Dark Matter Carried by Sinorhizobium meliloti phiLM21-like Prophages
Abstract
1. Introduction
2. Results
2.1. Analysis of Nucleotide Sequences
2.2. Phylogenetic Analysis of phiLM21-LPhs
2.3. Analysis of ORFs of phiLM21-LPhs
- (aa-i)—proteins of phiLM21 phage;
- (aa-ii)—proteins of other phages, including those infecting bacteria of remote taxa;
- (aa-iii)—proteins of bacteria of the genus Sinorhizobium/Ensifer;
- (aa-iv)—proteins of phylogenetically remote bacteria;
- (aa-v)—proteins similar to lipocalin family proteins;
- (aa-vi)—hypothetical proteins of unknown origin (Table S8).
2.3.1. Groups aa-i and aa-ii
2.3.2. Groups aa-iii and iv
2.3.3. Group aa-vi (Lipocalin Protein Family)
2.3.4. Group aa-vi
2.4. Evidence of Bacterial-Phage “Arms Race”
2.5. Regulators Within phiLM21-LPhs
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
phiLM21-LPhs | phiLM21-like prophages |
I | Identity |
Cov | Cover |
E | E-value |
tls | terminase large subunit |
References
- Hendrix, R.W. Bacteriophages: Evolution of the Majority. Theor. Popul. Biol. 2002, 61, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, H.-W. Bacteriophage Observations and Evolution. Res. Microbiol. 2003, 154, 245–251. [Google Scholar] [CrossRef]
- Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in Nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Naureen, Z.; Dautaj, A.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Tanzi, B.; Maltese, P.E.; Cristofoli, F.; De Antoni, L.; Beccari, T.; et al. Bacteriophages Presence in Nature and Their Role in the Natural Selection of Bacterial Populations. Acta Biomed. 2020, 91, e2020024. [Google Scholar] [CrossRef]
- Williamson, K.E.; Fuhrmann, J.J.; Wommack, K.E.; Radosevich, M. Viruses in Soil Ecosystems: An Unknown Quantity Within an Unexplored Territory. Annu. Rev. Virol. 2017, 4, 201–219. [Google Scholar] [CrossRef]
- Graham, E.B.; Paez-Espino, D.; Brislawn, C.; Hofmockel, K.S.; Wu, R.; Kyrpides, N.C.; Jansson, J.K.; McDermott, J.E. Untapped Viral Diversity in Global Soil Metagenomes. bioRxiv 2019. [Google Scholar] [CrossRef]
- Chevallereau, A.; Pons, B.J.; Van Houte, S.; Westra, E.R. Interactions between Bacterial and Phage Communities in Natural Environments. Nat. Rev. Microbiol. 2022, 20, 49–62. [Google Scholar] [CrossRef]
- Pratama, A.A.; Van Elsas, J.D. The ‘Neglected’ Soil Virome—Potential Role and Impact. Trends Microbiol. 2018, 26, 649–662. [Google Scholar] [CrossRef]
- Muscatt, G.; Hilton, S.; Raguideau, S.; Teakle, G.; Lidbury, I.D.E.A.; Wellington, E.M.H.; Quince, C.; Millard, A.; Bending, G.D.; Jameson, E. Crop Management Shapes the Diversity and Activity of DNA and RNA Viruses in the Rhizosphere. Microbiome 2022, 10, 181. [Google Scholar] [CrossRef]
- Keen, E.C.; Bliskovsky, V.V.; Malagon, F.; Baker, J.D.; Prince, J.S.; Klaus, J.S.; Adhya, S.L. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation. mBio 2017, 8, e02115-16. [Google Scholar] [CrossRef]
- Vladimirova, M.E.; Roumiantseva, M.L.; Saksaganskaia, A.S.; Muntyan, V.S.; Gaponov, S.P.; Mengoni, A. Hot Spots of Site-Specific Integration into the Sinorhizobium Meliloti Chromosome. Int. J. Mol. Sci. 2024, 25, 10421. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Xu, Y.; Chen, Y.; Zhang, W.; Liu, T.; Chen, G.; Wang, K. Phage-Based Delivery Systems: Engineering, Applications, and Challenges in Nanomedicines. J. Nanobiotechnol. 2024, 22, 365. [Google Scholar] [CrossRef]
- Wong, S.; Jimenez, S.; Pushparajah, D.; Prakash, R.; Slavcev, R. A Novel Miniaturized Filamentous Phagemid as a Gene Delivery Vehicle to Target Mammalian Cells. Mol. Ther. Nucleic Acids 2025, 36, 102571. [Google Scholar] [CrossRef] [PubMed]
