Biochemical Fingerprint of Early Healing After Enamel Matrix Derivative Application Using a Flapless Approach: A Randomized Clinical Trial
Abstract
1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Clinical Outcomes
2.3. Biomolecular Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Randomization and Treatment Allocation
- –
- Test group: flapless approach with adjunctive application of EMD (Emdogain®, Straumann, Basel, Switzerland).
- –
- Control group: flapless approach alone with simulated EMD application.
4.3. Flapless Procedure and Post-Operative Care
4.4. GCF Sampling
4.5. Determination of GCF Wound-Healing Mediator Levels
- –
- Epithelial repair: EGF.
- –
- Connective tissue remodeling: MMP-8, FGF, TGF-β 1-2-3.
- –
- Bone metabolism: OPG.
4.6. Clinical Parameters
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Term |
BoP | Bleeding on Probing |
CAL | Clinical Attachment Level |
EGF | Epidermal Growth Factor |
EMD | Enamel Matrix Derivative |
FGF | Fibroblast Growth Factor |
FMBS | Full-Mouth Bleeding Score |
FMPS | Full-Mouth Plaque Score |
GCF | Gingival Crevicular Fluid |
MIST | Minimally Invasive Surgical Technique |
MMP-8 | Matrix Metalloproteinase-8 |
MINST | Minimally Invasive Non-Surgical Treatment |
OPG | Osteoprotegerin |
PBS | Phosphate-Buffered Saline |
PI | Plaque Index |
PPD | Probing Pocket Depth |
REC | Gingival Recession |
RANKL | Receptor Activator of Nuclear Factor Kappa-B Ligand |
TGF-β | Transforming Growth Factor-beta |
References
- Nibali, L.; Koidou, V.P.; Nieri, M.; Barbato, L.; Pagliaro, U.; Cairo, F. Regenerative Surgery versus Access Flap for the Treatment of Intra-Bony Periodontal Defects: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2020, 47, 320–351. [Google Scholar] [CrossRef]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S. Treatment of Stage I–III Periodontitis—The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef] [PubMed]
- Wikesjö, U.M.; Hagen, K.; Nielsen, D.D. Periodontal Repair in Dogs: Effect of Saliva Contamination of the Root Surface. J. Periodontol. 1990, 61, 559–563. [Google Scholar] [CrossRef]
- Cortellini, P.; Tonetti, M.S. Improved Wound Stability with a Modified Minimally Invasive Surgical Technique in the Regenerative Treatment of Isolated Interdental Intrabony Defects. J. Clin. Periodontol. 2009, 36, 157–163. [Google Scholar] [CrossRef]
- Trombelli, L.; Farina, R.; Franceschetti, G.; Calura, G. Single-Flap Approach with Buccal Access in Periodontal Reconstructive Procedures. J. Periodontol. 2009, 80, 353–360. [Google Scholar] [CrossRef]
- Clementini, M.; Ambrosi, A.; Cicciarelli, V.; De Risi, V.; de Sanctis, M. Clinical Performance of Minimally Invasive Periodontal Surgery in the Treatment of Infrabony Defects: Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2019, 46, 1236–1253. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.V.; Casarin, R.C.V.; Palma, M.A.G.; Júnior, F.H.N.; Sallum, E.A.; Casati, M.Z. Clinical and Patient-Centered Outcomes after Minimally Invasive Non-Surgical or Surgical Approaches for the Treatment of Intrabony Defects: A Randomized Clinical Trial. J. Periodontol. 2011, 82, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Nibali, L.; Pometti, D.; Chen, T.-T.; Tu, Y.-K. Minimally Invasive Non-Surgical Approach for the Treatment of Periodontal Intrabony Defects: A Retrospective Analysis. J. Clin. Periodontol. 2015, 42, 853–859. [Google Scholar] [CrossRef]
