Polymeric Applications of Cellulose from Tibouchina lepidota (Bonpl.) Baill Extracted from Sustainable Forest Residues
Abstract
1. Introduction
2. Results
2.1. Amount of Cellulose Extracted
2.1.1. FTIR Characterization of Extracted Cellulose (250 μm Sample)
Wavelength Observed [cm−1] | % T | Observed Wavelength (Biswas & Ray [20]) [cm−1] | Assignment of Functional Groups |
---|---|---|---|
3336.25 | 80.071 | 3330–3340 | Asymmetric bond stretching C–H |
2919.7 | 88.615 | 2920–2930 | Asymmetric bond stretching C–H |
1646.91 | 95.685 | 1640–1650 | Asymmetric bond stretching C=O |
1365.35 | 94.250 | 1370–1380 | Asymmetric bond stretching C–C |
1153.22 | 94.099 | 1150–1160 | Stretching of bond C–O–C |
1025.94 | 82.401 | 1020–1030 | Stretching of bond C–H |
894.809 | 95.761 | 890–900 | Stretching of bond O–H |
709.676 | 96.241 | 700–720 | Stretching of bond C–O |
659.536 | 94.300 | 650–670 | Stretching of bond C–O |
597.825 | 94.057 | 590–610 | Stretching of bond C–O |
555.398 | 93.454 | 540–560 | Stretching of bond C–H |
2.1.2. FTIR Characterization of Extracted Cellulose (125 μm Sample)
2.2. Solubility Results and Determination of Cellulose Type
2.2.1. Optical Microscopy of Cellulose Extracted from the 250 μm Sample
2.2.2. Optical Microscopy of Cellulose Extracted from the 125 μm Sample
3. Discussion
4. Materials and Methods
4.1. Botanical Identification
4.2. Cellulose Extraction
4.3. Characterization of Extracted Cellulose
4.4. Gravimetric Quantification of Extracted Cellulose
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Debnath, B.; Haldar, D.; Purkait, M.K. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr. Polym. 2021, 273, 118537. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, F.; Ouyang, S.; Liu, Y.; Hu, Z.; Wu, Y.; Qian, J.; Li, Z.; Wang, L.; Ma, S. A comprehensive review on preparation and functional application of the wood aerogel with natural cellulose framework. Int. J. Biol. Macromol. 2024, 275, 133340. [Google Scholar] [CrossRef] [PubMed]
- Vela, D.R.M.; Vizuete, R.F.Z.; Mancheno, A.C.F. Implications of Particle Size in the Extraction of Cellulose from the Cala-magrostis Intermedia Species. Bionatura 2023, 8, 57. [Google Scholar] [CrossRef]
- Vela, D.R.M.; Freire, C.N.V.; Vizuete, R.F.Z.; Mancheno, A.C.F. Utilization of Forest Residues for Cellulose Extraction from Timber Species in the High Montane Forest of Chimborazo, Ecuador. Polymers 2024, 16, 2713. [Google Scholar] [CrossRef] [PubMed]
- Terzopoulou, P.; Kamperidou, V.; Barboutis, I. Utilization Potential of Tree-of-Heaven Species Biomass—A Review. Appl. Sci. 2023, 13, 9185. [Google Scholar] [CrossRef]
- Emenike, E.C.; Iwuozor, K.O.; Saliu, O.D.; Ramontja, J.; Adeniyi, A.G. Advances in the extraction, classification, modification, emerging and advanced applications of crystalline cellulose: A review. Carbohydr. Polym. Technol. Appl. 2023, 6, 100337. [Google Scholar] [CrossRef]
- Puls, J.; Wilson, S.A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2010, 19, 152–165. [Google Scholar] [CrossRef]
- Wingfield, M.J.; Rodas, C.; Myburg, H.; Venter, M.; Wright, J.; Wingfield, B.D. Cryphonectria canker on Tibouchina in Colombia. For. Pathol. 2001, 31, 297–306. [Google Scholar] [CrossRef]
- Gryzenhout, M.; Myburg, H.; Rodas, C.A.; Wingfield, B.D.; Wingfield, M.J. Aurapex penicillata gen. sp. nov. from native Miconia theaezans and Tibouchina spp. in Colombia. Mycologia 2006, 98, 105–115. [Google Scholar] [CrossRef]
