Acetaminophen’s Role in Autism and ADHD: A Mitochondrial Perspective
Abstract
1. Introduction
2. Acetaminophen History
3. Review of Literature Neurodevelopmental Literature
3.1. Longitudinal Studies
Genetics Confounders
3.2. Murine Studies
3.2.1. Behavioral Results
3.2.2. Biochemical Results
4. Dimensional Theory of ASD and ADHD
4.1. Statistical Analysis
4.1.1. ASD Diagnostic Criteria
4.1.2. ADHD Diagnostic Criteria
4.1.3. Random Forest Classification and Community Detection
4.2. Common Genetics
4.3. Shared Medical Conditions
5. Etiologies
5.1. APAP in Utero
5.2. Vulnerable Populations: Fetuses and Infants
5.3. Inflammation in the Mitochondria
5.3.1. Biomarkers of Oxidative Stress in ASD
5.3.2. Biomarkers of Oxidative Stress in ADHD
6. Connective Tissue Symptoms
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CDC | Centers for Disease Control and Prevention |
ADHD | Attention-Deficit/Hyperactivity Disorder |
ASD | Autism Spectrum Disorder |
AIDS | Acquired Immunodeficiency Syndrome |
APAP | Acetaminophen |
NSAID | Non-steroidal Anti-inflammatory Drugs |
FDA | Food and Drug Administration |
SMFM | Society for Maternal Fetal Medicine |
BDNF | Brain-derived Neurotrophic Factor |
NAPQI | N-acetyl-p-benzoquinone imine |
ROS | Reactive Oxygen Species |
mtDNA | Mitochondrial DNA |
nDNA | Nuclear DNA |
NMDA | N-methyl-D-aspartate |
Tgfβ | Transforming Growth Factor Beta |
References
- Bieber, C.; Ramirez, A. Tylenol Lawsuit (March Update). Available online: https://forbes.com/advisor/legal/product-lability/tylenol-lawsuit/ (accessed on 2 May 2025).
- Tylenol Autism Lawsuit—Settlement & Claims (April 2025). Available online: https://www.dolmanlaw.com/blog/settlements-for-tylenol-autism-lawsuits/ (accessed on 28 April 2025).
- Ji, Y.; Azuine, R.E.; Zhang, Y.; Hou, W.; Hong, X.; Wang, G.; Riley, A.; Pearson, C.; Zuckerman, B.; Wang, X. Association of Cord Plasma Biomarkers of In Utero Acetaminophen Exposure with Risk of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder in Childhood. Arch. Gen. Psychiatry 2020, 77, 180–189. [Google Scholar] [CrossRef]
- Bauer, A.Z.; Swan, S.H.; Kriebel, D.; Liew, Z.; Taylor, H.S.; Bornehag, C.; Andrade, A.M.; Olsen, J.; Jensen, R.H.; Mitchell, R.T.; et al. Paracetamol Use During Pregnancy—A Call for Precautionary Action. Nat. Rev. Endocrinol. 2021, 17, 757–766. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Data & Statistics on Autism Spectrum Disorder. 2023. Available online: https://www.cdc.gov/autism/data-research/?CDC_AAref_Val=https://www.cdc.gov/ncbddd/autism/data.html (accessed on 31 August 2025).
- Dunlap, J.J.; Filipek, P.A. CE: Autism Spectrum Disorder: The Nurse’s Role. Am. J. Nurs. 2020, 120, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Lurie Center for Autism. 30 Facts to Know About Autism Spectrum Disorder. 2023. Available online: https://www.massgeneral.org/children/autism/lurie-center/30-facts-to-know-about-autism-spectrum-disorder (accessed on 2 May 2025).
- Cakir, J.; Frye, R.E.; Walker, S.J. The Lifetime Social Cost of Autism: 1990–2029. Res. Autism Spectr. Disord. 2020, 72, 101502. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Data and Statistics About ADHD. 2023. Available online: https://www.cdc.gov/adhd/data/?CDC_AAref_Val=https://www.cdc.gov/ncbddd/adhd/data.html (accessed on 31 August 2025).
- Schein, J.; Adler, L.A.; Childress, A.; Cloutier, M.; Gagnon-Sanschagrin, P.; Davidson, M.; Kinkead, F.; Guerin, A.; Lefebvre, P. Economic Burden of Attention-Deficit/Hyperactivity Disorder Among Children and Adolescents in the United States: A Societal Perspective. J. Med. Econ. 2022, 25, 193–205. [Google Scholar] [CrossRef]
- National Institutes of Health. Acquired Cognitive Impairment. 2024. Available online: https://report.nih.gov/funding/categorical-spending#/ (accessed on 2 May 2025).
- Ghirardi, L.; Pettersson, E.; Taylor, M.J.; Freitag, C.M.; Franke, B.; Asherson, P.; Larsson, H.; Kuja-Halkola, R. Genetic and Environmental Contribution to the Overlap Between ADHD and ASD Trait Dimensions in Young Adults: A Twin Study. Psychol. Med. 2019, 49, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M. Acetaminophen Toxicity: A History of Serendipity and Unintended Consequences. Clin. Liver Dis. 2020, 16 (Suppl. S1), 34–44. [Google Scholar] [CrossRef]
- Future Market Insights Inc. Acetaminophen Market. 2023. Available online: https://www.futuremarketinsights.com/reports/acetaminophen-market (accessed on 29 July 2024).
- Dvorakova, M.; Bosquez-Berger, T.; Billingsley, J.; Murataeva, N.; Woodward, T.; Leishman, E.; Zimmowitch, A.; Gibson, A.; Wager-Miller, J.; Cai, R.; et al. Acetaminophen Inhibits Diacylglycerol Lipase Synthesis of 2-Arachidonoyl Glycerol: Implications for Nociception. