Hydrogen-Selective Pd-Ag-Ru Membranes and the Secret of High Permeability: The Influence of the Morphology of the Nano-Structured Coating on the Rate of Surface Processes
Abstract
1. Introduction
2. Results and Discussion
2.1. Gas Transport Characteristics of Pd-Ag-Ru Membranes
2.2. Morphology and Catalytic Characteristics of Nanostructured Coatings
2.3. Gas Transport Characteristics of Modified Pd-Ag-Ru Membranes
3. Materials and Methods
3.1. Production of Metal Membranes Based on Pd-Ag-Ru Alloy
3.2. Surface Modification of Pd-Ag-Ru Foils
3.3. Study of Gas Transportation Characteristics
3.4. Study of Catalytic Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, Y.; Meng, Q.; Tian, L.; Cai, Y.; Zhang, Y.; Chen, Y. Engineering of g-C3N4 for Photocatalytic Hydrogen Production: A Review. Int. J. Mol. Sci. 2024, 25, 8842. [Google Scholar] [CrossRef]
- Le, T.-H.; Tran, N.; Lee, H.-J. Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport. Int. J. Mol. Sci. 2024, 25, 1359. [Google Scholar] [CrossRef]
- González, J.F.; Álvez-Medina, C.M.; Nogales-Delgado, S. Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges. Energies 2023, 16, 6343. [Google Scholar] [CrossRef]
- Mosinska, M.; Maniukiewicz, W.; Szynkowska-Jozwik, M.I.; Mierczynski, P. The Effect of Modifiers on the Performance of Ni/CeO2 and Ni/La2O3 Catalysts in the Oxy–Steam Reforming of LNG. Int. J. Mol. Sci. 2021, 22, 9076. [Google Scholar] [CrossRef]
- Lima, A.; Torrubia, J.; Valero, A.; Valero, A. Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production. Energies 2025, 18, 1398. [Google Scholar] [CrossRef]
- Jarząbek-Karnas, M.; Bojarska, Z.; Klemczak, P.; Werner, Ł.; Makowski, Ł. Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives. Int. J. Mol. Sci. 2025, 26, 6640. [Google Scholar] [CrossRef] [PubMed]
- Moszczyńska, J.; Liu, X.; Wiśniewski, M. Green Hydrogen Production through Ammonia Decomposition Using Non-Thermal Plasma. Int. J. Mol. Sci. 2023, 24, 14397. [Google Scholar] [CrossRef]
- LeValley, T.L.; Richard, A.R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies. Int. J. Hydrogen Energy 2014, 39, 16983–17000. [Google Scholar] [CrossRef]
- Eggers, N.; Ramayampet, S.K.; Birth-Reichert, T. Algal-Mediated Carbon Dioxide Separation in Biological Hydrogen Production. Energies 2024, 17, 6261. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, C.; Li, C.; Geng, G.; Song, J.; Yang, N.; Kawi, S.; Tan, X.; Sunarso, J.; Liu, S. H2 production from ethanol steam reforming using metallic nickel hollow fiber membrane reactor. Sep. Purif. Technol. 2025, 365, 132561. [Google Scholar] [CrossRef]
- Mironova, E.Y.; Ermilova, M.M.; Orekhova, N.V.; Zhilyaeva, N.A.; Efimov, M.N.; Vasilev, A.A.; Stenina, I.A.; Yaroslavtsev, A.B. Ethanol Steam Reforming Using Nanoporous Carbon Materials in Conventional and Membrane Reactors. Membr. Membr. Technol. 2024, 6, 371–381. [Google Scholar] [CrossRef]
- Ullah, A.; Hashim, N.A.; Rabuni, M.F.; Mohd Junaidi, M.U. A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency. Energies 2023, 16, 1482. [Google Scholar] [CrossRef]
- Calles, J.A.; Carrero, A.; Vizcaíno, A.J.; García-Moreno, L.; Megía, P.J. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts. Int. J. Mol. Sci. 2019, 20, 512. [Google Scholar] [CrossRef]
- Alentiev, D.A.; Bermeshev, M.V.; Volkov, A.V.; Petrova, I.V.; Yaroslavtsev, A.B. Palladium Membrane Applications in Hydrogen Energy and Hydrogen-Related Processes. Polymers 2025, 17, 743. [Google Scholar] [CrossRef]
- Ribeirinha, P.; Schuller, G.; Boaventura, M.; Mendes, A. Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell. Int. J. Hydrogen Energy 2017, 42, 13902–13912. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Hao, Y. Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture. Energies 2023, 16, 7134. [Google Scholar] [CrossRef]
- Moioli, S.; Pellegrini, L.A. CO2 Removal in Hydrogen Production Plants. Energies 2024, 17, 3089. [Google Scholar] [CrossRef]
- Gallucci, F.; Fernandez, E.; Corengia, P.; van Sint Annaland, M. Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 2013, 92, 40–66. [Google Scholar] [CrossRef]
- Safronova, E.Y.; Bedarkova, A.O.; Novikova, S.A.; Yurova, P.A.; Pashkevich, D.S.; Kambur, P.S.; Meng, Y.; Yaroslavtsev, A.B. Perfluorosulfonic acid polymer membrane with increased chemical stability for hydrogen-air fuel cell. Polym. Degrad. Stabil. 2025, 240, 111477. [Google Scholar] [CrossRef]
- Muraru, S.; Ionita, M. Towards Performant Design of Carbon-Based Nanomotors for Hydrogen Separation through Molecular Dynamics Simulations. Int. J. Mol. Sci. 2020, 21, 9588. [Google Scholar] [CrossRef]
- Al Masud, M.A.; Khuu, N.H.; Sanyal, O.; Tian, Y. Advances in membrane-assisted reactors: An integrative review for modeling and experiments. Sep. Purif. Technol. 2025, 371, 133095. [Google Scholar] [CrossRef]
- Ghasem, N. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Int. J. Mol. Sci. 2022, 23, 16064. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, H.; Che, X.; Zhang, Z.; Yu, S.; Li, Q.; Cai, B. Integrating a Pd-Ag membrane for hydrogen purification and recirculation in a direct ammonia fueled SOFC-PEMFC system. Int. J. Hydrogen Energy 2024, 95, 570–582. [Google Scholar] [CrossRef]
- Arratibel Plazaola, A.; Pacheco Tanaka, D.A.; Van Sint Annaland, M.; Gallucci, F. Recent advances in Pd-based membranes for membrane reactors. Molecules 2017, 22, 51. [Google Scholar] [CrossRef]
- Patki, N.S.; Lundin, S.-T.B.; Way, J.D. Apparent activation energy for hydrogen permeation and its relation to the composition of homogeneous PdAu alloy thin-film membranes. Sep. Purif. Technol. 2018, 191, 370–374. [Google Scholar] [CrossRef]
- Wang, W.; Olguin, G.; Hotza, D.; Seelro, M.A.; Fu, W.; Gao, Y.; Ji, G. Inorganic membranes for in-situ separation of hydrogen and enhancement of hydrogen production from thermochemical reactions. Renew. Sust. Energy Rev. 2022, 160, 112124. [Google Scholar] [CrossRef]
- Shinoda, Y.; Takeuchi, M.; Mizukami, H.; Dezawa, N.; Komo, Y.; Harada, T.; Takasu, H.; Kato, Y. Characterization of Pd60Cu40 Composite Membrane Prepared by a Reverse Build-Up Method for Hydrogen Purification. Energies 2021, 14, 8262. [Google Scholar] [CrossRef]
- Conde, J.J.; Maroño, M.; Sánchez-Hervás, J.M. Pd-based membranes for hydrogen separation: Review of alloying elements and their influence on membrane properties. Sep. Purif. Rev. 2017, 46, 152–177. [Google Scholar] [CrossRef]
- Cerone, N.; Zito, G.D.; Florio, C.; Fabbiano, L.; Zimbardi, F. Recent Advancements in Pd-Based Membranes for Hydrogen Separation. Energies 2024, 17, 4095. [Google Scholar] [CrossRef]
- Stenina, I.; Yaroslavtsev, A. Modern Technologies of Hydrogen Production. Processes 2023, 11, 56. [Google Scholar] [CrossRef]
- Bosko, M.L.; Fontana, A.D.; Tarditi, A.; Cornaglia, L. Advances in hydrogen selective membranes based on palladium ternary alloys. Int. J. Hydrogen Energy 2021, 46, 15572–15594. [Google Scholar] [CrossRef]
