The Role of MCM7 and Its Hosted miR-106b-25 Cluster in Renal Cancer Progression
Abstract
1. Introduction
2. Results
2.1. MCM7 Is Significantly Upregulated in ccRCC Patients
2.2. MCM7 Regulates Properties of Renal Cancer Cells
2.3. Targets of miR-106b-25 Cluster Are Abundantly Expressed in ccRCC
2.4. microRNAs from the miR-106b-25 Cluster Regulate the Expression of ccRCC-Progression-Related Genes by Directly Targeting Their 3′UTRs
2.5. Components of the MCM7-miR-106b-25 Locus Affect Properties of RCC Cells
3. Discussion
4. Materials and Methods
4.1. Tissue Specimens
4.2. Cell Lines Culture
4.3. Transient Transfections with siRNA and Mimics
4.4. Gene Expression Analysis
4.5. Total Protein Isolation and Western Blotting Analysis
4.6. Functional Assays
4.6.1. Luciferase Reporter Assay
4.6.2. BrdU Incorporation Assay
4.6.3. Caspase-3/7 Activity Assay
4.7. Bioinformatics, TCGA, and CPTAC Data Analysis
4.8. Statistical Analysis and Data Presentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Product Name/Target Name | Cat. Number |
---|---|
hsa-miR-25-3p miRCURY LNA miRNA Mimic | 339173_YM00470873-ADA |
hsa-miR-93-5p miRCURY LNA miRNA Mimic | 339173_YM00471046-ADA |
hsa-miR-106b-5p miRCURY LNA miRNA Mimic | 339173_YM00471973-ADA |
Negative Control miRCURY LNA miRNA Mimic | 339173_YM00479902-ADA |
hsa-miR-25-3p miRCURY LNA miRNA Inhibitor | 339121_YI04100613-ADA |
hsa-miR-93-5p miRCURY LNA miRNA Inhibitor | 339121_YI04101031-ADA |
hsa-miR-106b-5p miRCURY LNA miRNA Inhibitor | 339121_YI04100930-ADA |
Negative Control miRCURY LNA miRNA Inhibitor | 339126_YI00199006-ADA |
Gene Name Abbreviation | Nucleotide Sequence (5′ → 3′) | Source |
---|---|---|
18sRNA | F: GTAACCCGTTGAACCCCATT R: CCATCCAATCGGTAGTAGCG | [95] |
ACTB | F: CCAGCTCACCATGGATGATG R: ATGCCGGAGCCGTTGTC | [96] |
ACTB | F: CGGCATCGTCACCAACTG R: GCTGGGGTGTTGAAGGTCTC | [97] |
ATXN1 | F: ACAGTGGAACCTATGCCAGC R: GTTGGCCAGCAGAGTGGAAT | This study |
BRMS1L | F: GGCACAGCATTGATATTACCTCA R: TATGGACCTGAAACAACAACTGG | [69] |
COL19A1 | F: GTGACCCGATTGCACTTCC R: TGGCCCTATATCACCCTTCCG | This study |
CPEB3 | F: CCCTTCTCCAGCAACGTGAT R: TCATAGGGCCTACTCCGGTC | This study |
DOCK4 | F: TCCTACTTTTACCTCGCAGTC R: TCCCAGCTTCCTTGTTATGGAT | This study |
DNAJB9 | F: CCAAAATCGGCATCAGAGCG R: ATTTTGCTTCAGCATCCGGG | This study |
KIF3B | F: CTACCAACATGAACGAGCAC R: GGTTCAATTTTCCTACACGGAT | This study |
MCM7 | F: CCCCTCCCAGTTTGAACCTCT R: TCGCCTCATCTCCACGTATGCT | This study |
NEDD4L | F: TGCCCAAACCACCCCGTCAT R: TCAGGACTGCCCCATTGCTC | [98] |
NFIB95 | F: GCCCATAACCCAGGGAACTG R: CCTCTGAAGATTGACCCCCG | This study |
PTPRJ | F: CTGTTTCCATCAGTCCAACC R: ATGAAGTCGCTGGACGTAAG | [99] |
RBL2 | F: CAACAATGGGCAAACGGTAAC R: GCCACTTGACCAGGGACTTG | [100] |
SMAD7 | F: ATGATCTACCTCAGGGGAAT R: GACTTGATGAAGATGGGGTA | [101] |
Product Name/Target Name | Cat. Number |
---|---|
hsa-miR-25-3p miRCURY LNA miRNA PCR Assay | 339306_YP00204361 |
hsa-miR-93-5p miRCURY LNA miRNA PCR Assay | 339306_YP00204715 |
hsa-miR-106b-5p miRCURY LNA miRNA PCR Assay | 339306_YP00205884 |
SNORD44(hsa) miRCURY LNA miRNA PCR Assay | 339306_YP00203902 |
hsa-miR-28-5p miRCURY LNA miRNA PCR Assay | 339306_YP00204322 |
hsa-miR-103a-3p miRCURY LNA miRNA PCR Assay | 339306_YP00204063 |
ABCG4 AFF1 AFF4 ANKIB1 ANKRD13C ATXN1 B3GALT2 BCL11B BCL2L11 BMPR2 BRMS1L CD69 C17ORF39 CHRM2 CHD9 CIC COL19A1 CPEB3 DLGAP2 DNAJB9 DNAJC27 DOCK4 E2F3 EGR2 FAM126B FAM117B FAM19A1 FCHO2 FNDC3B FRS2 FXR1 GATAD2B HEG1 GIT2 GNS GOLGA1 GPR137C IKZF4 KIAA1128 KIF3B LUZP1 JOSD1 KAT2B LYST MCL1 MTF1 MYT1L NEDD4L NFAT5 NFIB NR4A3 ODZ1 OTUD4 PAFAH1B1 PALLD PHTF2 PITPNA PIP5K3 PTEN PTPRD PTPRJ PTPRO RAB8B RBL2 RGL1 RNF38 RSBN1 RGMA SDC2 SERTAD2 SH3PXD2A SIRPA SMAD6 SMAD7 SGK269 SNF1LK SNIP SOBP SOCS6 SOX4 TTC9 UBE2W USP28 WASL WDFY3 XRN1 TWF1 UBASH3B UBE2W USP28 XRN1 ZNF148 |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal Cell Carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef]