- Martí, B.V.; Gaibor-Chávez, J.; Rodríguez, J.E.F.; Cortés, I.L. Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas. Agronomy 2023, 13, 2347. [Google Scholar] [CrossRef]
- Hawkins, S.M.; Ruter, J.M.; Robacker, C.D. Interspecific and Intergeneric Hybridization in Dissotis and Tibouchina. HortScience 2016, 51, 325–329. [Google Scholar] [CrossRef]
- Salbitano, F.; Borelli, S.; Conigliaro, M.; Chen, Y. Guidelines on Urban and Peri-Urban Forestry; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Wu, J.H.; He, C.Y. Advances in Cellulose-Based Sorbents for Extraction of Pollutants in Environmental Samples. Chromatographia 2019, 82, 1151–1169. [Google Scholar] [CrossRef]
- Vela, D.R.M.; Logroño, F.A.N. Preparation and Characterization of Cellulose Acetate and Cellulose Nitrate Prepared from Cellulose Extracted from Calamagrostis intermedia. Asian J. Chem. 2022, 34, 2099–2104. [Google Scholar] [CrossRef]
- Kostryukov, S.G.; Matyakubov, H.B.; Masterova, Y.Y.; Kozlov, S.A.; Pryanichnikova, M.K.; Pynenkov, A.A.; Khluchina, N.A. Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. J. Anal. Chem. 2023, 78, 718–727. [Google Scholar] [CrossRef]
- Nawrocka, A.; Krekora, M.; Niewiadomski, Z.; Miś, A. Characteristics of the chemical processes induced by celluloses in the model and gluten dough studied with application of FTIR spectroscopy. Food Hydrocoll. 2018, 85, 176–184. [Google Scholar] [CrossRef]
- Fuller, M.E.; Andaya, C.; McClay, K. Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. J. Microbiol. Methods 2018, 144, 145–151. [Google Scholar] [CrossRef]
- Asogan, A.; Sazali, N.; Salleh, W.N.W.; Ibrahim, H.; Krishnan, R.N. FTIR Analysis of Plant-Based Cellulose as Adsorbents for Water Remediation. In Proceedings of the 2nd Energy Security and Chemical Engineering Congress, Virtual, 3–5 November 2021; Lecture Notes in Mechanical Engineering. pp. 89–94. [Google Scholar] [CrossRef]
- Biswas, S.; Rahaman, T.; Gupta, P.; Mitra, R.; Dutta, S.; Kharlyngdoh, E.; Guha, S.; Ganguly, J.; Pal, A.; Das, M. Cellulose and lignin profiling in seven, economically important bamboo species of India by anatomical, biochemical, FTIR spectroscopy and thermogravimetric analysis. Biomass Bioenergy 2022, 158, 106362. [Google Scholar] [CrossRef]
- Amaral, H.R.; Cipriano, D.F.; Santos, M.S.; Schettino, M.A.; Ferreti, J.V.; Meirelles, C.S.; Pereira, V.S.; Cunha, A.G.; Emmerich, F.G.; Freitas, J.C. Production of high-purity cellulose, cellulose acetate and cellulose-silica composite from babassu coconut shells. Carbohydr. Polym. 2019, 210, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Radotić, K.; Mićić, M. Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues. In Sample Preparation Techniques for Soil, Plant, and Animal Samples; Springer: Berlin/Heidelberg, Germany, 2016; pp. 365–376. [Google Scholar] [CrossRef]
- Gonultas, O.; Candan, Z. Chemical characterization and ftir spectroscopy of thermally compressed eucalyptus wood panels. Maderas Cienc. Y Tecnol. 2018, 20, 431–442. [Google Scholar] [CrossRef]
- Yan, C.; Huang, W.; Ma, J.; Xu, J.; Lv, Q.; Lin, P. Characterizing the SBS polymer degradation within high content polymer modified asphalt using ATR-FTIR. Constr. Build. Mater. 2020, 233, 117708. [Google Scholar] [CrossRef]
- Fei, P.; Liao, L.; Cheng, B.; Song, J. Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal. Methods 2017, 9, 6194–6201. [Google Scholar] [CrossRef]
- Grzybek, P.; Dudek, G.; van der Bruggen, B. Cellulose-based films and membranes: A comprehensive review on preparation and applications. Chem. Eng. J. 2024, 495, 153500. [Google Scholar] [CrossRef]
- Bray, M.W.; Andrews, T.M. An improved method for the determination of alpha-, beta-, and gamma-cellulose. Ind. Eng. Chem. 1923, 15, 377–378. [Google Scholar] [CrossRef]
- Rahimi, A.; Ulbrich, A.; Coon, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Dhepe, P.L. Alpha-, Beta- and Gamma-Cellulose Quantification and Two-Stage Concentrated-Dilute Acid Lignin Recovery from Three Rice Husks: Lignin Characterization and Depolymerization. Waste Biomass Valorization 2022, 13, 2963–2977. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Orelma, H.; Hokkanen, A.; Leppänen, I.; Kammiovirta, K.; Kapulainen, M.; Harlin, A. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications. Cellulose 2020, 27, 1543–1553. [Google Scholar] [CrossRef]
- Jacob, N.D.; Hassanzadeh, H.; Oliver, D.R.; Sherif, S.S.; Kordi, B. Classification of degradation in oil-impregnated cellulose insulation using texture analysis of optical microscopy images. Electr. Power Syst. Res. 2016, 133, 104–112. [Google Scholar] [CrossRef]
- Kita, Y.; Setiyobudi, T.; Awano, T.; Yoshinaga, A.; Sugiyama, J. Simultaneous cell-by-cell recognition and microfibril angle determination in Japanese hardwoods by polarized optical microscopy combined with semantic segmentation. Cellulose 2023, 30, 8439–8450. [Google Scholar] [CrossRef]
- Tom, C.; Paineau, E.; Pujala, R.K. Investigating the phase behaviour of binary suspensions of cellulose nanocrystals and montmorillonite with nonlinear rheology, SAXS and polarized optical microscopy. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 683, 132972. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, S.; Lavoine, N.; Lucia, L.A. Structural reconstruction strategies for the design of cellulose nanomaterials and aligned wood cellulose-based functional materials—A review. Carbohydr. Polym. 2020, 247, 116722. [Google Scholar] [CrossRef]
- Gopalan, G.P.; Suku, A.; Anas, S. Nanostructured Cellulose: Extraction and Characterization. In Handbook of Biomass; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Hartono, R.; Iswanto, A.H.; Priadi, T.; Herawati, E.; Farizky, F.; Sutiawan, J.; Sumardi, I. Physical, Chemical, and Mechanical Properties of Six Bamboo from Sumatera Island Indonesia and Its Potential Applications for Composite Materials. Polymers 2022, 14, 4868. [Google Scholar] [CrossRef]
- Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 2014, 100, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Huda, E.; Rahmi; Khairan. Preparation and characterization of cellulose acetate from cotton. IOP Conf. Ser. Earth Environ. Sci. 2019, 364, 012021. [Google Scholar] [CrossRef]
- Wang, C.; Su, J.; Liu, T.; Ge, S.; Liew, R.K.; Zhang, H.; Naushad, M.; Lam, S.S.; Ng, H.S.; Sonne, C.; et al. A sustainable strategy to transform cotton waste into renewable cellulose fiber self-reinforcing composite paper. J. Clean. Prod. 2023, 429, 139567, Corrigendum in: J. Clean. Prod. 2024, 450, 141863. [Google Scholar] [CrossRef]