- Aimetti, M.; Ferrarotti, F.; Mariani, G.M.; Romano, F. A Novel Flapless Approach versus Minimally Invasive Surgery in Periodontal Regeneration with Enamel Matrix Derivative Proteins: A 24-Month Randomized Controlled Clinical Trial. Clin. Oral Investig. 2017, 21, 327–337. [Google Scholar] [CrossRef]
- Aimetti, M.; Stasikelyte, M.; Mariani, G.M.; Cricenti, L.; Baima, G.; Romano, F. The Flapless Approach with and Without Enamel Matrix Derivatives for the Treatment of Intrabony Defects: A Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2024, 51, 1112–1121. [Google Scholar] [CrossRef]
- Estrin, N.E.; Moraschini, V.; Zhang, Y.; Miron, R.J. Use of Enamel Matrix Derivative in Minimally Invasive/Flapless Approaches: A Systematic Review with Meta-Analysis. Oral Health Prev. Dent. 2022, 20, 233–242. [Google Scholar] [CrossRef]
- Jentsch, H.F.R.; Roccuzzo, M.; Pilloni, A.; Kasaj, A.; Fimmers, R.; Jepsen, S. Flapless Application of Enamel Matrix Derivative in Periodontal Retreatment: A Multicentre Randomized Feasibility Trial. J. Clin. Periodontol. 2021, 48, 659–667. [Google Scholar] [CrossRef]
- Hammarström, L. Enamel Matrix, Cementum Development and Regeneration. J. Clin. Periodontol. 1997, 24, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Lossdörfer, S.; Sun, M.; Götz, W.; Dard, M.; Jäger, A. Enamel Matrix Derivative Promotes Human Periodontal Ligament Cell Differentiation and Osteoprotegerin Production in Vitro. J. Dent. Res. 2007, 86, 980–985. [Google Scholar] [CrossRef]
- Bosshardt, D.D. Biological Mediators and Periodontal Regeneration: A Review of Enamel Matrix Proteins at the Cellular and Molecular Levels. J. Clin. Periodontol. 2008, 35, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Regidor, E.; Dionigi, C.; Ghoraishi, M.; Salazar, J.; Trullenque-Eriksson, A.; Derks, J.; Ortiz-Vigón, A. Enamel Matrix Derivative in the Reconstructive Surgical Therapy of Peri-Implantitis: A Randomized Clinical Trial. J. Periodontal Res. 2025. [Google Scholar] [CrossRef] [PubMed]
- Giannobile, W.V. Periodontal Tissue Engineering by Growth Factors. Bone 1996, 19, S23–S37. [Google Scholar] [CrossRef]
- Rojas, L.; Tobar, N.; Espinoza, J.; Ríos, S.; Martínez, C.; Martínez, J.; Graves, D.T.; Smith, P.C. FOXO1 Regulates Wound-Healing Responses in Human Gingival Fibroblasts. J. Periodontal Res. 2024, 59, 611–621. [Google Scholar] [CrossRef]
- Pansani, T.N.; Basso, F.G.; Cardoso, L.M.; de Souza Costa, C.A. EGF Coating of Titanium Surfaces Modulates Cytokines in Oral Mucosal Primary Cells Exposed to TNF-α. J. Periodontal Res. 2023, 58, 791–799. [Google Scholar] [CrossRef]
- Christgau, M.; Moder, D.; Hiller, K.-A.; Dada, A.; Schmitz, G.; Schmalz, G. Growth Factors and Cytokines in Autologous Platelet Concentrate and Their Correlation to Periodontal Regeneration Outcomes. J. Clin. Periodontol. 2006, 33, 837–845. [Google Scholar] [CrossRef]
- Miron, R.J.; Estrin, N.E.; Ahmad, P.; Farshidfar, N.; Fujioka-Kobayashi, M.; Zhang, Y.; Romandini, M.; Gruber, R. Thirty Years of Autologous Platelet Concentrates: From Platelet-Rich Plasma to Platelet-Rich Fibrin. J. Periodontal Res. 2025. [Google Scholar] [CrossRef]
- El-Sayed, K.M.F.; El Moshy, S.; Radwan, I.A.; Rady, D.; El-Rashidy, A.A.; Abbass, M.M.S.; Dörfer, C.E. Stem Cells from Dental Pulp, Periodontal Tissues, and Other Oral Sources: Biological Concepts and Regenerative Potential. J. Periodontal Res. 2025. [Google Scholar] [CrossRef]