- Casjens, S.; Hendrix, R.W. Bacteriophages and the Bacterial Genome. In The Bacterial Chromosome; Higgins, N.P., Ed.; ASM Press: Washington, DC, USA, 2014; pp. 39–52. ISBN 978-1-68367-204-3. [Google Scholar]
- Johnson, G.; Banerjee, S.; Putonti, C. Diversity of Pseudomonas Aeruginosa Temperate Phages. mSphere 2022, 7, e01015-21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Li, Y.; Xu, X.; Rao, S.; Wen, H.; Han, Y.; Deng, A.; Zhang, Z.; Yang, Z.; Zhu, G. Whole-Genome Analysis Showed the Promotion of Genetic Diversity and Coevolution in Staphylococcus Aureus Lytic Bacteriophages and Their Hosts Mediated by Prophages via Worldwide Recombination Events. Front. Microbiol. 2023, 14, 1088125. [Google Scholar] [CrossRef]
- Asadulghani, M.; Ogura, Y.; Ooka, T.; Itoh, T.; Sawaguchi, A.; Iguchi, A.; Nakayama, K.; Hayashi, T. The Defective Prophage Pool of Escherichia Coli O157: Prophage–Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants. PLoS Pathog. 2009, 5, e1000408. [Google Scholar] [CrossRef]
- Orellana, R.; Arancibia, A.; Badilla, L.; Acosta, J.; Arancibia, G.; Escar, R.; Ferrada, G.; Seeger, M. Ecophysiological Features Shape the Distribution of Prophages and CRISPR in Sulfate Reducing Prokaryotes. Microorganisms 2021, 9, 931. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, A.P.; Saksaganskaia, A.S.; Afonin, A.M.; Muntyan, V.S.; Vladimirova, M.E.; Dzyubenko, E.A.; Roumiantseva, M.L. A Temperate Sinorhizobium Phage, AP-16-3, Closely Related to Phage 16-3: Mosaic Genome and Prophage Analysis. Viruses 2023, 15, 1701. [Google Scholar] [CrossRef]
- Decewicz, P.; Radlinska, M.; Dziewit, L. Characterization of Sinorhizobium Sp. LM21 Prophages and Virus-Encoded DNA Methyltransferases in the Light of Comparative Genomic Analyses of the Sinorhizobial Virome. Viruses 2017, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.L. Bacteriophage-Mediated Horizontal Gene Transfer: Transduction. In Bacteriophages; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–42. ISBN 978-3-319-40598-8. [Google Scholar]
- Zhan, Y.; Huang, S.; Voget, S.; Simon, M.; Chen, F. A Novel Roseobacter Phage Possesses Features of Podoviruses, Siphoviruses, Prophages and Gene Transfer Agents. Sci. Rep. 2016, 6, 30372. [Google Scholar] [CrossRef]
- Johnson, M.C.; Sena-Velez, M.; Washburn, B.K.; Platt, G.N.; Lu, S.; Brewer, T.E.; Lynn, J.S.; Stroupe, M.E.; Jones, K.M. Structure, Proteome and Genome of Sinorhizobium meliloti Phage ΦM5: A Virus with LUZ24-like Morphology and a Highly Mosaic Genome. J. Struct. Biol. 2017, 200, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Cubo, M.T.; Alías-Villegas, C.; Balsanelli, E.; Mesa, D.; De Souza, E.; Espuny, M.R. Diversity of Sinorhizobium (Ensifer) meliloti Bacteriophages in the Rhizosphere of Medicago Marina: Myoviruses, Filamentous and N4-Like Podovirus. Front. Microbiol. 2020, 11, 22. [Google Scholar] [CrossRef]
- Rice, S.A.; Tan, C.H.; Mikkelsen, P.J.; Kung, V.; Woo, J.; Tay, M.; Hauser, A.; McDougald, D.; Webb, J.S.; Kjelleberg, S. The Biofilm Life Cycle and Virulence of Pseudomonas Aeruginosa Are Dependent on a Filamentous Prophage. ISME J. 2009, 3, 271–282. [Google Scholar] [CrossRef]
- Wang, X.; Kim, Y.; Ma, Q.; Hong, S.H.; Pokusaeva, K.; Sturino, J.M.; Wood, T.K. Cryptic Prophages Help Bacteria Cope with Adverse Environments. Nat. Commun. 2010, 1, 147. [Google Scholar] [CrossRef]
- Semsey, S.; Papp, I.; Buzas, Z.; Patthy, A.; Orosz, L.; Papp, P.P. Identification of Site-Specific Recombination Genes Int and Xis of the Rhizobium Temperate Phage 16-3. J. Bacteriol. 1999, 181, 4185–4192. [Google Scholar] [CrossRef] [PubMed]
