Temporal and Spatial Dynamics in the Regulation of Myocardial Metabolism During the Ischemia-Reperfusion Process
Abstract
1. Introduction
2. Results
2.1. Concentration of Metabolites in the Coronary Sinus Blood
2.2. Gene Expression Dynamics in FA Metabolism and Glucose Uptake Regulation During Ischemia and Soon After Reperfusion
2.3. Gene Expression Changes in Molecules Implicated in FA Metabolism and Glucose Uptake in Subacute and Chronic Phases After Coronary Reperfusion
3. Discussion
3.1. Cardiac Metabolism Under Physiological and Pathological Conditions
3.2. Changes in Circulating Metabolites After Ischemia–Reperfusion Injury
3.3. Temporal and Spatial Transcriptomic Alterations Related to Metabolic Adaptation After Ischemia and Reperfusion Injury
3.4. Myocardial Glucolipid Metabolism at Advanced Phases After Coronary Reperfusion
3.5. Limitations of the Study
4. Materials and Methods
4.1. Experimental Protocol
4.2. Experimental Groups
4.3. Macroscopic Analysis of Myocardial Samples
4.4. Blood Samples
4.5. Metabolites from the Coronary Sinus
4.6. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ERRα | Estrogen-related receptor-α |
FA | Fatty acids |
GLUT | Glucose transporter |
LAD | Left anterior descending |
MI | Myocardial infarction |
NEFA | Non-esterified fatty acids |
PGC-1α | Peroxisome proliferator-activated receptor-γ coactivator-1α |
PPARα | Peroxisome proliferator-activated receptor-α |
References
- Bornstein, M.R.; Tian, R.; Arany, Z. Human cardiac metabolism. Cell Metab. 2024, 36, 1456–1481. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhou, Q.; Liu, L.; Jia, Z.; Qi, Y.; Xu, F.; Zhang, Y. Current status and emerging trends of cardiac metabolism from the past 20 years: A bibliometric study. Heliyon 2023, 9, e21952. [Google Scholar] [CrossRef] [PubMed]
- Gibb, A.A.; Hill, B.G. Metabolic Coordination of Physiological and Pathological Cardiac Remodeling. Circ. Res. 2018, 123, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial Substrate Metabolism in the Normal and Failing Heart. Physiol. Rev. Am. Physiol. Soc. 2005, 85, 1093–1129. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Tian, R. Glucose Transporters in Cardiac Metabolism and Hypertrophy. Compr. Physiol. 2015, 6, 331–351. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Hu, X.; Huang, X.J.; Chen, G.X. Current understanding of glucose transporter 4 expression and functional mechanisms. World J. Biol. Chem. 2020, 11, 76–98. [Google Scholar] [CrossRef]
- Di, W.; Lv, J.; Jiang, S.; Lu, C.; Yang, Z.; Ma, Z.; Hu, W.; Yang, Y.; Xu, B. PGC-1: The Energetic Regulator in Cardiac Metabolism. Curr. Issues Mol. Biol. 2018, 28, 29–46. [Google Scholar] [CrossRef]
- Aggarwal, R.; Potel, K.N.; McFalls, E.O.; Butterick, T.A.; Kelly, R.F. Novel Therapeutic Approaches Enhance PGC1-alpha to Reduce Oxidant Stress-Inflammatory Signaling and Improve Functional Recovery in Hibernating Myocardium. Antioxidants 2022, 11, 2155. [Google Scholar]
- Cheng, C.F.; Ku, H.C.; Lin, H. PGC-1α as a Pivotal Factor in Lipid and Metabolic Regulation. Int. J. Mol. Sci. 2018, 19, 3447. [Google Scholar] [CrossRef]
- Dorn, G.W.; Vega, R.B.; Kelly, D.P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015, 29, 1981–1991. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, X.; Zhang, Y.; Xia, Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed. Pharmacother. 2023, 163, 114827. [Google Scholar] [CrossRef]
- Huss, J.M.; Imahashi, K.; Dufour, C.R.; Weinheimer, C.J.; Courtois, M.; Kovacs, A.; Giguère, V.; Murphy, E.; Kelly, D.P. The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 2007, 6, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Arany, Z.; Novikov, M.; Chin, S.; Ma, Y.; Rosenzweig, A.; Spiegelman, B.M. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-gamma coactivator 1alpha. Proc. Natl. Acad. Sci. USA 2006, 103, 10086–10091. [Google Scholar] [CrossRef] [PubMed]