- Oshikata, M.S.K.; Blas, N.S.; Silva, B.d.L.; Fukamizu, D.I.; da Silva, D.R.B.; Gauto, L.P.; Cruz, A.J.G.; Morandim-Giannetti, A.d.A.; Pratto, B. Cotton waste upcycling: Biofuel and cellulose derivatives production. Cellulose 2024, 31, 6693–6704. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Khan, M.N.; Abidin, Z.U.; Khan, S.; Almas; Mustafa, S.; Ahmad, I. Birefringence of cellulose: Review; measurement techniques; dispersion models, biomedical applications and future perspectives. Wood Sci. Technol. 2023, 58, 5–22. [Google Scholar] [CrossRef]
- Basuki, K. Cellulose and Cellulose Derivatives. In Polysaccharides II. Advances in Polymer Science; Heinze, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 186. [Google Scholar] [CrossRef]
- Candido, R.G.; Godoy, G.G.; Gonçalves, A. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydr. Polym. 2017, 167, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Shokri, J.; Adibkia, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In Cellulose—Medical, Pharmaceutical and Electronic Applications; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Motshabi, N.; Lenetha, G.G.; Malimabe, M.A.; Gumede, T.P. Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications. Polymers 2025, 17, 1947. [Google Scholar] [CrossRef]
- Kumar, R.; Hu, F.; Hubbell, C.A.; Ragauskas, A.J.; Wyman, C.E. Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour. Technol. 2013, 130, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.A.N.; Jai, J. Response surface methodology for optimization of cellulose extraction from banana stem using NaOH-EDTA for pulp and papermaking. Heliyon 2022, 8, e09114. [Google Scholar] [CrossRef] [PubMed]
- Bicu, I.; Mustata, F. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents. Carbohydr. Polym. 2013, 98, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Zakikhani, P.; Zahari, R.; Sultan, M.T.B.H.H.; Majid, D.L.A.A. Morphological, mechanical, and physical properties of four bamboo species. BioResources 2017, 12, 2479–2495. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Chuin, C.T.H.; Sabar, S.; Fazita, M.N.; Taiwo, O.F.; Hassan, T.; Haafiz, M.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef]
- Kossalbayev, B.D.; Belkozhayev, A.M.; Abaildayev, A.; Kadirshe, D.K.; Tastambek, K.T.; Kurmanbek, A.; Toleutay, G. Biodegradable Packaging from Agricultural Wastes: A Comprehensive Review of Processing Techniques, Material Properties, and Future Prospects. Polymers 2025, 17, 2224. [Google Scholar] [CrossRef]
- Alemdar, A.; Sain, M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 2008, 99, 1664–1671. [Google Scholar] [CrossRef]
- Moramarco, A.; Ricca, E.; Acciardo, E.; Laurenti, E.; Bracco, P. Cellulose Extraction from Soybean Hulls and Hemp Waste by Alkaline and Acidic Treatments: An In-Depth Investigation on the Effects of the Chemical Treatments on Biomass. Polymers 2025, 17, 1220. [Google Scholar] [CrossRef]
- ISO 638-1:2022; Paper, Board, Pulps and Cellulosic Nanomaterials—Determination of Dry Matter Content by Oven-Drying Method. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: www.iso.org/iso/foreword.html (accessed on 14 January 2025).
- TAPPI. Alpha-; Beta-; Gamma-Cellulose in Pulp. 1999. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/profile/Prakashchandra-Mervana/post/What_is_the_best_way_to_extract_lignin_and_hemicellulose_from_a_raw_sample_in_preparation_of_cellulose_nanofibers/attachment/59d64047c49f478072eaa2c4/AS%253A273786585190400%25401442287216562/download/T203%2BAlpha-%252C%2Bbeta-%2Band%2Bgamma-cellulose%2Bin%2Bpulp.pdf&ved=2ahUKEwi3jpyHjL6PAxXHdvUHHRhlGjwQFnoECB4QAQ&usg=AOvVaw0RwKWSSjFPgBskfCCN22AC (accessed on 28 August 2025).