- Csiszovszki, Z.; Buzás, Z.; Semsey, S.; Ponyi, T.; Papp, P.P.; Orosz, L. immX Immunity Region of Rhizobium Phage 16-3: Two Overlapping Cistrons of Repressor Function. J. Bacteriol. 2003, 185, 4382–4392. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Zou, G.; Guo, Y.; Wu, R.; Zhou, Y.; Chen, H.; Zhou, R.; Lavigne, R.; Bergen, P.J.; et al. Discovery of Antimicrobial Lysins from the “Dark Matter” of Uncharacterized Phages Using Artificial Intelligence. Adv. Sci. 2024, 11, 2404049. [Google Scholar] [CrossRef]
- Mihara, T.; Nishimura, Y.; Shimizu, Y.; Nishiyama, H.; Yoshikawa, G.; Uehara, H.; Hingamp, P.; Goto, S.; Ogata, H. Linking Virus Genomes with Host Taxonomy. Viruses 2016, 8, 66. [Google Scholar] [CrossRef]
- Dziewit, L.; Oscik, K.; Bartosik, D.; Radlinska, M. Molecular Characterization of a Novel Temperate Sinorhizobium Bacteriophage, ΦLM21, Encoding DNA Methyltransferase with CcrM-Like Specificity. J. Virol. 2014, 88, 13111–13124. [Google Scholar] [CrossRef]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; Van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of Morphology-Based Taxa and Change to Binomial Species Names: 2022 Taxonomy Update of the ICTV Bacterial Viruses Subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef] [PubMed]
- Casjens, S.R.; Gilcrease, E.B.; Winn-Stapley, D.A.; Schicklmaier, P.; Schmieger, H.; Pedulla, M.L.; Ford, M.E.; Houtz, J.M.; Hatfull, G.F.; Hendrix, R.W. The Generalized Transducing Salmonella Bacteriophage ES18: Complete Genome Sequence and DNA Packaging Strategy. J. Bacteriol. 2005, 187, 1091–1104. [Google Scholar] [CrossRef]
- He, X.; Sambe, M.A.N.; Zhuo, C.; Tu, Q.; Guo, Z. A Temperature Induced Lipocalin Gene from Medicago falcata (MfTIL1) Confers Tolerance to Cold and Oxidative Stress. Plant Mol. Biol. 2015, 87, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Flower, D.R. The Lipocalin Protein Family: Structure and Function. Biochem. J. 1996, 318, 1–14. [Google Scholar] [CrossRef]
- El-Halfawy, O.M.; Klett, J.; Ingram, R.J.; Loutet, S.A.; Murphy, M.E.P.; Martín-Santamaría, S.; Valvano, M.A. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance. mBio 2017, 8, e00225-17. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, S.; Weiskirchen, R. Structure, Functions, and Implications of Selected Lipocalins in Human Disease. Int. J. Mol. Sci. 2024, 25, 4290. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, G.; Wei, Y.; Liu, L.; Zhang, Y.; Su, R.; Jiang, X.; Li, M.; Gao, H.; Tian, X.; et al. SspABCD–SspE Is a Phosphorothioation-Sensing Bacterial Defence System with Broad Anti-Phage Activities. Nat. Microbiol. 2020, 5, 917–928. [Google Scholar] [CrossRef]
- Wang, S.; Wan, M.; Huang, R.; Zhang, Y.; Xie, Y.; Wei, Y.; Ahmad, M.; Wu, D.; Hong, Y.; Deng, Z.; et al. SspABCD-SspFGH Constitutes a New Type of DNA Phosphorothioate-Based Bacterial Defense System. mBio 2021, 12, e00613-21. [Google Scholar] [CrossRef]
- Xu, T.; Yao, F.; Zhou, X.; Deng, Z.; You, D. A Novel Host-Specific Restriction System Associated with DNA Backbone S-Modification in Salmonella. Nucleic Acids Res. 2010, 38, 7133–7141. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Chen, S.; Wang, L.; Tang, Y.; Ryu, J.Y.; Jiang, S.; Wu, X.; Chen, C.; Luo, J.; Deng, Z.; et al. Occurrence, Evolution, and Functions of DNA Phosphorothioate Epigenetics in Bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, E2988–E2996. [Google Scholar] [CrossRef]
