnock, D.G.; Bositis, C.M.; Nelson-Williams, C.; Hansson, J.H.; Schambelan, M.; Gill, J.R.; Ulick, S.; Milora, R.V.; Findling, J.W.; et al. Liddle’s Syndrome: Heritable Human Hypertension Caused by Mutations in the β Subunit of the Epithelial Sodium Channel. Cell 1994, 79, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-T.; Zhang, D.; Zhang, Q.-Y.; Zhou, Z.-M.; Yang, K.-Q.; Zhou, X.-L.; Peng, F. Apparent Mineralocorticoid Excess: Comprehensive Overview of Molecular Genetics. J. Transl. Med. 2022, 20, 500. [Google Scholar] [CrossRef] [PubMed]
- Tanahashi, T.; Mune, T.; Morita, H.; Tanahashi, H.; Isomura, Y.; Suwa, T.; Daido, H.; Gomez-Sancehz, C.E.; Yasuda, K. Glycyrrhizic Acid Suppresses Type 2 11β-Hydroxysteroid Dehydrogenase Expression in Vivo. J. Steroid Biochem. Mol. Biol. 2002, 80, 441–447. [Google Scholar] [CrossRef]
- Torpy, D.J.; Mullen, N.; Ilias, I.; Nieman, L.K. Association of Hypertension and Hypokalemia with Cushing’s Syndrome Caused by Ectopic ACTH Secretion: A Series of 58 Cases. Ann. N. Y. Acad. Sci. 2002, 970, 134–144. [Google Scholar] [CrossRef]
- Rahman, M.; Anjum, F. Fludrocortisone. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Jaisser, F.; Barrera-Chimal, J. Mineralocorticoid Receptor Antagonism for Non-Diabetic Kidney Disease. Nephrol. Dial. Transplant 2025, 40, i29–i36. [Google Scholar] [CrossRef]
- Savarese, G.; Lindberg, F.; Filippatos, G.; Butler, J.; Anker, S.D. Mineralocorticoid Receptor Overactivation: Targeting Systemic Impact with Non-Steroidal Mineralocorticoid Receptor Antagonists. Diabetologia 2024, 67, 246–262. [Google Scholar] [CrossRef]
- Tesch, G.H.; Young, M.J. Mineralocorticoid Receptor Signaling as a Therapeutic Target for Renal and Cardiac Fibrosis. Front. Pharmacol. 2017, 8, 313. [Google Scholar] [CrossRef]
- Nishiyama, A. Pathophysiological Mechanisms of Mineralocorticoid Receptor-Dependent Cardiovascular and Chronic Kidney Disease. Hypertens. Res. 2019, 42, 293–300. [Google Scholar] [CrossRef]
- Miyasako, K.; Maeoka, Y.; Masaki, T. Recent Advances and Perspectives on the Use of Mineralocorticoid Receptor Antagonists for the Treatment of Hypertension and Chronic Kidney Disease: A Review. Biomedicines 2024, 13, 53. [Google Scholar] [CrossRef]
- Nagase, M. Activation of the Aldosterone/Mineralocorticoid Receptor System in Chronic Kidney Disease and Metabolic Syndrome. Clin. Exp. Nephrol. 2010, 14, 303–314. [Google Scholar] [CrossRef] [PubMed]
- An, D.-Y.; Tan, J.; Lu, Y.-D.; Wen, Z.-H.; Bao, Y.-N.; Yao, Z.-H.; Chen, Z.-Y.; Wang, P.-P.; Zhou, W.; Yang, Q.; et al. Focus on Podocytes: Diabetic Kidney Disease and Renal Fibrosis—A Global Bibliometric Analysis (2000–2024). Front. Pharmacol. 2024, 15, 1454586. [Google Scholar] [CrossRef] [PubMed]
- Luther, J.M.; Fogo, A.B. The Role of Mineralocorticoid Receptor Activation in Kidney Inflammation and Fibrosis. Kidney Int. Suppl. 2022, 12, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M. Aldosterone Receptor Blockade and the Role of Eplerenone: Evolving Perspectives. Nephrol. Dial. Transplant. 2003, 18, 1984–1992. [Google Scholar] [CrossRef]