- Esteves, V.G.; Sevastyanova, O.; Östlund, S.; Brännvall, E. The impact of bleaching on the yield of softwood kraft pulps obtained by high alkali impregnation Bleaching and high alkali impregnation impact. Nord. Pulp Pap. Res. J. 2022, 37, 593–608. [Google Scholar] [CrossRef]
- Saldivar-Guerra, E. Handbook of Polymer Synthesis, Characterization, and Processing; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
T250 | 4.68 | 4.67 | 4.70 | 4.91 | 4.46 | 4.80 | 4.81 | 4.78 | 4.82 | 4.71 |
T125 | 3.42 | 3.78 | 3.61 | 3.52 | 3.56 | 3.5 | 3.71 | 3.70 | 3.69 | 3.64 |
Particle Size (μm) | Sample Mass (g) | Sample Mass Delignified and Cellularized (g) | Cellulose (%) | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Coefficient of Variation | |||
250 | 50 | 4734 | 0.105 | 2.22% | 90.54 |
125 | 50 | 3624 | 0.074 | 2.04% | 92.76 |
Wavelength Observed [cm−1] | % T | Observed Wavelength (Biswas & Ray [20]) [cm−1] | Assignment of Functional Groups |
---|---|---|---|
3293.82 | 82.512 | 3330–3340 | Asymmetric bond stretching C–H |
2923.56 | 89.906 | 2920–2930 | Asymmetric bond stretching C–H |
1650.77 | 95.407 | 1640–1650 | Asymmetric bond stretching C=O |
1369.21 | 94.513 | 1370–1380 | Asymmetric bond stretching C–C |
1153.22 | 94.882 | 1150–1160 | Estiramiento de enlaces C–O–C |
1022.09 | 85.905 | 1020–1030 | Stretching of bond C–H |
894.809 | 96.320 | 890–900 | Stretching of bond O–H |
825.384 | 97.444 | 820–830 | Stretching of bond C–O |
786.815 | 97.551 | 780–790 | Stretching of bond C–O |
701.962 | 96.631 | 700–720 | Stretching of bond C–O |
659.536 | 95.594 | 650–670 | Stretching of bond C–O |
636.394 | 95.475 | 630–640 | Stretching of bond C–O |
597.825 | 95.666 | 590–610 | Stretching of bond C–O |
566.969 | 96.099 | 550–570 | Stretching of bond C–H |
528.4 | 97.155 | 520–530 | Stretching of bond C–H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzano Vela, D.R.; Zabala Vizuete, R.F.; Flores Mancheno, A.C.; Salas Castelo, E.M. Polymeric Applications of Cellulose from Tibouchina lepidota (Bonpl.) Baill Extracted from Sustainable Forest Residues. Int. J. Mol. Sci. 2025, 26, 8592. https://doi.org/10.3390/ijms26178592
Manzano Vela DR, Zabala Vizuete RF, Flores Mancheno AC, Salas Castelo EM. Polymeric Applications of Cellulose from Tibouchina lepidota (Bonpl.) Baill Extracted from Sustainable Forest Residues. International Journal of Molecular Sciences. 2025; 26(17):8592. https://doi.org/10.3390/ijms26178592
Chicago/Turabian StyleManzano Vela, Dennis Renato, Rolando Fabian Zabala Vizuete, Ana Carola Flores Mancheno, and Edison Marcelo Salas Castelo. 2025. "Polymeric Applications of Cellulose from Tibouchina lepidota (Bonpl.) Baill Extracted from Sustainable Forest Residues" International Journal of Molecular Sciences 26, no. 17: 8592. https://doi.org/10.3390/ijms26178592
APA StyleManzano Vela, D. R., Zabala Vizuete, R. F., Flores Mancheno, A. C., & Salas Castelo, E. M. (2025). Polymeric Applications of Cellulose from Tibouchina lepidota (Bonpl.) Baill Extracted from Sustainable Forest Residues. International Journal of Molecular Sciences, 26(17), 8592. https://doi.org/10.3390/ijms26178592