- Roberto, M.; Botticelli, A.; Panebianco, M.; Aschelter, A.M.; Gelibter, A.; Ciccarese, C.; Minelli, M.; Nuti, M.; Santini, D.; Laghi, A.; et al. Metastatic Renal Cell Carcinoma Management: From Molecular Mechanism to Clinical Practice. Front. Oncol. 2021, 11, 657639. [Google Scholar] [CrossRef]
- Jiang, A.; Zapała, Ł.; Qu, L.; Wang, L. Editorial: Establishment of Marker Models for Molecular Typing of Renal Cell Carcinoma. Front. Oncol. 2023, 13, 1236980. [Google Scholar] [CrossRef]
- Choi, S.H.; Chen, Y.-W.; Panian, J.; Yuen, K.; McKay, R.R. Emerging Innovative Treatment Strategies for Advanced Clear Cell Renal Cell Carcinoma. Oncol. 2025, 30, oyae276. [Google Scholar] [CrossRef]
- Qu, K.; Wang, Z.; Fan, H.; Li, J.; Liu, J.; Li, P.; Liang, Z.; An, H.; Jiang, Y.; Lin, Q.; et al. MCM7 Promotes Cancer Progression through Cyclin D1-Dependent Signaling and Serves as a Prognostic Marker for Patients with Hepatocellular Carcinoma. Cell Death Dis. 2017, 8, e2603. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Jiang, C.; Wang, Q.; Mi, J.; Zhang, Y.; Zuo, L.; Geng, Z.; Song, X.; Ge, S.; et al. miR-107 Regulates the Effect of MCM7 on the Proliferation and Apoptosis of Colorectal Cancer via the PAK2 Pathway. Biochem. Pharmacol. 2021, 190, 114610. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Cao, L.; Li, B.; Sui, C.; Li, Y.; Yin, Z. MCM7 Expression Predicts Post-operative Prognosis for Hepatocellular Carcinoma. Liver Int. 2012, 32, 1505–1509. [Google Scholar] [CrossRef]
- Liu, Y.-Z.; Jiang, Y.-Y.; Hao, J.-J.; Lu, S.-S.; Zhang, T.-T.; Shang, L.; Cao, J.; Song, X.; Wang, B.-S.; Cai, Y.; et al. Prognostic Significance of MCM7 Expression in the Bronchial Brushings of Patients with Non-Small Cell Lung Cancer (NSCLC). Lung Cancer 2012, 77, 176–182. [Google Scholar] [CrossRef]
- Garbicz, F.; Mehlich, D.; Rak, B.; Sajjad, E.; Maksymowicz, M.; Paskal, W.; Zieliński, G.; Włodarski, P.K. Increased Expression of the microRNA 106b~25 Cluster and Its Host Gene MCM7 in Corticotroph Pituitary Adenomas Is Associated with Tumor Invasion and Crooke’s Cell Morphology. Pituitary 2017, 20, 450–463. [Google Scholar] [CrossRef]
- Alshahrani, M.Y.; Alshahrani, K.M.; Tasleem, M.; Akeel, A.; Almeleebia, T.M.; Ahmad, I.; Asiri, M.; Alshahrani, N.A.; Alabdallah, N.M.; Saeed, M. Computational Screening of Natural Compounds for Identification of Potential Anti-Cancer Agents Targeting MCM7 Protein. Molecules 2021, 26, 5878. [Google Scholar] [CrossRef]
- Gou, K.; Liu, J.; Feng, X.; Li, H.; Yuan, Y.; Xing, C. Expression of Minichromosome Maintenance Proteins (MCM) and Cancer Prognosis: A Meta-Analysis. J. Cancer 2018, 9, 1518–1526. [Google Scholar] [CrossRef]
- Samad, A.; Parvez, M.d.A.K.; Huq, M.d.A.; Rahman, M.d.S. Transcriptional Expression and Prognostic Roles of MCM7 in Human Bladder, Breast, and Lung Cancers: A Multi-Omics Analysis. Netw. Model. Anal. Health Inform. Bioinforma 2022, 12, 8. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Zhang, J.; Cheng, A.S.L.; Yu, J.; To, K.F.; Kang, W. MCM Family in Gastrointestinal Cancer and Other Malignancies: From Functional Characterization to Clinical Implication. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2020, 1874, 188415. [Google Scholar] [CrossRef]