- Bomback, A.S.; Klemmer, P.J. The Incidence and Implications of Aldosterone Breakthrough. Nat. Clin. Pract. Nephrol. 2007, 3, 486–492. [Google Scholar] [CrossRef]
- Alexandrou, M.-E.; Papagianni, A.; Tsapas, A.; Loutradis, C.; Boutou, A.; Piperidou, A.; Papadopoulou, D.; Ruilope, L.; Bakris, G.; Sarafidis, P. Effects of Mineralocorticoid Receptor Antagonists in Proteinuric Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Hypertens. 2019, 37, 2307. [Google Scholar] [CrossRef]
- Currie, G.; Taylor, A.H.M.; Fujita, T.; Ohtsu, H.; Lindhardt, M.; Rossing, P.; Boesby, L.; Edwards, N.C.; Ferro, C.J.; Townend, J.N.; et al. Effect of Mineralocorticoid Receptor Antagonists on Proteinuria and Progression of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. BMC Nephrol. 2016, 17, 127. [Google Scholar] [CrossRef]
- Bianchi, S.; Bigazzi, R.; Campese, V.M. Long-Term Effects of Spironolactone on Proteinuria and Kidney Function in Patients with Chronic Kidney Disease. Kidney Int. 2006, 70, 2116–2123. [Google Scholar] [CrossRef]
- Iseki, K.; Iseki, C.; Ikemiya, Y.; Fukiyama, K. Risk of Developing End-Stage Renal Disease in a Cohort of Mass Screening. Kidney Int. 1996, 49, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Cravedi, P.; Ruggenenti, P.; Remuzzi, G. Proteinuria Should Be Used as a Surrogate in CKD. Nat. Rev. Nephrol. 2012, 8, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure. N. Engl. J. Med. 1999, 341, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Remme, W.; Zannad, F.; Neaton, J.; Martinez, F.; Roniker, B.; Bittman, R.; Hurley, S.; Kleiman, J.; Gatlin, M. Eplerenone, a Selective Aldosterone Blocker, in Patients with Left Ventricular Dysfunction after Myocardial Infarction. N. Engl. J. Med. 2003, 348, 1309–1321. [Google Scholar] [CrossRef]
- Zannad, F.; McMurray, J.J.V.; Krum, H.; Van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pocock, S.J.; Pitt, B. Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms. N. Engl. J. Med. 2011, 364, 11–21. [Google Scholar] [CrossRef]
- García-Carro, C.; Sarafidis, P. Does Low-Dose Spironolactone Increase Cardiovascular Protection in Patients with Chronic Kidney Disease? Clin. Kidney J. 2025, 18, sfaf038. [Google Scholar] [CrossRef]
- Karthigan, N.; Lockwood, S.; White, A.; Yang, J.; Young, M.J. Mineralocorticoid Receptor Antagonists, Heart Failure and Predictive Biomarkers. J. Endocrinol. 2022, 253, R65–R76. [Google Scholar] [CrossRef]
- Hill, N.R.; Lasserson, D.; Thompson, B.; Perera-Salazar, R.; Wolstenholme, J.; Bower, P.; Blakeman, T.; Fitzmaurice, D.; Little, P.; Feder, G.; et al. Benefits of Aldosterone Receptor Antagonism in Chronic Kidney Disease (BARACK D) Trial–a Multi-Centre, Prospective, Randomised, Open, Blinded End-Point, 36-Month Study of 2,616 Patients within Primary Care with Stage 3b Chronic Kidney Disease to Compare the Efficacy of Spironolactone 25 Mg Once Daily in Addition to Routine Care on Mortality and Cardiovascular Outcomes versus Routine Care Alone: Study Protocol for a Randomized Controlled Trial. Trials 2014, 15, 160. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Epstein, M. Aldosterone and Mineralocorticoid Receptor Signaling as Determinants of Cardiovascular and Renal Injury: From Hans Selye to the Present. Am. J. Nephrol. 2021, 52, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Joseph, A.; Anker, S.D.; Filippatos, G.; Rossing, P.; Ruilope, L.M.; Pitt, B.; Kolkhof, P.; Scott, C.; Lawatscheck, R.; et al. Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J. Am. Soc. Nephrol. 2022, 33, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Georgianos, P.I.; Agarwal, R. The Nonsteroidal Mineralocorticoid-Receptor-Antagonist Finerenone in Cardiorenal Medicine: A State-of-the-Art Review of the Literature. Am. J. Hypertens. 2023, 36, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kashihara, N.; Shikata, K.; Nangaku, M.; Wada, T.; Okuda, Y.; Sawanobori, T. Esaxerenone (CS-3150) in Patients with Type 2 Diabetes and Microalbuminuria (ESAX-DN): Phase 3 Randomized Controlled Clinical Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1715–1727. [Google Scholar] [CrossRef]
- Wada, T.; Inagaki, M.; Yoshinari, T.; Terata, R.; Totsuka, N.; Gotou, M.; Hashimoto, G. Apararenone in Patients with Diabetic Nephropathy: Results of a Randomized, Double-Blind, Placebo-Controlled Phase 2 Dose–Response Study and Open-Label Extension Study. Clin. Exp. Nephrol. 2021, 25, 120–130. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Aminuddin, A.; Brown, M.J.; Azizan, E.A. Evaluating the Role of Aldosterone Synthesis on Adrenal Cell Fate. Front. Endocrinol. 2024, 15, 1423027. [Google Scholar] [CrossRef]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and Kidney Outcomes with Finerenone in Patients with Type 2 Diabetes and Chronic Kidney Disease: The FIDELITY Pooled Analysis. Eur. Heart J. 2022, 43, 474–484. [Google Scholar] [CrossRef]
- Lainscak, M.; Pelliccia, F.; Rosano, G.; Vitale, C.; Schiariti, M.; Greco, C.; Speziale, G.; Gaudio, C. Safety Profile of Mineralocorticoid Receptor Antagonists: Spironolactone and Eplerenone. Int. J. Cardiol. 2015, 200, 25–29. [Google Scholar] [CrossRef]
- Cannavo, A.; Bencivenga, L.; Liccardo, D.; Elia, A.; Marzano, F.; Gambino, G.; D’Amico, M.L.; Perna, C.; Ferrara, N.; Rengo, G.; et al. Aldosterone and Mineralocorticoid Receptor System in Cardiovascular Physiology and Pathophysiology. Oxidative Med. Cell. Longev. 2018, 2018, 1204598. [Google Scholar] [CrossRef]
- Namsolleck, P.; Unger, T. Aldosterone Synthase Inhibitors in Cardiovascular and Renal Diseases. Nephrol. Dial. Transplant. 2014, 29, i62–i68. [Google Scholar] [CrossRef]
- Verma, S.; Pandey, A.; Pandey, A.K.; Butler, J.; Lee, J.S.; Teoh, H.; Mazer, C.D.; Kosiborod, M.N.; Cosentino, F.; Anker, S.D.; et al. Aldosterone and Aldosterone Synthase Inhibitors in Cardiorenal Disease. Am. J. Physiol.-Heart Circ. Physiol. 2024, 326, H670–H688. [Google Scholar] [CrossRef]
- Mazzieri, A.; Timio, F.; Patera, F.; Trepiccione, F.; Bonomini, M.; Reboldi, G. Aldosterone Synthase Inhibitors for Cardiorenal Protection: Ready for Prime Time? Kidney Blood Press. Res. 2024, 49, 1041–1056. [Google Scholar] [CrossRef]