- Pushankina, P.; Andreev, G.; Petriev, I. Hydrogen Permeability of Composite Pd–Au/Pd–Cu Membranes and Methods for Their Preparation. Membranes 2023, 13, 649. [Google Scholar] [CrossRef]
- Alrashed, F.S.; Paglieri, S.N.; Alismail, Z.S.; Khalaf, H.; Harale, A.; Overbeek, J.P.; van Veen, H.M.; Hakeem, A.S. Steam reforming of simulated pre-reformed naphtha in a PdAu membrane reactor. Int. J. Hydrogen Energy 2021, 46, 21939–21952. [Google Scholar] [CrossRef]
- Pişkin, F.; Öztürk, T. Combinatorial screening of Pd-Ag-Ni membranes for hydrogen separation. J. Membr. Sci. 2017, 524, 631–636. [Google Scholar] [CrossRef]
- Zhao, M.; Brouwer, J.C.; Sloof, W.G.; Böttger, A.J. Surface segregation of Pd–Cu alloy in various gas atmospheres. Int. J. Hydrogen Energy 2020, 45, 21567–21572. [Google Scholar] [CrossRef]
- Yun, S.; Oyama, S.T. Correlations in palladium membranes for hydrogen separation: A review. J. Membr. Sci. 2011, 375, 28–45. [Google Scholar] [CrossRef]
- Hatlevik, Ø.; Gade, S.K.; Keeling, M.K.; Thoen, P.M.; Davidson, A.; Way, J.D. Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance. Sep. Purif. Technol. 2010, 73, 59–64. [Google Scholar] [CrossRef]
- Pal, N.; Agarwal, M.; Maheshwari, K.; Solanki, Y.S. A review on types, fabrication and support material of hydrogen separation membrane. Mater. Today Proc. 2020, 28, 1386–1391. [Google Scholar] [CrossRef]
- Pati, S.; Das, S.; Dewangan, N.; Jangam, A.; Kawi, S. Facile integration of core–shell catalyst and Pd-Ag membrane for hydrogen production from low-temperature dry reforming of methane. Fuel 2023, 333, 126433. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Z.; Tong, Y.; Yin, Z.; Li, S. High hydrogen permeability of Pd-Ru-In membranes prepared by electroless co-deposition. Sep. Purif. Technol. 2024, 343, 127073. [Google Scholar] [CrossRef]
- Omidifar, M.; Babaluo, A.A. Hydrogen flux improvement through palladium and its alloy membranes: Investigating influential parameters-A review. Fuel 2025, 379, 133038. [Google Scholar] [CrossRef]
- Iulianelli, A.; Ghasemzadeh, K.; Marelli, M.; Evangelisti, C. A supported Pd-Cu/Al2O3 membrane from solvated metal atoms for hydrogen separation/purification. Fuel Process. Technol. 2019, 195, 106141. [Google Scholar] [CrossRef]
- Fromm, E.; Gebhardt, E. Gases and Kohlenstof in Metallen; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar]
- Ward, T.L.; Dao, T. Model of hydrogen permeation behavior in palladium membranes. J. Membr. Sci. 1999, 153, 211–231. [Google Scholar] [CrossRef]
- Serra, E.; Kemali, M.; Perujo, A.; Ross, D.K. Hydrogen and Deuterium in Pd-25 Pct Ag Alloy: Permeation, Diffusion, Solubilization, and Surface Reaction. Metall. Mater. Trans A 1998, 29, 1023–1028. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Q.; Zhu, X.; Kong, Q.; Wu, J.; Tu, P. Influence of Hydrogen Sulfide and Redox Reactions on the Surface Properties and Hydrogen Permeability of Pd Membranes. Energies 2018, 11, 1127. [Google Scholar] [CrossRef]
- Nagy, C.; Sikora, E.; Prekob, Á.; Gráczer, K.; Muránszky, G.; Vanyorek, L.; Kristály, F.; Fejes, Z. Spherified Pd0.33Ni0.67/BCNT Catalyst for Nitrobenzene Hydrogenation. Int. J. Mol. Sci. 2025, 26, 5420. [Google Scholar] [CrossRef] [PubMed]
- Petriev, I.; Pushankina, P.; Glazkova, Y.; Andreev, G.; Baryshev, M. Investigation of the Dependence of Electrocatalytic Activity of Copper and Palladium Nanoparticles on Morphology and Shape Formation. Coatings 2023, 13, 621. [Google Scholar] [CrossRef]