- Poliseno, L.; Salmena, L.; Riccardi, L.; Fornari, A.; Song, M.S.; Hobbs, R.M.; Sportoletti, P.; Varmeh, S.; Egia, A.; Fedele, G.; et al. Identification of the miR-106b~25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation. Sci. Signal. 2010, 3, ra29. [Google Scholar] [CrossRef]
- Kim, T.; Croce, C.M. MicroRNA: Trends in Clinical Trials of Cancer Diagnosis and Therapy Strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef]
- Ju, J. Challenges and Opportunities in microRNA-Based Cancer Therapeutics. Cell Rep. Med. 2025, 6, 102057. [Google Scholar] [CrossRef]
- Bergantim, R.; Peixoto da Silva, S.; Pinto, V.; Pereira, J.M.; Sousa, D.; Trigo, F.; Matthiesen, R.; Guimarães, J.E.; Vasconcelos, M.H. MicroRNA-665 and Its Potential Role in Drug Response and Survival Outcomes in Multiple Myeloma: A Preliminary Study. Front. Pharmacol. 2025, 16, 1465814. [Google Scholar] [CrossRef]
- Verboon, L.J.; Obulkasim, A.; De Rooij, J.D.E.; Katsman-Kuipers, J.E.; Sonneveld, E.; Baruchel, A.; Trka, J.; Reinhardt, D.; Pieters, R.; Cloos, J.; et al. MicroRNA-106b~25 Cluster Is Upregulated in Relapsed MLL -Rearranged Pediatric Acute Myeloid Leukemia. Oncotarget 2016, 7, 48412–48422. [Google Scholar] [CrossRef]
- Bogusławska, J.; Rodzik, K.; Popławski, P.; Kędzierska, H.; Rybicka, B.; Sokół, E.; Tański, Z.; Piekiełko-Witkowska, A. TGF-Β1 Targets a microRNA Network That Regulates Cellular Adhesion and Migration in Renal Cancer. Cancer Lett. 2018, 412, 155–169. [Google Scholar] [CrossRef]
- Guarnieri, A.L.; Towers, C.G.; Drasin, D.J.; Oliphant, M.U.J.; Andrysik, Z.; Hotz, T.J.; Vartuli, R.L.; Linklater, E.S.; Pandey, A.; Khanal, S.; et al. The miR-106b-25 Cluster Mediates Breast Tumor Initiation through Activation of NOTCH1 via Direct Repression of NEDD4L. Oncogene 2018, 37, 3879–3893. [Google Scholar] [CrossRef]
- El Zaiat, R.S.; Soliman, M.A.E.-R.; Ahmedy, I.A.; Alhanafy, A.M.; Genena, D.E.; Mansour, M.M. The Prognostic Value of the miR-106b ∼ 25 Cluster in Chronic Lymphocytic Leukemia. Hum. Gene 2025, 44, 201407. [Google Scholar] [CrossRef]
- Yu, S.; Wang, G.; Shi, Y.; Xu, H.; Zheng, Y.; Chen, Y. MCMs in Cancer: Prognostic Potential and Mechanisms. Anal. Cell. Pathol. 2020, 2020, 3750294. [Google Scholar] [CrossRef]
- Bogusławska, J.; Popławski, P.; Alseekh, S.; Koblowska, M.; Iwanicka-Nowicka, R.; Rybicka, B.; Kędzierska, H.; Głuchowska, K.; Hanusek, K.; Tański, Z.; et al. MicroRNA-Mediated Metabolic Reprograming in Renal Cancer. Cancers 2019, 11, 1825. [Google Scholar] [CrossRef]
- Mehlich, D.; Garbicz, F.; Włodarski, P.K. The Emerging Roles of the Polycistronic miR-106b∼25 Cluster in Cancer—A Comprehensive Review. Biomed. Pharmacother. 2018, 107, 1183–1195. [Google Scholar] [CrossRef]
- Enkhnaran, B.; Zhang, G.-C.; Zhang, N.-P.; Liu, H.-N.; Wu, H.; Xuan, S.; Yu, X.-N.; Song, G.-Q.; Shen, X.-Z.; Zhu, J.-M.; et al. microRNA-106b-5p Promotes Cell Growth and Sensitizes Chemosensitivity to Sorafenib by Targeting the BTG3/Bcl-xL/P27 Signaling Pathway in Hepatocellular Carcinoma. J. Oncol. 2022, 2022, 1971559. [Google Scholar] [CrossRef]
- Hussen, B.M.; Abdullah, S.R.; Rasul, M.F.; Jawhar, Z.H.; Faraj, G.S.H.; Kiani, A.; Taheri, M. MiRNA-93: A Novel Signature in Human Disorders and Drug Resistance. Cell Commun. Signal. 2023, 21, 79. [Google Scholar] [CrossRef]
- Selvan, T.G.; Gollapalli, P.; Kumar, S.H.S.; Ghate, S.D. Early Diagnostic and Prognostic Biomarkers for Gastric Cancer: Systems-Level Molecular Basis of Subsequent Alterations in Gastric Mucosa from Chronic Atrophic Gastritis to Gastric Cancer. J. Genet. Eng. Biotechnol. 2023, 21, 86. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, B.; Tu, S.; Yuan, H. miR-25-3p Serves as an Oncogenic in Colorectal Cancer Cells by Regulating the Ubiquitin Ligase FBXW7 Function. Oncol. Rep. 2024, 52, 1–12. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Chou, J.-L.; Chang, J.-S.; Chiu, I.-J.; Chiu, H.-W.; Lin, Y.-F. Dysregulation of the miR-25-IMPA2 Axis Promotes Metastatic Progression in Clear Cell Renal Cell Carcinoma. EBioMedicine 2019, 45, 220–230. [Google Scholar] [CrossRef]
- Wang, L.; Yang, G.; Zhu, X.; Wang, Z.; Wang, H.; Bai, Y.; Sun, P.; Peng, L.; Wei, W.; Chen, G.; et al. miR-93-3p Inhibition Suppresses Clear Cell Renal Cell Carcinoma Proliferation, Metastasis and Invasion. Oncotarget 2017, 8, 82824–82834. [Google Scholar] [CrossRef]
- Cao, P.; Gu, J.; Liu, M.; Wang, Y.; Chen, M.; Jiang, Y.; Wang, X.; Zhu, S.; Gao, X.; Li, S. BRMS1L Confers Anticancer Activity in Non-Small Cell Lung Cancer by Transcriptionally Inducing a Redox Imbalance in the GPX2-ROS Pathway. Transl. Oncol. 2024, 41, 101870. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wu, Z.; Liu, X.; Chen, M.; Zhang, X.; Jiang, Y. NFIB Promotes the Progression of Gastric Cancer by Upregulating circMAP7D1 to Stabilize HER2 mRNA. Mol. Med. Rep. 2021, 23, 269. [Google Scholar] [CrossRef]
- Hong, H.; Shi, X.; Ou, W.; Ou, P. Prognostic Biomarker CPEB3 and Its Associations with Immune Infiltration in Clear Cell Renal Cell Carcinoma. Biomed. Rep. 2024, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Kim, Y.-M.; Hong, S. DNAJB9 Suppresses the Metastasis of Triple-Negative Breast Cancer by Promoting FBXO45-Mediated Degradation of ZEB1. Cell Death Dis. 2021, 12, 461. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Kong, D. Identification of Kinesin Family Member 3B (KIF3B) as a Molecular Target for Gastric Cancer. Kaohsiung J. Med. Sci. 2020, 36, 515–522. [Google Scholar] [CrossRef]
- Rizzo, S.; Sikorski, E.; Park, S.; Im, W.; Vasquez-Montes, V.; Ladokhin, A.S.; Thévenin, D. Promoting the Activity of a Receptor Tyrosine Phosphatase with a Novel pH-responsive Transmembrane Agonist Inhibits Cancer-associated Phenotypes. Protein Sci. 2023, 32, e4742. [Google Scholar] [CrossRef]
- Girgis, A.H.; Iakovlev, V.V.; Beheshti, B.; Bayani, J.; Squire, J.A.; Bui, A.; Mankaruos, M.; Youssef, Y.; Khalil, B.; Khella, H.; et al. Multilevel Whole-Genome Analysis Reveals Candidate Biomarkers in Clear Cell Renal Cell Carcinoma. Cancer Res. 2012, 72, 5273–5284. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C.; Wang, X. Exploring the Molecular Landscape of Follicular Lymphoma Histologic Grading: Insights from Genomic and Transcriptome Analyses. Blood 2024, 144, 6214. [Google Scholar] [CrossRef]
- Ren, Y.; Xiong, W.; Feng, C.; Yu, D.; Wang, X.; Yang, Q.; Yu, S.; Zhang, H.; Huo, B.; Jiang, H.; et al. Multi-Omics Insights into the Molecular Signature and Prognosis of Hypopharyngeal Squamous Cell Carcinoma. Commun. Biol. 2025, 8, 370. [Google Scholar] [CrossRef]
- Ren, B.; Yu, G.; Tseng, G.C.; Cieply, K.; Gavel, T.; Nelson, J.; Michalopoulos, G.; Yu, Y.P.; Luo, J.-H. MCM7 Amplification and Overexpression Are Associated with Prostate Cancer Progression. Oncogene 2006, 25, 1090–1098. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Wang, Q.; Song, S.; Feng, L.; Shi, C. The Alterations and Potential Roles of MCMs in Breast Cancer. J. Oncol. 2021, 2021, 7928937. [Google Scholar] [CrossRef]
- Lashen, A.G.; Toss, M.S.; Rutland, C.S.; Green, A.R.; Mongan, N.P.; Rakha, E. Prognostic and Clinical Significance of the Proliferation Marker MCM7 in Breast Cancer. Pathobiology 2024, 92, 18–27. [Google Scholar] [CrossRef]