- Payne, L.J.; Meaden, S.; Mestre, M.R.; Palmer, C.; Toro, N.; Fineran, P.C.; Jackson, S.A. PADLOC: A Web Server for the Identification of Antiviral Defence Systems in Microbial Genomes. Nucleic Acids Res. 2022, 50, W541–W550. [Google Scholar] [CrossRef] [PubMed]
- Brady, A.; Felipe-Ruiz, A.; Gallego Del Sol, F.; Marina, A.; Quiles-Puchalt, N.; Penadés, J.R. Molecular Basis of Lysis–Lysogeny Decisions in Gram-Positive Phages. Annu. Rev. Microbiol. 2021, 75, 563–581. [Google Scholar] [CrossRef]
- Sekizuka, T.; Yamamoto, A.; Komiya, T.; Kenri, T.; Takeuchi, F.; Shibayama, K.; Takahashi, M.; Kuroda, M.; Iwaki, M. Corynebacterium ulcerans 0102 Carries the Gene Encoding Diphtheria Toxin on a Prophage Different from the C. diphtheriae NCTC 13129 Prophage. BMC Microbiol. 2012, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Łoś, J.M.; Łoś, M.; Węgrzyn, A.; Węgrzyn, G. Altruism of Shiga Toxin-Producing Escherichia coli: Recent Hypothesis versus Experimental Results. Front. Cell. Infect. Microbiol. 2013, 2, 166. [Google Scholar] [CrossRef]
- Ingmer, H.; Gerlach, D.; Wolz, C. Temperate Phages of Staphylococcus aureus. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kondo, K.; Kawano, M.; Sugai, M. Distribution of Antimicrobial Resistance and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens. mSphere 2021, 6, e00452-21. [Google Scholar] [CrossRef] [PubMed]
- Abad, L.; Gauthier, C.H.; Florian, I.; Jacobs-Sera, D.; Hatfull, G.F. The Heterogenous and Diverse Population of Prophages in Mycobacterium Genomes. mSystems 2023, 8, e00446-23. [Google Scholar] [CrossRef] [PubMed]
- Nielander, M.; Maybank, M.; Massimino, C.; Fitzgerald, J.; Blossum, H.; Douthitt, C.; Holland, C.; Hunter, W.B.; Carrol, M.; D’Elia, T. Complete Genome Sequences of StopSmel and Aussie, Two Mu-like Bacteriophages of Sinorhizobium meliloti. Microbiol. Resour. Announc. 2024, 13, e01230-23. [Google Scholar] [CrossRef]
- Casjens, S.R. Diversity among the Tailed-Bacteriophages That Infect the Enterobacteriaceae. Res. Microbiol. 2008, 159, 340–348. [Google Scholar] [CrossRef]
- Ramisetty, B.C.M.; Sudhakari, P.A. Bacterial ‘Grounded’ Prophages: Hotspots for Genetic Renovation and Innovation. Front. Genet. 2019, 10, 65. [Google Scholar] [CrossRef]
- Brüssow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.V.; Winstanley, C.; Fothergill, J.L.; James, C.E. The Role of Temperate Bacteriophages in Bacterial Infection. FEMS Microbiol. Lett. 2016, 363, fnw015. [Google Scholar] [CrossRef] [PubMed]
- Łoś, J.; Zielińska, S.; Krajewska, A.; Michalina, Z.; Małachowska, A.; Kwaśnicka, K.; Łoś, M. Temperate Phages, Prophages, and Lysogeny. In Bacteriophages; Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 119–150. ISBN 978-3-319-41985-5. [Google Scholar]
- Barondess, J.J.; Beckwfth, J. A Bacterial Virulence Determinant Encoded by Lysogenic Coliphage λ. Nature 1990, 346, 871–874. [Google Scholar] [CrossRef]
- Guerrero-Bustamante, C.A.; Hatfull, G.F. Bacteriophage tRNA-Dependent Lysogeny: Requirement of Phage-Encoded tRNA Genes for Establishment of Lysogeny. mBio 2024, 15, e03260-23. [Google Scholar] [CrossRef]
- Stuart, R.K.; Brahamsha, B.; Busby, K.; Palenik, B. Genomic Island Genes in a Coastal Marine Synechococcus Strain Confer Enhanced Tolerance to Copper and Oxidative Stress. ISME J. 2013, 7, 1139–1149. [Google Scholar] [CrossRef]
- Ilyas, B.; Tsai, C.N.; Coombes, B.K. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome. Front. Cell. Infect. Microbiol. 2017, 7, 428. [Google Scholar] [CrossRef] [PubMed]
- Roumiantseva, M.L.; Muntyan, V.S. Root Nodule Bacteria Sinorhizobium Meliloti: Tolerance to Salinity and Bacterial Genetic Determinants. Microbiology 2015, 84, 303–318. [Google Scholar] [CrossRef]