- Kozmai, A.; Pismenskaya, N.; Nikonenko, V. Mathematical Description of the Increase in Selectivity of an Anion-Exchange Membrane Due to Its Modification with a Perfluorosulfonated Ionomer. Int. J. Mol. Sci. 2022, 23, 2238. [Google Scholar] [CrossRef] [PubMed]
- Mutalik, C.; Saukani, M.; Khafid, M.; Krisnawati, D.I.; Widodo; Darmayanti, R.; Puspitasari, B.; Cheng, T.-M.; Kuo, T.-R. Gold-Based Nanostructures for Antibacterial Application. Int. J. Mol. Sci. 2023, 24, 10006. [Google Scholar] [CrossRef]
- Petriev, I.S.; Pushankina, P.D.; Andreev, G.A.; Yaroslavtsev, A.B. Mechanisms of formation and shape control of pentagonal Pd-nanostars and their unique properties in electrocatalytic methanol oxidation and membrane separation of high-purity hydrogen. Int. J. Hydrogen Energy 2024, 70, 404–413. [Google Scholar] [CrossRef]
- Petriev, I.; Pushankina, P.; Andreev, G.; Ivanin, S.; Dzhimak, S. High-Performance Hydrogen-Selective Pd-Ag Membranes Modified with Pd-Pt Nanoparticles for Use in Steam Reforming Membrane Reactors. Int. J. Mol. Sci. 2023, 24, 17403. [Google Scholar] [CrossRef]
- Dong, K.; Dai, H.; Pu, H.; Zhang, T.; Wang, Y.; Deng, Y. Enhanced electrocatalytic activity and stability of Pd-based bimetallic icosahedral nanoparticles towards alcohol oxidation reactions. Int. J. Hydrogen Energy 2023, 48, 12288–12298. [Google Scholar] [CrossRef]
- Pushankina, P.; Baryshev, M.; Petriev, I. Synthesis and Study of Palladium Mono- and Bimetallic (with Ag and Pt) Nanoparticles in Catalytic and Membrane Hydrogen Processes. Nanomaterials 2022, 12, 4178. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Yang, Z.; Du, M.; Mi, J.; Hao, L.; Tong, Y.; Feng, Y.; Li, S. Effect of annealing process on the hydrogen permeation through Pd–Ru membrane. J. Membr. Sci. 2022, 654, 120572. [Google Scholar] [CrossRef]
- Xu, N.; Kim, S.S.; Li, A.; Grace, J.R.; Lim, C.J.; Boyd, T. Investigation of the influence of tar-containing syngas from biomass gasification on dense Pd and Pd–Ru membranes. Powder Technol. 2016, 290, 132–140. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Höllein, V.; Daub, K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J. Mol. Catal. Chem. 2001, 173, 135–184. [Google Scholar] [CrossRef]
- Zhao, C.; Caravella, A.; Xu, H.; Brunetti, A.; Barbieri, G.; Goldbach, A. Support mass transfer resistance of Pd/ceramic composite membranes in the presence of sweep gas. J. Membr. Sci. 2018, 550, 365–376. [Google Scholar] [CrossRef]
- Barbieri, G.; Brunetti, A.; Caravella, A.; Drioli, E. Pd-based membrane reactors for one-stage process of water gas shift. RSC Adv. 2011, 1, 651–661. [Google Scholar] [CrossRef]
- Uemiya, S. State-of-the-Art of Supported Metal Membranes for Gas Separation. Sep. Purif. Methods. 1999, 28, 51–85. [Google Scholar] [CrossRef]
- Vicinanza, N.; Svenum, I.-H.; Næss, L.N.; Peters, T.A.; Bredesen, R.; Borg, A.; Venvik, H.J. Thickness dependent effects of solubility and surface phenomena on the hydrogen transport properties of sputtered Pd77%Ag23% thin film membranes. J. Membr. Sci. 2015, 476, 602–608. [Google Scholar] [CrossRef]
- Baychtok, Y.K.; Sokolinsky, Y.A.; Ayzenbud, M.B. On the limiting stage of hydrogen permeability through membranes of palladium alloys. J. Phys. Chem. 1976, 50, 1543–1546. [Google Scholar]