- Qiu, Y.-T.; Wang, W.-J.; Zhang, B.; Mei, L.-L.; Shi, Z.-Z. MCM7 Amplification and Overexpression Promote Cell Proliferation, Colony Formation and Migration in Esophageal Squamous Cell Carcinoma by Activating the AKT1/mTOR Signaling Pathway. Oncol. Rep. 2017, 37, 3590–3596, Erratum in Oncol. Rep. 2025, 53, 65. [Google Scholar] [CrossRef]
- Su, D. MCM7 Affects the Cisplatin Resistance of Liver Cancer Cells and the Development of Liver Cancer by Regulating the PI3K/Akt Signaling Pathway. Immunopharmacol. Immunotoxicol. 2022, 44, 17–27. [Google Scholar] [CrossRef]
- Bryant, V.L.; Elias, R.M.; McCarthy, S.M.; Yeatman, T.J.; Alexandrow, M.G. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil. Mol. Cancer Res. 2015, 13, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, W.; Liu, J.; Li, J.; He, F.; Jiang, Y.; Yang, L.; Li, P.; Wang, B.; Wang, Y.; et al. Simvastatin Suppresses the DNA Replication Licensing Factor MCM7 and Inhibits the Growth of Tamoxifen-Resistant Breast Cancer Cells. Sci. Rep. 2017, 7, 41776. [Google Scholar] [CrossRef]
- Zhong, H.; Chen, B.; Neves, H.; Xing, J.; Ye, Y.; Lin, Y.; Zhuang, G.; Zhang, S.-D.; Huang, J.; Kwok, H.F. Expression of Minichromosome Maintenance Genes in Renal Cell Carcinoma. Cancer Manag. Res. 2017, 9, 637–647. [Google Scholar] [CrossRef]
- Liu, B.; Xiao, Y.; Li, H.; Zhang, A.; Meng, L.; Feng, L.; Zhao, Z.; Ni, X.; Fan, B.; Zhang, X.; et al. Identification and Verification of Biomarker in Clear Cell Renal Cell Carcinoma via Bioinformatics and Neural Network Model. BioMed Res. Int. 2020, 2020, 6954793. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wang, Y.; Wang, Q. MCM2-7 in Clear Cell Renal Cell Carcinoma: MCM7 Promotes Tumor Cell Proliferation. Front. Oncol. 2021, 11, 782755. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Zeidler, M.; Hüttenhofer, A.; Kress, M.; Kummer, K.K. Intragenic MicroRNAs Autoregulate Their Host Genes in Both Direct and Indirect Ways—A Cross-Species Analysis. Cells 2020, 9, 232. [Google Scholar] [CrossRef]
- Lu, J.; Wei, J.-H.; Feng, Z.-H.; Chen, Z.-H.; Wang, Y.-Q.; Huang, Y.; Fang, Y.; Liang, Y.-P.; Cen, J.-J.; Pan, Y.-H.; et al. miR-106b-5p Promotes Renal Cell Carcinoma Aggressiveness and Stem-Cell-like Phenotype by Activating Wnt/β-Catenin Signalling. Oncotarget 2017, 8, 21461–21471. [Google Scholar] [CrossRef]
- Miao, L.-J.; Yan, S.; Zhuang, Q.-F.; Mao, Q.-Y.; Xue, D.; He, X.-Z.; Chen, J.-P. miR-106b Promotes Proliferation and Invasion by Targeting Capicua through MAPK Signaling in Renal Carcinoma Cancer. OncoTargets Ther. 2019, 12, 3595–3607. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Huang, Y.; Hou, Y.; Li, Q.; Wang, H. Circular RNA ITCH Is a Tumor Suppressor in Clear Cell Renal Cell Carcinoma Metastasis through miR-106b-5p/PDCD4 Axis. J. Immunol. Res. 2021, 2021, 5524344. [Google Scholar] [CrossRef]
- Yang, M.; Xiao, R.; Wang, X.; Xiong, Y.; Duan, Z.; Li, D.; Kan, Q. MiR-93-5p Regulates Tumorigenesis and Tumor Immunity by Targeting PD-L1/CCND1 in Breast Cancer. Ann. Transl. Med. 2022, 10, 203. [Google Scholar] [CrossRef]
- Bustos, M.A.; Gottlieb, J.; Choe, J.; Suyeon, R.; Lin, S.Y.; Allen, W.M.; Krasne, D.L.; Wilson, T.G.; Hoon, D.S.B.; Linehan, J.A. Diagnostic miRNA Signatures in Paired Tumor, Plasma, and Urine Specimens from Renal Cell Carcinoma Patients. Clin. Chem. 2024, 70, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, K.; Asaduzzaman, M.; Cuella, R.; Shi, H.; Raguz, S.; Coombes, R.C.; Zhou, Y.; Yagüe, E. miR-106b~25 Cluster Regulates Multidrug Resistance in an ABC Transporter-Independent Manner via Downregulation of EP300. Oncol. Rep. 2016, 35, 1170–1178. [Google Scholar] [CrossRef]
- Smith, A.L.; Iwanaga, R.; Drasin, D.J.; Micalizzi, D.S.; Vartuli, R.L.; Tan, A.-C.; Ford, H.L. The miR-106b-25 Cluster Targets Smad7, Activates TGF-β Signaling, and Induces EMT and Tumor Initiating Cell Characteristics Downstream of Six1 in Human Breast Cancer. Oncogene 2012, 31, 5162–5171. [Google Scholar] [CrossRef] [PubMed]
- Savita, U.; Karunagaran, D. MicroRNA-106b-25 Cluster Targets β-TRCP2, Increases the Expression of Snail and Enhances Cell Migration and Invasion in H1299 (Non Small Cell Lung Cancer) Cells. Biochem. Biophys. Res. Commun. 2013, 434, 841–847. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, F.; Li, Y.; Chen, Z.; Zhang, X.; Xing, W.; Yuan, W.; Zhou, Y. MiR-106b-25 Promotes Chemoresistance in Acute Myeloid Leukemia Via Abolishing Multiple Apoptotic Pathways. Blood 2021, 138, 4341. [Google Scholar] [CrossRef]
- Lo Sardo, F.; Forcato, M.; Sacconi, A.; Capaci, V.; Zanconato, F.; Di Agostino, S.; Del Sal, G.; Pandolfi, P.P.; Strano, S.; Bicciato, S.; et al. MCM7 and Its Hosted miR-25, 93 and 106b Cluster Elicit YAP/TAZ Oncogenic Activity in Lung Cancer. Carcinogenesis 2017, 38, 64–75. [Google Scholar] [CrossRef]
- Gruszka, R.; Zakrzewska, M. The Oncogenic Relevance of miR-17-92 Cluster and Its Paralogous miR-106b-25 and miR-106a-363 Clusters in Brain Tumors. Int. J. Mol. Sci. 2018, 19, 879. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Silva, B.V.R.E.; Gao, T.; Xu, Z.; Cui, J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Sci. Rep. 2017, 7, 13356. [Google Scholar] [CrossRef] [PubMed]
- Homberg, N.; Galvão Ferrarini, M.; Gaspin, C.; Sagot, M.-F. MicroRNA Target Identification: Revisiting Accessibility and Seed Anchoring. Genes. 2023, 14, 664. [Google Scholar] [CrossRef]
- Fischer, S.; Handrick, R.; Aschrafi, A.; Otte, K. Unveiling the Principle of microRNA-Mediated Redundancy in Cellular Pathway Regulation. RNA Biol. 2015, 12, 238–247. [Google Scholar] [CrossRef]
- Cen, Y.; Gong, C.; Li, J.; Liang, G.; Liu, Z.; Luo, Q.; Lin, Q.; Shi, Y.; Li, J.; Fang, X. BRMS1L Inhibits Bone Metastasis of Breast Cancer Cells through Epigenetic Silence of CXCR4. J. Clin. Oncol. 2021, 39, e13002. [Google Scholar] [CrossRef]
- Gong, C.; Qu, S.; Lv, X.-B.; Liu, B.; Tan, W.; Nie, Y.; Su, F.; Liu, Q.; Yao, H.; Song, E. BRMS1L Suppresses Breast Cancer Metastasis by Inducing Epigenetic Silence of FZD10. Nat. Commun. 2014, 5, 5406. [Google Scholar] [CrossRef]
- Cao, P.; Zhao, S.; Sun, Z.; Jiang, N.; Shang, Y.; Wang, Y.; Gu, J.; Li, S. BRMS1L Suppresses Ovarian Cancer Metastasis via Inhibition of the β-Catenin-Wnt Pathway. Exp. Cell Res. 2018, 371, 214–221. [Google Scholar] [CrossRef]
- Koyama, R.; Tamura, M.; Nakagaki, T.; Ohashi, T.; Idogawa, M.; Suzuki, H.; Tokino, T.; Sasaki, Y. Identification and Characterization of a Metastatic Suppressor BRMS1L as a Target Gene of P53. Cancer Sci. 2017, 108, 2413–2421. [Google Scholar] [CrossRef]
- Perumal, N.; Gopalakrishnan, P.; Burkovetskaya, M.; Doss, D.; Dukkipati, S.S.; Kanchan, R.K.; Mahapatra, S. Nuclear Factor I/B: Duality in Action in Cancer Pathophysiology. Cancer Lett. 2025, 609, 217349. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, X.; Liu, W.; Ruan, T.; Wan, W.; Tao, K. NFIB Promotes Cell Growth, Aggressiveness, Metastasis and EMT of Gastric Cancer through the Akt/Stat3 Signaling Pathway. Oncol. Rep. 2018, 40, 1565–1573. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, H.; Chen, Z.; Chen, S.; Lu, J.; Liu, C.; Liao, S.; He, S.; Chen, S.; Zhou, Z. Downregulation of miR-182-5p by NFIB Promotes NAD+ Salvage Synthesis in Colorectal Cancer by Targeting NAMPT. Commun. Biol. 2023, 6, 775. [Google Scholar] [CrossRef]