- Teles, F.; Martin, L.; Patel, M.; Hu, W.; Bittinger, K.; Kallan, M.J.; Chandrasekaran, G.; Cucchiara, A.J.; Giannobile, W.V.; Stephens, D.; et al. Gingival Crevicular Fluid Biomarkers During Periodontitis Progression and After Periodontal Treatment. J. Clin. Periodontol. 2025, 52, 40–55. [Google Scholar] [CrossRef]
- Blanco-Pintos, T.; Regueira-Iglesias, A.; Seijo-Porto, I.; Balsa-Castro, C.; Castelo-Baz, P.; Nibali, L.; Tomás, I. Accuracy of Periodontitis Diagnosis Obtained Using Multiple Molecular Biomarkers in Oral Fluids: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2023, 50, 1420–1443. [Google Scholar] [CrossRef]
- Umeizudike, K.A.; Lähteenmäki, H.; Räisänen, I.T.; Taylor, J.J.; Preshaw, P.M.; Bissett, S.M.; Tervahartiala, T.O.; Nwhator, S.; Pärnänen, P.; Sorsa, T. Ability of Matrix Metalloproteinase-8 Biosensor, IFMA, and ELISA Immunoassays to Differentiate between Periodontal Health, Gingivitis, and Periodontitis. J. Periodontal Res. 2022, 57, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Rakmanee, T.; Calciolari, E.; Olsen, I.; Darbar, U.; Griffiths, G.S.; Petrie, A.; Donos, N. Expression of Growth Mediators in the Gingival Crevicular Fluid of Patients with Aggressive Periodontitis Undergoing Periodontal Surgery. Clin. Oral Investig. 2019, 23, 3307–3318. [Google Scholar] [CrossRef] [PubMed]
- Koidou, V.P.; Hagi-Pavli, E.; Cross, S.; Nibali, L.; Donos, N. Molecular Profiling of Intrabony Defects’ Gingival Crevicular Fluid. J. Periodontal Res. 2022, 57, 152–161. [Google Scholar] [CrossRef]
- Dolińska, E.; Pietruska, M.; Dymicka-Piekarska, V.; Milewski, R.; Sculean, A. Matrix Metalloproteinase 9 (MMP-9) and Interleukin-8 (IL-8) in Gingival Crevicular Fluid after Regenerative Therapy in Periodontal Intrabony Defects with and Without Systemic Antibiotics—Randomized Clinical Trial. Pathogens 2022, 11, 1184. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Bongiovanni, L.; Bianco, L.; Di Scipio, F.; Yang, Z.; Sprio, A.E.; Berta, G.N.; Aimetti, M. Biomarker Levels in Gingival Crevicular Fluid of Generalized Aggressive Periodontitis Patients after Non-Surgical Periodontal Treatment. Clin. Oral Investig. 2018, 22, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.R.; Abdulkareem, A.A.; Milward, M.R.; Cooper, P.R. Ability of Gingival Crevicular Fluid Volume, E-Cadherin, and Total Antioxidant Capacity Levels for Predicting Outcomes of Nonsurgical Periodontal Therapy for Periodontitis Patients. J. Periodontal Res. 2024, 59, 289–298. [Google Scholar] [CrossRef]
- Baima, G.; Romano, F.; Franco, F.; Roato, I.; Mussano, F.; Berta, G.N.; Aimetti, M. Impact of Inflammatory Markers and Senescence-Associated Secretory Phenotype in the Gingival Crevicular Fluid on the Outcomes of Periodontal Regeneration. Int. J. Mol. Sci. 2024, 25, 6687. [Google Scholar] [CrossRef]
- Grayson, R.E.; Yamakoshi, Y.; Wood, E.J.; Agren, M.S. The Effect of the Amelogenin Fraction of Enamel Matrix Proteins on Fibroblast-Mediated Collagen Matrix Reorganization. Biomaterials 2006, 27, 2926–2933. [Google Scholar] [CrossRef]
- Wyganowska-Swiatkowska, M.; Urbaniak, P.; Lipinski, D.; Szalata, M.; Kotwicka, M. Human Gingival Fibroblast Response to Enamel Matrix Derivative, Porcine Recombinant 21.3-kDa Amelogenin and 5.3-kDa Tyrosine-Rich Amelogenin Peptide. Hum. Cell 2017, 30, 181–191. [Google Scholar] [CrossRef]
- Koidou, V.P.; Hagi-Pavli, E.; Nibali, L.; Donos, N. Elucidating the Molecular Healing of Intrabony Defects Following Non-Surgical Periodontal Therapy: A Pilot Study. J. Periodontal Res. 2024, 59, 53–62. [Google Scholar] [CrossRef]