- Roumiantseva, M.L.; Muntyan, V.S.; Cherkasova, M.E.; Saksaganskaya, A.S.; Andronov, E.E.; Simarov, B.V. Genomic Islands in Sinorhizobium Meliloti Rm1021, Nitrogen-Fixing Symbiont of Alfalfa. Russ. J. Genet. 2018, 54, 759–769. [Google Scholar] [CrossRef]
- Jiménez-Zurdo, J.I.; Martínez-Abarca, F.; Cobo-Díaz, J.F.; López-Contreras, J.A.; Fernández-López, M.; Toro, N. Complete Genome Sequence of Sinorhizobium Meliloti Strain AK21, a Salt-Tolerant Isolate from the Aral Sea Region. Microbiol. Resour. Announc. 2020, 9, e01432-19. [Google Scholar] [CrossRef]
- Galardini, M.; Pini, F.; Bazzicalupo, M.; Biondi, E.G.; Mengoni, A. Replicon-Dependent Bacterial Genome Evolution: The Case of Sinorhizobium meliloti. Genome Biol. Evol. 2013, 5, 542–558. [Google Scholar] [CrossRef]
- Roumiantseva, M.L.; Vladimirova, M.E.; Saksaganskaia, A.S.; Muntyan, V.S.; Kozlova, A.P.; Afonin, A.M.; Baturina, O.A.; Simarov, B.V. Ensifer meliloti L6-AK89, an Effective Inoculant of Medicago lupulina Varieties: Phenotypic and Deep-Genome Screening. Agronomy 2022, 12, 766. [Google Scholar] [CrossRef]
- Vladimirova, M.E.; Muntyan, V.S.; Afonin, A.M.; Muntyan, A.N.; Baturina, O.A.; Dzuybenko, E.A.; Saksaganskaya, A.S.; Simarov, B.V.; Roumiantseva, M.L.; Kabilov, M.R. Complete Genome of Sinorhizobium meliloti AK76, a Symbiont of Wild Diploid Medicago lupulina from the Mugodgary Mountain Region. Microbiol. Resour. Announc. 2022, 11, e01088-21. [Google Scholar] [CrossRef]
- Baturina, O.A.; Muntyan, V.S.; Cherkasova, M.E.; Saksaganskaya, A.S.; Dzuybenko, N.I.; Kabilov, M.R.; Roumiantseva, M.L. Draft Genome Sequence of Sinorhizobium meliloti Strain AK170. Microbiol. Resour. Announc. 2019, 8, e01571-18. [Google Scholar] [CrossRef]
- Baturina, O.A.; Muntyan, V.S.; Afonin, A.M.; Cherkasova, M.E.; Simarov, B.V.; Kabilov, M.R.; Roumiantseva, M.L. Draft Genome Sequence of Sinorhizobium meliloti Strain CXM1-105. Microbiol. Resour. Announc. 2019, 8, e01621-18. [Google Scholar] [CrossRef] [PubMed]
- Muntyan, V.S.; Baturina, O.A.; Afonin, A.M.; Cherkasova, M.E.; Laktionov, Y.V.; Saksaganskaya, A.S.; Kabilov, M.R.; Roumiantseva, M.L. Draft Genome Sequence of Sinorhizobium meliloti AK555. Microbiol. Resour. Announc. 2019, 8, e01567-18. [Google Scholar] [CrossRef]
- Fleagle, B.; Imamovic, A.; Toledo, S.; Couves, M.; Jensen, A.; Vang, M.; Steevens, A.; Young, N.D.; Sadowsky, M.J.; Martinez-Vaz, B.M. Complete Genome Sequence of Sinorhizobium meliloti Bacteriophage HMSP1-Susan. Genome Announc. 2018, 6, e01450-17. [Google Scholar] [CrossRef]
- Brewer, T.E.; Washburn, B.K.; Lynn, J.S.; Jones, K.M. Complete Genome Sequence of Sinorhizobium Phage ΦM6, the First Terrestrial Phage of a Marine Phage Group. Microbiol. Resour. Announc. 2018, 7, e01143-18. [Google Scholar] [CrossRef]
- Kozlova, A.P.; Muntyan, V.S.; Vladimirova, M.E.; Saksaganskaia, A.S.; Kabilov, M.R.; Gorbunova, M.K.; Gorshkov, A.N.; Grudinin, M.P.; Simarov, B.V.; Roumiantseva, M.L. Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. Int. J. Mol. Sci. 2024, 25, 7388. [Google Scholar] [CrossRef]
- Johnson, M.C.; Tatum, K.B.; Lynn, J.S.; Brewer, T.E.; Lu, S.; Washburn, B.K.; Stroupe, M.E.; Jones, K.M. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid. J. Virol. 2015, 89, 10945–10958. [Google Scholar] [CrossRef] [PubMed]
- Brewer, T.E.; Elizabeth Stroupe, M.; Jones, K.M. The Genome, Proteome and Phylogenetic Analysis of Sinorhizobium meliloti Phage ΦM12, the Founder of a New Group of T4-Superfamily Phages. Virology 2014, 450–451, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST: Faster than PHASTER, Better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar] [CrossRef]