- Sihag, S.; Cresci, S.; Li, A.Y.; Sucharov, C.C.; Lehman, J.J. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J. Mol. Cell. Cardiol. 2009, 46, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, X.; Hu, X.; Fassett, J.; Zhu, G.; Tao, Y.; Li, J.; Huang, Y.; Zhang, P.; Zhao, B.; et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid. Redox Signal. 2010, 13, 1011–1022. [Google Scholar] [CrossRef]
- Oka, S.; Alcendor, R.; Zhai, P.; Park, J.Y.; Shao, D.; Cho, J.; Yamamoto, T.; Tian, B.; Sadoshima, J. PPARα-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 2011, 14, 598–611. [Google Scholar] [CrossRef]
- Ibanez, B.; Heusch, G.; Ovize, M.; Van de Werf, F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol. 2015, 65, 1454–1471. [Google Scholar] [CrossRef]
- Murashige, D.; Jang, C.; Neinast, M.; Edwards, J.J.; Cowan, A.; Hyman, M.C.; Rabinowitz, J.D.; Frankel, D.S.; Arany, Z. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 2020, 370, 364–368. [Google Scholar] [CrossRef]
- Dong, S.; Qian, L.; Cheng, Z.; Chen, C.; Wang, K.; Hu, S.; Zhang, X.; Wu, T. Lactate and Myocardiac Energy Metabolism. Front. Physiol. 2021, 12, 715081, Correction in Front. Physiol. 2022, 13, 947253. [Google Scholar] [CrossRef]
- Havmoeller, R.; Reinier, K.; Teodorescu, C.; Ahmadi, N.; Kwok, D.; Uy-Evanado, A.; Chen, Y.D.; Rotter, J.I.; Gunson, K.; Jui, J.; et al. Elevated plasma free fatty acids are associated with sudden death: A prospective community-based evaluation at the time of cardiac arrest. Heart Rhythm 2014, 11, 691–696. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010, 90, 207–258. [Google Scholar] [CrossRef]
- Zuurbier, C.J.; Bertrand, L.; Beauloye, C.R.; Andreadou, I.; Ruiz-Meana, M.; Jespersen, N.R.; Kula-Alwar, D.; Prag, H.A.; Eric-Botker, H.; Dambrova, M.; et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J. Cell. Mol. Med. 2020, 24, 5937–5954, Correction in J. Cell. Mol. Med. 2021, 25, 1325–1325. [Google Scholar] [CrossRef]
- Ríos-Navarro, C.; Hueso, L.; Miñana, G.; Núñez, J.; Ruiz-Saurí, A.; Sanz, M.J.; Cànoves, J.; Chorro, F.J.; Piqueras, L.; Bodí, V. Coronary Serum Obtained After Myocardial Infarction Induces Angiogenesis and Microvascular Obstruction Repair. Role of Hypoxia-inducible Factor-1A. Rev. Esp. Cardiol. 2018, 71, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Macvanin, M.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. New insights on the cardiovascular effects of IGF-1. Front. Endocrinol. 2023, 14, 1142644. [Google Scholar] [CrossRef] [PubMed]
- Brosius, F.C.; Liu, Y.; Nguyen, N.; Sun, D.; Bartlett, J.; Schwaiger, M. Persistent myocardial ischemia increases GLUT1 glucose transporter expression in both ischemic and non-ischemic heart regions. J. Mol. Cell. Cardiol. 1997, 29, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Hervas, A.; Ruiz-Sauri, A.; Gavara, J.; Monmeneu, J.V.; de Dios, E.; Rios-Navarro, C.; Perez-Sole, N.; Perez, I.; Monleon, D.; Morales, J.M.; et al. A Multidisciplinary Assessment of Remote Myocardial Fibrosis After Reperfused Myocardial Infarction in Swine and Patients. J. Cardiovasc. Transl. Res. 2016, 9, 321–333. [Google Scholar] [CrossRef]
- Tardy-Cantalupi, I.; Montessuit, C.; Papageorgiou, I.; Remondino-Müller, A.; Assimacopoulos-Jeannet, F.; Morel, D.R.; Lerch, R. Effect of transient ischemia on the expression of glucose transporters GLUT-1 and GLUT-4 in rat myocardium. J. Mol. Cell. Cardiol. 1999, 31, 1143–1155. [Google Scholar] [CrossRef]
- Collins, H.E. Female cardiovascular biology and resilience in the setting of physiological and pathological stress. Redox Biol. 2023, 63, 102747. [Google Scholar] [CrossRef]
- Vijay, V.; Han, T.; Moland, C.L.; Kwekel, J.C.; Fuscoe, J.C.; Desai, V.G. Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS ONE 2015, 10, e0117047. [Google Scholar] [CrossRef]