- Lou, C.; Shi, J.; Xu, Q. Exosomal miR-626 Promotes the Malignant Behavior of Oral Cancer Cells by Targeting NFIB. Mol. Biol. Rep. 2022, 49, 4829–4840. [Google Scholar] [CrossRef]
- Vo, T.M.; Jain, S.; Burchett, R.; Monckton, E.A.; Godbout, R. A Positive Feedback Loop Involving Nuclear Factor IB and Calpain 1 Suppresses Glioblastoma Cell Migration. J. Biol. Chem. 2019, 294, 12638–12654. [Google Scholar] [CrossRef]
- Wang, N.; Yuan, J.; Liu, F.; Wei, J.; Liu, Y.; Xue, M.; Dong, R. NFIB Promotes the Migration and Progression of Kidney Renal Clear Cell Carcinoma by Regulating PINK1 Transcription. PeerJ 2021, 9, e10848. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, D.; Su, Z.; Li, Y.; Liu, J.; Jin, L.; Shi, M.; Jiang, Z.; Qi, Z.; Gui, Y.; et al. MicroRNA-106b Functions as an Oncogene in Renal Cell Carcinoma by Affecting Cell Proliferation, Migration and Apoptosis. Mol. Med. Rep. 2016, 13, 1420–1426. [Google Scholar] [CrossRef]
- Liu, L.-J.; Yu, J.-J.; Xu, X.-L. MicroRNA-93 Inhibits Apoptosis and Promotes Proliferation, Invasion and Migration of Renal Cell Carcinoma ACHN Cells via the TGF-β/Smad Signaling Pathway by Targeting RUNX3. Am. J. Transl. Res. 2017, 9, 3499–3513. [Google Scholar]
- Liu, G.; Kang, X.; Guo, P.; Shang, Y.; Du, R.; Wang, X.; Chen, L.; Yue, R.; Kong, F. miR-25-3p Promotes Proliferation and Inhibits Autophagy of Renal Cells in Polycystic Kidney Mice by Regulating ATG14-Beclin 1. Ren. Fail. 2020, 42, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Erkan, E.P.; Ströbel, T.; Lewandrowski, G.; Tannous, B.; Madlener, S.; Czech, T.; Saydam, N.; Saydam, O. Depletion of Minichromosome Maintenance Protein 7 Inhibits Glioblastoma Multiforme Tumor Growth in Vivo. Oncogene 2014, 33, 4778–4785. [Google Scholar] [CrossRef] [PubMed]
- Dell’Atti, L.; Bianchi, N.; Aguiari, G. New Therapeutic Interventions for Kidney Carcinoma: Looking to the Future. Cancers 2022, 14, 3616. [Google Scholar] [CrossRef]
- Choy, B.; LaLonde, A.; Que, J.; Wu, T.; Zhou, Z. MCM4 and MCM7, Potential Novel Proliferation Markers, Significantly Correlated with Ki-67, Bmi1, and Cyclin E Expression in Esophageal Adenocarcinoma, Squamous Cell Carcinoma, and Precancerous Lesions. Hum. Pathol. 2016, 57, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, X. Prediction of Functional microRNA Targets by Integrative Modeling of microRNA Binding and Target Expression Data. Genome Biol. 2019, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. miRDB: An Online Database for Prediction of Functional microRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef]
- Shirdel, E.A.; Xie, W.; Mak, T.W.; Jurisica, I. NAViGaTing the Micronome--Using Multiple microRNA Prediction Databases to Identify Signalling Pathway-Associated microRNAs. PLoS ONE 2011, 6, e17429. [Google Scholar] [CrossRef]
- Tokar, T.; Pastrello, C.; Rossos, A.E.M.; Abovsky, M.; Hauschild, A.-C.; Tsay, M.; Lu, R.; Jurisica, I. mirDIP 4.1—Integrative Database of Human microRNA Target Predictions. Nucleic Acids Res. 2018, 46, D360–D370. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.-P.; Lee, C.-Y.; Tsai, M.-H.; Chiu, Y.-C.; Hsiao, C.K.; Lai, L.-C.; Chuang, E.Y. miRSystem: An Integrated System for Characterizing Enriched Functions and Pathways of MicroRNA Targets. PLoS ONE 2012, 7, e42390. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting Effective microRNA Target Sites in Mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data. Nucleic Acids Res. 2016, 44, e71. [Google Scholar] [CrossRef]