- Hudson, C.M.; Lau, B.Y.; Williams, K.P. Islander: A Database of Precisely Mapped Genomic Islands in tRNA and tmRNA Genes. Nucleic Acids Res. 2015, 43, D48–D53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A Fast Phage Search Tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A Fast Online Phylogenetic Tool for Maximum Likelihood Analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Huson, D.H.; Scornavacca, C. Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks. Syst. Biol. 2012, 61, 1061–1067. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
Strain | phiLM21-LPh I | Integration Site (tRNA Gene) | Length (bp) | GC (%) | Total Number of Protein-Coding Genes | Genes Encoding Proteins Similar To: II | tRNA Gene III | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phage Origin Proteins | Non-Phage Origin Proteins | |||||||||||
Total Number | Similar to phiLM21 | Hypothetical | Sinorhizobium-like (S. meliloti) | Other Bacterial Taxa | Lipocalin Family Protein | |||||||
1132 | phi1132-039 | LYS(CUU) | 53,994 | 59.9 | 72 | 33 | 10 | 9 | 22 (2) | 7 | 1 | Met(CAU) |
AK21 | phiAK21-039 | LYS(CUU) | 52,989 | 59.2 | 58 | 33 | 9 | 22 | –/– | 2 | 1 | – |
AK83 | phiAK83-016 | SER(GCU) | 52,890 | 59.8 | 77 | 50 | 23 | 9 | 10 (4) | 8 | – | Val(CAC) |
AK555 | phiAK555-039 | LYS(CUU) | 50,261 | 59.8 | 59 | 32 | 8 | 26 | –/– | –/– | 1 | fMet(CAU) |
CXM1-105 | phiCXM1-105-039 | LYS(CUU) | 53,953 | 59.9 | 75 | 36 | 12 | 5 | 23 (0) | 10 | 1 | fMet(CAU) |
KH35c | phiKH35c-039 | LYS(CUU) | 52,179 | 60.4 | 76 | 43 | 14 | 3 | 15 (1) | 15 | –/– | – |
KH46 | phiKH46-039 | LYS(CUU) | 53,258 | 60 | 78 | 39 | 10 | 6 | 24 (1) | 8 | 1 | – |
M162 | phiM162-016 | SER(GCU) | 53,422 | 60.1 | 70 | 43 | 25 | 1 | 15 (2) | 11 | –/– | fMet(CAU) Met(CAU) |
RMO17 | phiRMO17-039 | LYS(CUU) | 52,040 | 59.6 | 76 | 36 | 8 | 7 | 24 (2) | 8 | 1 | – |
RRI128 | phiRRI128-016 | SER(GCU) | 51,898 | 60.5 | 77 | 52 | 36 | 7 | 9 (1) | 9 | –/– | fMet(CAU) |
S35m | phiS35m-039 | LYS(CUU) | 53,952 | 60.3 | 79 | 38 | 10 | 4 | 24 (1) | 12 | 1 | / |
T073 | phiT073-031 | LEU(UAA) | 55,070 | 60.3 | 82 | 48 | 12 | 11 | 10 (1) | 13 | –/– | Met(CAU) |
USDA1157 | phiUSDA1157-039 | LYS(CUU) | 52,792 | 60 | 72 | 40 | 13 | 8 | 14 (1) | 9 | 1 | Met(CAU) |
BIM B-442D | phiBIM B-442D-016 | SER(GCU) | 52,574 | 60.3 | 77 | 49 | 22 | 6 | 13 (2) | 9 | –/– | – |
phiBIM B-442D-039 | LYS(CUU) | 54,659 | 59.9 | 78 | 36 | 6 | 11 | 24 (0) | 6 | 1 | Met(CAU) | |
LPU88 | phiLPU88-031 | LEU(UAA) | 53,460 | 59.8 | 74 | 40 | 26 | 6 | 18 (3) | 10 | –/– | – |
phiLPU88-039 | LYS(CUU) | 52,687 | 59.9 | 71 | 34 | 10 | 9 | 21 (2) | 6 | 1 | Met(CAU) | |
M270 | phiM270-016 | SER(GCU) | 52,173 | 60.6 | 76 | 47 | 26 | 5 | 11 (1) | 13 | –/– | Met(CAU) |
phiM270-031 | LEU(UAA) | 55,743 | 59.3 | 78 | 42 | 11 | 7 | 17 (2) | 11 | 1 | Met(CAU) | |
Rm41 | phiRm41-016 | SER(GCU) | 51,921 | 60.7 | 74 | 46 | 24 | 6 | 11 (1) | 11 | –/– | Met(CAU) |
phiRm41-039 | LYS(CUU) | 53,565 | 59.8 | 85 | 41 | 11 | 7 | 27 (1) | 9 | 1 | fMet(CAU) | |
SM11 | phiSM11-017 | PRO(GGG) | 50,865 | 59.5 | 70 | 35 | 12 | 4 | 25 (3) | 6 | –/– | – |
phiSM11-031 | LEU(UAA) | 54,164 | 59.4 | 83 | 35 | 8 | 6 | 25 (4) | 16 | 1 | Met(CAU) | |
USDA1021 | phiUSDA1021-016 | SER(GCU) | 52,859 | 60.8 | 77 | 50 | 26 | 11 | 10 (1) | 6 | –/– | Met(CAU) |
phiUSDA1021-039 | LYS(CUU) | 53,485 | 60 | 78 | 35 | 11 | 8 | 24 (1) | 10 | 1 | – |
phiLM21-LPh (Group 1) | Fragments Similar to phiLM21 | Cover (%) of phiLM21 | |||
---|---|---|---|---|---|
Quantity | Sizes of and to (bp) | Total Length, bp | Average Identity, % | ||