- Medzikovic, L.; Azem, T.; Sun, W.; Rejali, P.; Esdin, L.; Rahman, S.; Dehghanitafti, A.; Aryan, L.; Eghbali, M. Sex differences in therapies against myocardial ischemia-reperfusion injury: From basic science to clinical perspectives. Cells 2023, 12, 2077. [Google Scholar] [CrossRef]
- Garcia-Bustos, V.; Sebastian, R.; Izquierdo, M.; Rios-Navarro, C.; Bodí, V.; Chorro, F.J.; Ruiz-Sauri, A. Changes in the spatial distribution of the Purkinje network after acute myocardial infarction in the pig. PLoS ONE 2019, 14, e0212096. [Google Scholar] [CrossRef]
- Forteza, M.J.; Trapero, I.; Hervas, A.; de Dios, E.; Ruiz-Sauri, A.; Minana, G.; Bonanad, C.; Gómez, C.; Oltra, R.; Rios-Navarro, C.; et al. Apoptosis and Mobilization of Lymphocytes to Cardiac Tissue Is Associated with Myocardial Infarction in a Reperfused Porcine Model and Infarct Size in Post-PCI Patients. Oxidative Med. Cell. Longev. 2018, 2018, 1975167. [Google Scholar] [CrossRef]
- Hervas, A.; de Dios, E.; Forteza, M.J.; Miñana, G.; Nuñez, J.; Ruiz-Sauri, A.; Bonanad, C.; Perez-Sole, N.; Chorro, F.J.; Bodi, V. Intracoronary infusion of thioflavin-S to study microvascular obstruction in a model of myocardial infarction. Rev. Esp. Cardiol. 2015, 68, 928–934. [Google Scholar] [CrossRef]
- Ríos-Navarro, C.; Gavara, J.; de Dios, E.; Pérez-Solé, N.; Molina-García, T.; Marcos-Garcés, V.; Ruiz-Saurí, A.; Bayés-Genís, A.; Carrión-Valero, F.; Chorro, F.J.; et al. Effect of serum from patients with ST-segment elevation myocardial infarction on endothelial cells. Rev. Esp. Cardiol. 2024, 77, 254–264. [Google Scholar] [CrossRef]
No Reperfusion | 1-Min Reperfusion | 1-Week Reperfusion | 1-Month Reperfusion | |
---|---|---|---|---|
LAD-perfused area (% of LV) | 54 ± 22 | 63 ± 10 | 72 ± 8 | 66 ± 10 |
Infarct area (% of LV) | 0 ± 0 | 0 ± 0 | 28 ± 8 | 15 ± 4 |
Myocardial wall thickness: | ||||
Infarct area (mm) | - | - | 10 ± 3 | 10 ± 3 |
Adjacent area (mm) | 11 ± 2 | 11 ± 2 | 11 ± 3 | 11 ± 4 |
Remote area (mm) | 12 ± 4 | 12 ± 3 | 11 ± 3 | 12 ± 4 |
Protein | Gene | Reference |
---|---|---|
PGC1-α | PPARGC1A | Ss0339114_u1 |
PPARα | PPARA | Ss03380164_u1 |
ERRα | ESRRA | Ss04246410_m1 |
GLUT-1 | SLC7A1 | Ss03374747_s1 |
GLUT-4 | SLC2A4 | Ss03373325_g1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Dios, E.; Forteza, M.J.; Perez-Sole, N.; Molina-Garcia, T.; Gavara, J.; Marcos-Garces, V.; Jimenez-Navarro, M.; Ruiz-Sauri, A.; Rios-Navarro, C.; Bodi, V. Temporal and Spatial Dynamics in the Regulation of Myocardial Metabolism During the Ischemia-Reperfusion Process. Int. J. Mol. Sci. 2025, 26, 8820. https://doi.org/10.3390/ijms26188820
de Dios E, Forteza MJ, Perez-Sole N, Molina-Garcia T, Gavara J, Marcos-Garces V, Jimenez-Navarro M, Ruiz-Sauri A, Rios-Navarro C, Bodi V. Temporal and Spatial Dynamics in the Regulation of Myocardial Metabolism During the Ischemia-Reperfusion Process. International Journal of Molecular Sciences. 2025; 26(18):8820. https://doi.org/10.3390/ijms26188820
Chicago/Turabian Stylede Dios, Elena, Maria J. Forteza, Nerea Perez-Sole, Tamara Molina-Garcia, Jose Gavara, Victor Marcos-Garces, Manuel Jimenez-Navarro, Amparo Ruiz-Sauri, Cesar Rios-Navarro, and Vicente Bodi. 2025. "Temporal and Spatial Dynamics in the Regulation of Myocardial Metabolism During the Ischemia-Reperfusion Process" International Journal of Molecular Sciences 26, no. 18: 8820. https://doi.org/10.3390/ijms26188820
APA Stylede Dios, E., Forteza, M. J., Perez-Sole, N., Molina-Garcia, T., Gavara, J., Marcos-Garces, V., Jimenez-Navarro, M., Ruiz-Sauri, A., Rios-Navarro, C., & Bodi, V. (2025). Temporal and Spatial Dynamics in the Regulation of Myocardial Metabolism During the Ischemia-Reperfusion Process. International Journal of Molecular Sciences, 26(18), 8820. https://doi.org/10.3390/ijms26188820