- The R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Wickham, H. Data Analysis. In ggplot2: Elegant Graphics for Data Analysis; Wickham, H., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 189–201. ISBN 978-3-319-24277-4. [Google Scholar]
- Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing Multi-Omics Data within and across 32 Cancer Types. Nucleic Acids Res. 2018, 46, D956–D963. [Google Scholar] [CrossRef]
- Li, Y.; Dou, Y.; Da Veiga Leprevost, F.; Geffen, Y.; Calinawan, A.P.; Aguet, F.; Akiyama, Y.; Anand, S.; Birger, C.; Cao, S.; et al. Proteogenomic Data and Resources for Pan-Cancer Analysis. Cancer Cell 2023, 41, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Piekielko-Witkowska, A.; Wiszomirska, H.; Wojcicka, A.; Poplawski, P.; Boguslawska, J.; Tanski, Z.; Nauman, A. Disturbed expression of splicing factors in renal cancer affects alternative splicing of apoptosis regulators, oncogenes, and tumor suppressors. PLoS ONE 2010, 5, e13690. [Google Scholar] [CrossRef]
- Glenn, S.T.; Jones, C.A.; Liang, P.; Kaushik, D.; Gross, K.W.; Kim, H.L. Expression profiling of archival renal tumors by quantitative PCR to validate prognostic markers. Biotechniques 2007, 43, 639–640, 642–643, 647. [Google Scholar] [CrossRef] [PubMed]
- Master, A.; Wójcicka, A.; Piekiełko-Witkowska, A.; Bogusławska, J.; Popławski, P.; Tański, Z.; Darras, V.M.; Williams, G.R.; Nauman, A. Untranslated regions of thyroid hormone receptor beta 1 mRNA are impaired in human clear cell Renal Cell Carcinoma. Biochim. Biophys. Acta 2010, 1802, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Gong, X.; Liu, A.; Lv, X.; Hu, B.; Zhang, H. Downregulation of Nedd4L predicts poor prognosis, promotes tumor growth and inhibits MAPK/ERK signal pathway in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2018, 495, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.N.; Mehta, K.R.; Peterson, D.; Evangelista, M.; Livesey, J.C.; Faridi, J.S. AKT-induced tamoxifen resistance is overturned by RRM2 inhibition. Mol. Cancer Res. 2014, 12, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Poplawski, P.; Nauman, A. Thyroid hormone—Triiodothyronine—Has contrary effect on proliferation of human proximal tubules cell line (HK2) and renal cancer cell lines (Caki-2, Caki-1)—Role of E2F4, E2F5 and p107, p130. Thyroid Res. 2008, 1, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Y.; Yang, S.; Zhang, P. Effect of Exogenous Fetuin-A on TGF-β/Smad Signaling in Hepatic Stellate Cells. Biomed. Res. Int. 2016, 2016, 8462615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głuchowska, K.M.; Hofman, B. The Role of MCM7 and Its Hosted miR-106b-25 Cluster in Renal Cancer Progression. Int. J. Mol. Sci. 2025, 26, 8618. https://doi.org/10.3390/ijms26178618
Głuchowska KM, Hofman B. The Role of MCM7 and Its Hosted miR-106b-25 Cluster in Renal Cancer Progression. International Journal of Molecular Sciences. 2025; 26(17):8618. https://doi.org/10.3390/ijms26178618
Chicago/Turabian StyleGłuchowska, Katarzyna M., and Bartłomiej Hofman. 2025. "The Role of MCM7 and Its Hosted miR-106b-25 Cluster in Renal Cancer Progression" International Journal of Molecular Sciences 26, no. 17: 8618. https://doi.org/10.3390/ijms26178618
APA StyleGłuchowska, K. M., & Hofman, B. (2025). The Role of MCM7 and Its Hosted miR-106b-25 Cluster in Renal Cancer Progression. International Journal of Molecular Sciences, 26(17), 8618. https://doi.org/10.3390/ijms26178618