phiRRI128-016 | 10 | 254–6107 | 17,178 | 80.7 ± 0.8 | 33.8 |
phiM162-016 | 5 | 251–7347 | 13,782 | 80.7 ± 1.1 | 27.1 |
phiLPU88-031 | 4 | 1003–7371 | 13,570 | 80.8 ± 1.3 | 26.7 |
phiRm41-016 | 6 | 700–5289 | 13,309 | 78.6 ± 1.6 | 26.2 |
phiUSDA1021-016 | 7 | 302–4947 | 12,486 | 79.3 ± 1.3 | 24.6 |
phiM270-016 | 8 | 325–3742 | 11,216 | 79.9 ± 1.0 | 22.1 |
ORF of phiLM21-LPhs | |||||
---|---|---|---|---|---|
COG I | Predicted Protein Function | Groups II | |||
Function Group | Definition (Function Code) | ID | |||
aa-iii | aa-iv | ||||
Metabolism | secondary metabolites biosynthesis, transport, and catabolism (Q) | COG2931 | calcium-binding protein | 2 | - |
COG2931 | protease | 1 | - | ||
inorganic ion transport and metabolism (P) | COG5478 | low-affinity iron permease family protein | 1 | - | |
Cellular Processes and Signaling | cell wall/membrane/envelope biogenesis (M) | COG2244 | lipopolysaccharide biosynthesis protein | 2 | - |
posttranslational modification, protein turnover, chaperones (O) | COG0526 | TlpA family protein disulfide reductase | 3 | 3 | |
defense mechanisms (V) | COG0494 | NUDIX hydrolase | 3 | - | |
intracellular trafficking, secretion, and vesicular transport (U); extracellular structures (W) | COG3847 | Flp family type Ivb pilin | - | 2 | |
Information Storage and Processing | replication, recombination, and repair (L) | COG0593 | chromosomal replication initiator protein DnaA | 1 | - |
COG1793 | multifunctional non-homologous end joining protein LigD | - | 1 | ||
Poorly Characterized | mobilome: prophages, transposons (X) | COG3328 | IS256-like element ISRm3 family transposase | 1 | - |
COG4584 | IS21 family transposase | - | 1 | ||
COG3666 | IS5 family transposase | - | 1 | ||
general function prediction only (R) | COG3179 | peptidoglycan-binding protein | 19 | - | |
function unknown (S) | COG4748 | restriction endonuclease or methylase | 2 | - | |
COG3750 | UPF0335 protein NGR_c28390 | - | 1 | ||
- | cell cycle regulation III | - | GcrA cell cycle regulator | 5 | - |
- | signaling III | - | PhnA-like protein | 4 | - |
- | transporter III | - | potassium transporter Kup | 3 | - |
- | oxidative stress and homeostasis III | - | thiol reductase thioredoxin/thioredoxin/redoxin family protein | 2 | 2 |
- | regulation of cell wall synthesis III | - | SMI1/KNR4 family protein | 2 | - |
- | ammonia metabolism III | - | ammonia monooxygenase | - | 4 |
- | - | - | necrosis-inducing protein | 1 | - |
- | - | - | immunity protein 32 | 1 | - |
- | - | - | ATP-binding protein | - | 1 |
- | - | - | FkbM family methyltransferase | - | 1 |
- | - | - | Arc family DNA-binding protein | - | 1 |
- | - | - | EthD family reductase | - | 1 |
- | - | - | three-Cys-motif partner protein TcmP | - | 4 |
Total ORFs | 53 | 23 |
Prophages | Proteins of Antiphage Systems Encoded by Prophag’s Genes * | |||||
---|---|---|---|---|---|---|
DMS_other | PDC-M32 | PDC-S45 | ||||
SspD | MTase_II | DndC | PDC-M32B | PDC-M32A | PDC-S45 | |
phiAK21-039 | 1.8 × 10−11/3.7 × 10−11 | 2.6 × 10−44/3.3 × 10−44 | - | - | - | 4.3 × 10−94/4.7 × 10−94 |
phiCXM1-105-039 | 3.3 × 10−15/1.3 × 10−14 | 2.8 × 10−80/1.6 × 10−70; 6.6 × 10−27/9 × 10−22 ** | - | - | - | - |
phiRm41-039 | 4.9 × 10−15/1.9 × 10−14 | 4.8 × 10−84/1.4 × 10−80 | - | - | - | - |
phiT073-031 | - | 1.8 × 10−83/5.4 × 10−80; 3 × 10−26/2.5 × 10−21 ** | 2.6 × 10−30/8.1 × 10−29 | - | - | - |
phiUSDA1157-039 | - | - | - | 5.9 × 10−38/2.4 × 10−36 | 7.5 × 10−153/8.3 × 10−153 | - |
Strain | NCBI BioSample ID | Strain | NCBI BioSample ID | Strain | NCBI BioSample ID |
---|---|---|---|---|---|
AK21 I | SAMN08428886 | HM006 | SAMN07175160 | RMO17 | SAMN02952139 |