- Gomez-Sanchez, C.E.; Gomez-Sanchez, E.P. Aldosterone Synthase Inhibitors and the Treatment of Essential Hypertension. J. Clin. Endocrinol. Metab. 2023, 108, e638–e639. [Google Scholar] [CrossRef]
- Fleseriu, M.; Auchus, R.J.; Bancos, I.; Biller, B.M.K. Osilodrostat Treatment for Adrenal and Ectopic Cushing Syndrome: Integration of Clinical Studies With Case Presentations. J. Endocr. Soc. 2025, 9, bvaf027. [Google Scholar] [CrossRef]
- Forzano, I.; Mone, P.; Varzideh, F.; Jankauskas, S.S.; Kansakar, U.; De Luca, A.; Santulli, G. The Selective Aldosterone Synthase Inhibitor Baxdrostat Significantly Lowers Blood Pressure in Patients with Resistant Hypertension. Front. Endocrinol. 2022, 13, 1097968. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.W.; Bond, M.; Murphy, B.; Hui, J.; Isaacsohn, J. Results from a Phase 1, Randomized, Double-Blind, Multiple Ascending Dose Study Characterizing the Pharmacokinetics and Demonstrating the Safety and Selectivity of the Aldosterone Synthase Inhibitor Baxdrostat in Healthy Volunteers. Hypertens. Res. 2023, 46, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Little, D.J.; Myte, R.; Zaozerska, N.; Menzies, R.I.; Perl, S.; Chertow, G.M.; Dwyer, J.P. Effect of Baxdrostat on Albuminuria in Treatment-Resistant Hypertension: SA-PO353. J. Am. Soc. Nephrol. 2024, 35, 10-1681. [Google Scholar] [CrossRef]
- Laffin, L.J.; Rodman, D.; Luther, J.M.; Vaidya, A.; Weir, M.R.; Rajicic, N.; Slingsby, B.T.; Nissen, S.E. Target-HTN Investigators Aldosterone Synthase Inhibition with Lorundrostat for Uncontrolled Hypertension: The Target-HTN Randomized Clinical Trial. JAMA 2023, 330, 1140–1150. [Google Scholar] [CrossRef]
- Laffin, L.J.; Kopjar, B.; Melgaard, C.; Wolski, K.; Ibbitson, J.; Bhikam, S.; Weir, M.R.; Ofili, E.O.; Mehra, R.; Luther, J.M.; et al. Lorundrostat Efficacy and Safety in Patients with Uncontrolled Hypertension. N. Engl. J. Med. 2025, 392, 1813–1823. [Google Scholar] [CrossRef]
- Johnston, J.G.; Welch, A.K.; Cain, B.D.; Sayeski, P.P.; Gumz, M.L.; Wingo, C.S. Aldosterone: Renal Action and Physiological Effects. In Comprehensive Physiology; Prakash, Y.S., Ed.; Wiley: Hoboken, NJ, USA, 2023; pp. 4409–4491. ISBN 978-0-470-65071-4. [Google Scholar]
- Krishnan, S.M.; Ling, Y.H.; Huuskes, B.M.; Ferens, D.M.; Saini, N.; Chan, C.T.; Diep, H.; Kett, M.M.; Samuel, C.S.; Kemp-Harper, B.K.; et al. Pharmacological Inhibition of the NLRP3 Inflammasome Reduces Blood Pressure, Renal Damage, and Dysfunction in Salt-Sensitive Hypertension. Cardiovasc. Res. 2019, 115, 776–787. [Google Scholar] [CrossRef]
- Muela-Zarzuela, I.; Suárez-Rivero, J.; Boy-Ruiz, D.; López-Pérez, J.; Sotelo-Montoro, M.; Navarrete-Alonso, M.; Collado, I.G.; Botubol-Ares, J.M.; Sanz, A.; Cordero, M.D. The nlrp3 inhibitor dapansutrile improves the therapeutic action of lonafarnib on progeroid mice. Aging Cell 2024, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Wohlford, G.F.; Van Tassell, B.W.; Billingsley, H.E.; Kadariya, D.; Canada, J.M.; Carbone, S.; Mihalick, V.L.; Bonaventura, A.; Vecchié, A.; Chiabrando, J.G.; et al. Phase 1B, Randomized, Double-Blinded, Dose Escalation, Single-Center, Repeat Dose Safety and Pharmacodynamics Study of the Oral NLRP3 Inhibitor Dapansutrile in Subjects With NYHA II–III Systolic Heart Failure. J. Cardiovasc. Pharmacol. 