- Mc Crudden, M.T.C.; Irwin, C.R.; El karim, I.; Linden, G.J.; Lundy, F.T. Matrix Metalloproteinase-8 Activity in Gingival Crevicular Fluid: Development of a Novel Assay. J. Periodontal Res. 2017, 52, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Sorsa, T.; Tervahartiala, T.; Leppilahti, J.; Hernandez, M.; Gamonal, J.; Tuomainen, A.M.; Lauhio, A.; Pussinen, P.J.; Mäntylä, P. Collagenase-2 (MMP-8) as a Point-of-Care Biomarker in Periodontitis and Cardiovascular Diseases. Therapeutic Response to Non-Antimicrobial Properties of Tetracyclines. Pharmacol. Res. 2011, 63, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Sorsa, T.; Gursoy, U.K.; Nwhator, S.; Hernandez, M.; Tervahartiala, T.; Leppilahti, J.; Gursoy, M.; Könönen, E.; Emingil, G.; Pussinen, P.J.; et al. Analysis of Matrix Metalloproteinases, Especially MMP-8, in Gingival Creviclular Fluid, Mouthrinse and Saliva for Monitoring Periodontal Diseases. Periodontol. 2000 2016, 70, 142–163. [Google Scholar] [CrossRef]
- Karima, M.M.; Van Dyke, T.E. Enamel Matrix Derivative Promotes Superoxide Production and Chemotaxis but Reduces Matrix Metalloproteinase-8 Expression by Polymorphonuclear Leukocytes. J. Periodontol. 2012, 83, 780–786. [Google Scholar] [CrossRef]
- Suzuki, S.; Nagano, T.; Yamakoshi, Y.; Gomi, K.; Arai, T.; Fukae, M.; Katagiri, T.; Oida, S. Enamel Matrix Derivative Gel Stimulates Signal Transduction of BMP and TGF-β. J. Dent. Res. 2005, 84, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Gruber, R.; Bosshardt, D.D.; Miron, R.J.; Gemperli, A.C.; Buser, D.; Sculean, A. Enamel Matrix Derivative Inhibits Adipocyte Differentiation of 3T3-L1 Cells via Activation of TGF-βRI Kinase Activity. PLoS ONE 2013, 8, e71046. [Google Scholar] [CrossRef][Green Version]
- Guo, C.; Rizkalla, A.S.; Hamilton, D.W. FGF and TGF-β Growth Factor Isoform Modulation of Human Gingival and Periodontal Ligament Fibroblast Wound Healing Phenotype. Matrix Biol. 2025, 136, 9–21. [Google Scholar] [CrossRef]
- Grzesik, W.J.; Narayanan, A.S. Cementum and Periodontal Wound Healing and Regeneration. Crit. Rev. Oral Biol. Med. 2002, 13, 474–484. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Y.; Chen, L.; Xiang, Y.; Zhang, X.; Song, J. Single-Cell Sequencing Systematically Analyzed the Mechanism of Emdogain on the Restoration of Delayed Replantation Periodontal Membrane. Int. J. Oral Sci. 2025, 17, 33. [Google Scholar] [CrossRef]
- Corana, M.; Baima, G.; Iaderosa, G.; Franco, F.; Zhang, J.; Berta, G.N.; Romano, F.; Aimetti, M. Salivary Proteomics for Detecting Novel Biomarkers of Periodontitis: A Systematic Review. J. Periodontal Res. 2024, 60, 633–655. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, P.; Escalante-Herrera, A.; Marin, L.M.; Siqueira, W.L. Progression from Healthy Periodontium to Gingivitis and Periodontitis: Insights from Bioinformatics-driven Proteomics—A Systematic Review with Meta-analysis. J. Periodontal Res. 2025, 60, 8–29. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Michea, M.A.; Végvári, Á.; Arce, M.; Morales, A.; Lanyon, E.; Alcota, M.; Fuentes, C.; Vernal, R.; Budini, M.; et al. Proteomic Profile of Human Gingival Crevicular Fluid Reveals Specific Biological and Molecular Processes during Clinical Progression of Periodontitis. J. Periodontal Res. 2023, 58, 1061–1081. [Google Scholar] [CrossRef]
- Laaksonen, M.; Salo, T.; Vardar-Sengul, S.; Atilla, G.; Saygan, B.H.; Simmer, J.P.; Baylas, H.; Sorsa, T. Gingival Crevicular Fluid Can Degrade Emdogain and Inhibit Emdogain-Induced Proliferation of Periodontal Ligament Fibroblasts. J. Periodontal Res. 2010, 45, 353–360. [Google Scholar] [CrossRef]