AK83 I | SAMN00017059 | KH35c | SAMN07175161 | GR4 | SAMN02603224 |
L6-AK89 I | SAMN22420025 II | KH46 | SAMN07175162 | CCMM B554 (FSM-MA) | SAMN06284128 |
AK76 I | SAMN17104055 III | USDA1021 | SAMN07175167 | Rm41 | SAMEA2272434 |
AK170 I | SAMN10256575 IV | USDA1157 | SAMN07175169 | T073 | SAMN07175166 |
AK555 I | SAMN08826593 IV | USDA1106 | SAMN07175168 | M270 | SAMN07175164 |
CXM1-105 I | SAMN08826592 IV | 1021 | SAMEA3283068 | BL225C | SAMN00017103 |
B399 | SAMN06229775 | 2011 | SAMN02603522 | RU11/001 | SAMEA3146337 |
B401 | SAMN06227501 | M162 | SAMN07175163 | SM11 | SAMN02603056 |
S35m | SAMN16812329 | RRI128 | SAMN23416898 | MAG283 | SAMN37646061 |
LPU88 | SAMN37528575 | MABNR56 | SAMN40039399 | MAG282 | SAMN37646062 |
LMB1 | SAMN38508088 | BIM B-442D | SAMN34164031 | 1132 | SAMN40473144 |
Caudoviricetes Virus Lineage | Sinorhizobium Infecting Phage | Genome Size (kb)/ CG Content (%) | GenBank Number/ Submission Date | Phage Type | The Enzyme That Determines the Phage’s Integration/Integration Site | Literary Source |
---|---|---|---|---|---|---|
Unclassified Caudoviricetes | phiLM21 | 50.8/ 60.6% | NC_029046/2014 | temperate | tyrosine integrase/tRNA-Pro(GGG) | [20] |
16-3 | 60.2/ 59.0% | NC_011103/1998 | temperate | tyrosine integrase/tRNA-Pro(CGG) | [27] | |
StopSmel | 37.8/ 60.8% | OR786374/2023 | temperate | transposase/- * | [49] | |
Aussie | 39.0/ 61.9% | OR786373/2023 | temperate | transposase/- | [49] | |
PBC5 | 57.4/ 61.5% | NC_003324/2001 | temperate | integrase/- | [20] | |
HMSP1-Susan | 52.0/ 52.5% | MG214783/2017 | - * | integrase **/- | [68] | |
NV1.1.1 | 64.2/ 59.4% | OP484858/2022 | - * | -/- | [19] | |
phiM6 | 68.2/ 42.9% | MH700630/2018 | - * | transposase/- | [69] | |
AP-16-3 | 61.0/ 59.22% | OP484857/2022 | virulent | tyrosine integrase/- | [19] | |
AP-J-162 | 471.5/ 47.1% | PV864765/2025 | virulent | -/- | [70] | |
phiM5 | 44.0/ 61.0% | MF074189/2017 | virulent | integrase/- | [23] | |
Schitoviridae; Huelvavirus | ort11 | 75.2/ 44.2% | NC_049469/2020 | virulent | -/- | [24] |
Pootjesviridae; Emnonavirus | phiM9 | 149.2/ 49.8% | NC_028676/2015 | virulent | -/- | [71] |
Emdodecavirus | phiM19 | 188.0/ 49.0% | KR052481/2015 | virulent | -/- | [20] |
phiM7 | 188.4/ 49.0% | NC_041929/2019 | virulent | -/- | [20] | |
phiM12 | 194.7/ 49.0% | NC_027204/2013 | virulent | -/- | [72] | |
phiN3 | 206.7/ 49.1% | NC_028945/2015 | virulent | -/- | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladimirova, M.E.; Roumiantseva, M.L.; Saksaganskaia, A.S.; Kozlova, A.P.; Muntyan, V.S.; Gaponov, S.P. Dark Matter Carried by Sinorhizobium meliloti phiLM21-like Prophages. Int. J. Mol. Sci. 2025, 26, 8704. https://doi.org/10.3390/ijms26178704
Vladimirova ME, Roumiantseva ML, Saksaganskaia AS, Kozlova AP, Muntyan VS, Gaponov SP. Dark Matter Carried by Sinorhizobium meliloti phiLM21-like Prophages. International Journal of Molecular Sciences. 2025; 26(17):8704. https://doi.org/10.3390/ijms26178704
Chicago/Turabian StyleVladimirova, Maria E., Marina L. Roumiantseva, Alla S. Saksaganskaia, Alexandra P. Kozlova, Victoria S. Muntyan, and Sergey P. Gaponov. 2025. "Dark Matter Carried by Sinorhizobium meliloti phiLM21-like Prophages" International Journal of Molecular Sciences 26, no. 17: 8704. https://doi.org/10.3390/ijms26178704
APA StyleVladimirova, M. E., Roumiantseva, M. L., Saksaganskaia, A. S., Kozlova, A. P., Muntyan, V. S., & Gaponov, S. P. (2025). Dark Matter Carried by Sinorhizobium meliloti phiLM21-like Prophages. International Journal of Molecular Sciences, 26(17), 8704. https://doi.org/10.3390/ijms26178704