2021, 77, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, G.; Wyburn, K.R.; Yin, J.; Bertolino, P.; Eris, J.M.; Alexander, S.I.; Sharland, A.F.; Chadban, S.J. TLR4 Activation Mediates Kidney Ischemia/Reperfusion Injury. J. Clin. Investig. 2007, 117, 2847–2859. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chadban, S.J.; Zhao, C.Y.; Chen, X.; Kwan, T.; Panchapakesan, U.; Pollock, C.A.; Wu, H. TLR4 Activation Promotes Podocyte Injury and Interstitial Fibrosis in Diabetic Nephropathy. PLoS ONE 2014, 9, e97985. [Google Scholar] [CrossRef]
- Wang, X.; Chai, Y.; Dou, Y.; Li, X.; Li, F.; Gao, K. Global Trends and Hotspots in Macrophage Research Related to Hypertension from 2015-2024: Bibliometric Research and Visualization Analysis. Front. Immunol. 2025, 16, 1501432. [Google Scholar] [CrossRef]
- Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Vincent, J.-L.; Angus, D.C.; Aikawa, N.; Demeyer, I.; Sainati, S.; Amlot, N.; Cao, C.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of TAK-242 for the Treatment of Severe Sepsis. Crit. Care Med. 2010, 38, 1685–1694. [Google Scholar] [CrossRef]
- Kasal, D.A.; Barhoumi, T.; Li, M.W.; Yamamoto, N.; Zdanovich, E.; Rehman, A.; Neves, M.F.; Laurant, P.; Paradis, P.; Schiffrin, E.L. T Regulatory Lymphocytes Prevent Aldosterone-Induced Vascular Injury. Hypertension 2012, 59, 324–330. [Google Scholar] [CrossRef]
- Imiela, A.M.; Mikołajczyk, T.P.; Siedliński, M.; Dobrowolski, P.; Konior-Rozlachowska, A.; Wróbel, A.; Biernat-Kałuża, E.; Januszewicz, M.; Guzik, B.; Guzik, T.J.; et al. The Th17/Treg Imbalance in Patients with Primary Hyperaldosteronism and Resistant Hypertension. Pol. Arch. Intern. Med. 2021, 132, 132. [Google Scholar] [CrossRef]
- D’Amato, A.; Prosperi, S.; Severino, P.; Myftari, V.; Correale, M.; Perrone Filardi, P.; Badagliacca, R.; Fedele, F.; Vizza, C.D.; Palazzuoli, A. MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool. J. Clin. Med. 2024, 13, 7560. [Google Scholar] [CrossRef] [PubMed]
- Vékony, B.; Nyirő, G.; Herold, Z.; Fekete, J.; Ceccato, F.; Gruber, S.; Kürzinger, L.; Parasiliti-Caprino, M.; Bioletto, F.; Szücs, N.; et al. Circulating miRNAs and Machine Learning for Lateralizing Primary Aldosteronism. Hypertension 2024, 81, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Langlo, K.A.R.; Silva, G.J.J.; Overrein, T.S.; Adams, V.; Wisløff, U.; Dalen, H.; Rolim, N.; Hallan, S.I. Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Front. Cardiovasc. Med. 2021, 7, 626699. [Google Scholar] [CrossRef] [PubMed]
- Good, D.W. Nongenomic Actions of Aldosterone on the Renal Tubule. Hypertension 2007, 49, 728–739. [Google Scholar] [CrossRef]
- Lother, A. Mineralocorticoid Receptors: Master Regulators of Extracellular Matrix Remodeling. Circ. Res. 2020, 127, 354–356. [Google Scholar] [CrossRef]
- Rajkumar, V.; Waseem, M. Hypoaldosteronism. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bornstein, S.R.; Allolio, B.; Arlt, W.; Barthel, A.; Don-Wauchope, A.; Hammer, G.D.; Husebye, E.S.; Merke, D.P.; Murad, M.H.; Stratakis, C.A.; et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2016, 101, 364–389. [Google Scholar] [CrossRef]