- Aimetti, M.; Baima, G.; Aliyeva, N.; Lorenzetti, V.; Citterio, F.; Franco, F.; Di Scipio, F.; Berta, G.N.; Romano, F. Influence of Locally Delivered Doxycycline on the Clinical and Molecular Inflammatory Status of Intrabony Defects Prior to Periodontal Regeneration: A Double-Blind Randomized Controlled Trial. J. Periodontal Res. 2023, 58, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Aimetti, M.; Baima, G.; Lorenzetti, V.; Aliyeva, N.; Bottone, M.; Mariani, G.M.; Romano, F. A BiO-Optimizing Site Targeted (BOOST) Approach to Periodontal Regeneration Through Local Doxycycline Prior to Surgery: A Randomized Clinical Trial. J. Periodontal Res. 2025. [Google Scholar] [CrossRef] [PubMed]
Variables | Flapless (n = 19) | Flapless + EMD (n = 19) |
---|---|---|
Patient level | ||
Age (years; mean ± SD) | 55.6 ± 7.5 | 53.1 ± 11.6 |
Males/females (n) | 12/7 | 8/11 |
Light smokers/no smokers (n) | 4/15 | 2/17 |
Periodontitis Stage III/IV (n) | 9/10 | 7/12 |
FMPS (%; mean ± SD) | 11.2 ± 2.6 | 11.9 ± 1.8 |
FMBS (%; mean ± SD) | 12.5 ± 2.1 | 13.1 ± 1.6 |
Site level | ||
Gingival phenotype (thick/thin) (n) | 18/1 | 16/3 |
Single-rooted/multi-rooted teeth (n) | 11/8 | 9/9 |
Arch (maxilla/mandible) (n) | 8/11 | 7/12 |
Mesial/Distal (n) | 9/10 | 13/6 |
Variables | Baseline | 6 Months | Δ Baseline-6 Months | p-Value Intragroup |
---|---|---|---|---|
REC (mm; mean ± SD) | ||||
Flapless | 0.6 ± 0.8 | 0.9 ± 1.0 | 0.3 ± 0.6 | >0.05 |
Flapless + EMD | 0.7 ± 0.9 | 0.8 ± 0.9 | 0.1 ± 0.4 | >0.05 |
p-value intergroup | >0.05 | >0.05 | ||
PPD (mm; mean ± SD) | ||||
Flapless | 7.4 ± 1.3 | 4.8 ± 1.3 | 2.6 ± 0.8 | <0.001 |
Flapless + EMD | 7.2 ± 1.0 | 4.0 ± 1.2 | 3.2 ± 0.6 | <0.001 |
p-value intergroup | 0.038 | >0.05 | ||
CAL (mm; mean ± SD) | ||||
Flapless | 8.1 ± 1.2 | 5.8 ± 1.4 | 2.2 ± 1.2 | <0.001 |
Flapless + EMD | 7.9 ± 0.9 | 4.8 ± 1.5 | 3.1 ± 1.0 | <0.001 |
p-value intergroup | 0.046 | 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, F.; Baima, G.; Stasikelyte, M.; Bebars, A.; Brusamolin, A.; Franco, F.; Berta, G.N.; Aimetti, M. Biochemical Fingerprint of Early Healing After Enamel Matrix Derivative Application Using a Flapless Approach: A Randomized Clinical Trial. Int. J. Mol. Sci. 2025, 26, 8766. https://doi.org/10.3390/ijms26188766
Romano F, Baima G, Stasikelyte M, Bebars A, Brusamolin A, Franco F, Berta GN, Aimetti M. Biochemical Fingerprint of Early Healing After Enamel Matrix Derivative Application Using a Flapless Approach: A Randomized Clinical Trial. International Journal of Molecular Sciences. 2025; 26(18):8766. https://doi.org/10.3390/ijms26188766
Chicago/Turabian StyleRomano, Federica, Giacomo Baima, Morta Stasikelyte, Ahmad Bebars, Anna Brusamolin, Francesco Franco, Giovanni Nicolao Berta, and Mario Aimetti. 2025. "Biochemical Fingerprint of Early Healing After Enamel Matrix Derivative Application Using a Flapless Approach: A Randomized Clinical Trial" International Journal of Molecular Sciences 26, no. 18: 8766. https://doi.org/10.3390/ijms26188766
APA StyleRomano, F., Baima, G., Stasikelyte, M., Bebars, A., Brusamolin, A., Franco, F., Berta, G. N., & Aimetti, M. (2025). Biochemical Fingerprint of Early Healing After Enamel Matrix Derivative Application Using a Flapless Approach: A Randomized Clinical Trial. International Journal of Molecular Sciences, 26(18), 8766. https://doi.org/10.3390/ijms26188766