- Pick, M.A.; Sonnenberg, K. A model for atomic hydrogen–metal interactions—Applications to recycling, recombination and permeation. J. Nucl. Mater. 1985, 131, 208–220. [Google Scholar] [CrossRef]
- Li, Y.-F.; Lv, J.-J.; Zhang, M.; Feng, J.-J.; Li, F.-F.; Wang, A.-J. A simple and controlled electrochemical deposition route to urchin-like Pd nanoparticles with enhanced electrocatalytic properties. J. Electroanal. Chem. 2015, 738, 1–7. [Google Scholar] [CrossRef]
- King, M.; Personick, M. Defects by design: Synthesis of palladium nanoparticles with extended twin defects and corrugated surfaces. Nanoscale 2017, 9, 17914–17921. [Google Scholar] [CrossRef]
- Hu, C.-C.; Wen, T.-C. Voltammetric investigation of palladium oxides—I: Their formation/reduction in NaOH. Electrochim. Acta 1995, 40, 495–503. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Ghosh, S.; Bhattachrya, S.K. Improved Catalysis of Green-Synthesized Pd-Ag Alloy-Nanoparticles for Anodic Oxidation of Methanol in Alkali. Electrochim. Acta 2017, 225, 310–321. [Google Scholar] [CrossRef]
- Huang, K.-L.; Liu, Z.-T.; Lee, C.-L. Truncated palladium nanocubes: Synthesis and the effect of OH− concentration on their catalysis of the alkaline oxygen reduction reaction. Electrochim. Acta 2015, 157, 78–87. [Google Scholar] [CrossRef]
- Kübler, M.; Jurzinsky, T.; Ziegenbalg, D.; Cremers, C. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior. J. Power Sources 2018, 375, 320–334. [Google Scholar] [CrossRef]
- Jurzinsky, T.; Cremers, C.; Pinkwart, K.; Tübke, J. On the Influence of Ag on Pd-based Electrocatalyst for Methanol Oxidation in Alkaline Media: A Comparative Differential Electrochemical Mass Spectrometry Study. Electrochim. Acta 2016, 199, 270–279. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X. Pd nanoparticles supported on low-defect graphene sheets: For use as high-performance electrocatalysts for formic acid and methanol oxidation. J. Mater. Chem. 2012, 22, 22533–22541. [Google Scholar] [CrossRef]
- Amin, R.S.; Abdel Hameed, R.M.; El-Khatib, K.M. Microwave heated synthesis of carbon supported Pd, Ni and Pd–Ni nanoparticles for methanol oxidation in KOH solution. Appl. Catal. B Environ. 2014, 148–149, 557–567. [Google Scholar] [CrossRef]
- Hanifah, M.F.R.; Jaafar, J.; Othman, M.H.D.; Ismail, A.F.; Rahman, M.A.; Yusof, N.; Aziz, F.; Rahman, N.A.A. One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell. J. Alloys Compd. 2019, 793, 232–246. [Google Scholar] [CrossRef]
- Woo, S.; Lee, J.; Park, S.-K.; Kim, H.; Chung, T.D.; Piao, Y. Electrochemical codeposition of Pt/graphene catalyst for improved methanol oxidation. Curr. Appl. Phys. 2015, 15, 219–225. [Google Scholar] [CrossRef]
- Zhu, B.; Tang, C.H.; Xu, H.Y.; Su, D.S.; Zhang, J.; Li, H. Surface activation inspires high performance of ultra-thin Pd membrane for hydrogen separation. J. Membr. Sci. 2017, 526, 138–146. [Google Scholar] [CrossRef]
- Iulianelli, A.; Alavi, M.; Bagnato, G.; Liguori, S.; Wilcox, J.; Rahimpour, M.R.; Eslamlouyan, R.; Anzelmo, B.; Basile, A. Supported Pd-Au Membrane Reactor for Hydrogen Production: Membrane Preparation, Characterization and Testing. Molecules 2016, 21, 581. [Google Scholar] [CrossRef]
- Pan, X.; Kilgus, M.; Goldbach, A. Low-temperature H2 and N2 transport through thin Pd66Cu34Hx layers. Catal. Today 2005, 104, 225–230. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jang, Y.; Han, D.H.; Lee, S.M.; Kim, S.S. Palladium-copper membrane prepared by electroless plating for hydrogen separation at low temperature. J. Environ. Chem. Eng. 2021, 9, 106509. [Google Scholar] [CrossRef]
- Zhao, C.; Goldbach, A.; Xu, H. Low-temperature stability of body-centered cubic PdCu membranes. J. Membr. Sci. 2013, 444, 378–383. [Google Scholar] [CrossRef]
- Amandusson, H.; Ekedahl, L.-G.; Dannetun, H. Hydrogen permeation through surface modified Pd and PdAg membranes. J. Membr. Sci. 2001, 193, 35–47. [Google Scholar] [CrossRef]
- Itoh, N.; Xu, W.-C. Selective hydrogenation of phenol to cyclohexanone using palladium-based membranes as catalysts. Appl. Catal. A Gen. 1993, 107, 83–100. [Google Scholar] [CrossRef]
- Petriev, I.; Pushankina, P.; Drobotenko, M. New Approaches to the Creation of Highly Efficient Pd-Ag and Pd-Cu Membranes and Modeling of Their Hydrogen Permeability. Int. J. Mol. Sci. 2024, 25, 12564. [Google Scholar] [CrossRef] [PubMed]
Electrodes | If, mA cm−2 | Eonset, V | Ib, mA cm−2 | If/Ib |
---|---|---|---|---|
NPs-pyr | 38.3 | −0.67 | 3.7 | 10.4 |
NPs-spike | 34.7 | −0.71 | 6.1 | 5.7 |
NPs-sph | 23.4 | −0.51 | 6.0 | 3.9 |
No coating | 0.92 | −0.63 | 0.17 | 5.4 |
Membrane | Ea, kJ mol−1 | Temperature Range, °C | ∆p, MPa |
---|---|---|---|
Pd-Ag-Ru/NPs-pyr | 42 | 25–200 | 0.3 |
Pd-Ag-Ru/NPs-spik | 30 | 25–200 | 0.3 |
Pd-Ag-Ru/NPs-sph | 28 | 25–200 | 0.3 |
Pd-Ag-Ru | 27 | 25–200 | 0.3 |
Membrane | Support | Thickness of Selective Layer, µm | Temperature, °C | Pressure, MPa | H2, Flux, mol m−2 s−1 | Reference |
---|---|---|---|---|---|---|
Pd | Al2O3 | 4 | 400 | 0.02 | 0.04 | [75] |
Pd-Au | PSS | 7 | 350 | 0.1 | 0.881 × 10–2 | [76] |
Pd-Cu | Al2O3 | 4 | 340 | 0.1 | 0.028 | [77] |
Pd-Cu | PSS | 23.74 | 175 | 0.1 | 0.007 | [78] |
Pd-Cu | Al2O3 | 3.5 | 100 | 0.5 | 0.06 | [79] |
Pd-Ag | – | 25 | 200 | 0.006 | 0.005 | [80] |
Pd-Ag | – | 100 | 200 | 0.1 | 0.049 | [81] |
Pd-Ag-Ru modified | – | 30 | 200 | 0.3 | 0.04 | this work |
Pd-Ag-Ru | – | 30 | 200 | 0.3 | 0.006 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pushankina, P.; Ivanin, S.; Papezhuk, M.; Khachatryan, A.; Simonov, A.; Petriev, I. Hydrogen-Selective Pd-Ag-Ru Membranes and the Secret of High Permeability: The Influence of the Morphology of the Nano-Structured Coating on the Rate of Surface Processes. Int. J. Mol. Sci. 2025, 26, 8765. https://doi.org/10.3390/ijms26188765
Pushankina P, Ivanin S, Papezhuk M, Khachatryan A, Simonov A, Petriev I. Hydrogen-Selective Pd-Ag-Ru Membranes and the Secret of High Permeability: The Influence of the Morphology of the Nano-Structured Coating on the Rate of Surface Processes. International Journal of Molecular Sciences. 2025; 26(18):8765. https://doi.org/10.3390/ijms26188765
Chicago/Turabian StylePushankina, Polina, Sergei Ivanin, Marina Papezhuk, Andranik Khachatryan, Alexander Simonov, and Iliya Petriev. 2025. "Hydrogen-Selective Pd-Ag-Ru Membranes and the Secret of High Permeability: The Influence of the Morphology of the Nano-Structured Coating on the Rate of Surface Processes" International Journal of Molecular Sciences 26, no. 18: 8765. https://doi.org/10.3390/ijms26188765
APA StylePushankina, P., Ivanin, S., Papezhuk, M., Khachatryan, A., Simonov, A., & Petriev, I. (2025). Hydrogen-Selective Pd-Ag-Ru Membranes and the Secret of High Permeability: The Influence of the Morphology of the Nano-Structured Coating on the Rate of Surface Processes. International Journal of Molecular Sciences, 26(18), 8765. https://doi.org/10.3390/ijms26188765