- Merakou, C.; Fylaktou, I.; Sertedaki, A.; Dracopoulou, M.; Voutetakis, A.; Efthymiadou, A.; Christoforidis, A.; Dacou-Voutetakis, C.; Chrysis, D.; Kanaka-Gantenbein, C. Molecular Analysis of the CYP11B2 Gene in 62 Patients with Hypoaldosteronism Due to Aldosterone Synthase Deficiency. J. Clin. Endocrinol. Metab. 2021, 106, e182–e191. [Google Scholar] [CrossRef]
- Amdetsion, G.Y.; Gudeta, A.; Lumley, G.; Sagoo, H.; Aliledhin, E. Heparininduced Hyperkalemia, Can LMWH Cause Hyperkalemia? A Systematic Review. eJHaem 2023, 4, 1110–1116. [Google Scholar] [CrossRef]
- Sousa, A.G.P.; de Sousa Cabral, J.V.; El-Feghaly, W.B.; De Sousa, L.S.; Nunes, A.B. Hyporeninemic Hypoaldosteronism and Diabetes Mellitus: Pathophysiology Assumptions, Clinical Aspects and Implications for Management. World J. Diabetes 2016, 7, 101–111. [Google Scholar] [CrossRef]
- Amin, N.; Alvi, N.S.; Barth, J.H.; Field, H.P.; Finlay, E.; Tyerman, K.; Frazer, S.; Savill, G.; Wright, N.P.; Makaya, T.; et al. Pseudohypoaldosteronism Type 1: Clinical Features and Management in Infancy. Endocrinol. Diabetes Metab. Case Rep. 2013, 2013, 130010. [Google Scholar] [CrossRef]
- Nakata, Y.; Nagano, C.; Imagawa, Y.; Shirai, K.; Masuda, Y.; Kido, T.; Ashina, M.; Nozu, K.; Fujioka, K. Clinical and Biochemical Characteristics of Pseudohypoaldosteronism Type 1 with and Without Genetic Mutations: A Literature Review. J. Clin. Med. 2025, 14, 4408. [Google Scholar] [CrossRef]
- Mabillard, H.; Sayer, J.A. The Molecular Genetics of Gordon Syndrome. Genes 2019, 10, 986. [Google Scholar] [CrossRef]
- Delforge, X.; Kongolo, G.; Cauliez, A.; Braun, K.; Haraux, E.; Buisson, P. Transient Pseudohypoaldosteronism: A Potentially Severe Condition Affecting Infants with Urinary Tract Malformation. J. Pediatr. Urol. 2019, 15, 265.E1-265.E7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strizzi, C.T.; D’Ambrosio, V.; Grandaliano, G.; Pesce, F. Aldosterone: From Essential Tubular Regulator to Pathological Driver—Physiology, Disease, and Therapeutic Advances. Int. J. Mol. Sci. 2025, 26, 8829. https://doi.org/10.3390/ijms26188829
Strizzi CT, D’Ambrosio V, Grandaliano G, Pesce F. Aldosterone: From Essential Tubular Regulator to Pathological Driver—Physiology, Disease, and Therapeutic Advances. International Journal of Molecular Sciences. 2025; 26(18):8829. https://doi.org/10.3390/ijms26188829
Chicago/Turabian StyleStrizzi, Camillo Tancredi, Viola D’Ambrosio, Giuseppe Grandaliano, and Francesco Pesce. 2025. "Aldosterone: From Essential Tubular Regulator to Pathological Driver—Physiology, Disease, and Therapeutic Advances" International Journal of Molecular Sciences 26, no. 18: 8829. https://doi.org/10.3390/ijms26188829
APA StyleStrizzi, C. T., D’Ambrosio, V., Grandaliano, G., & Pesce, F. (2025). Aldosterone: From Essential Tubular Regulator to Pathological Driver—Physiology, Disease, and Therapeutic Advances. International Journal of Molecular Sciences, 26(18), 8829. https://doi.org/10.3390/ijms26188829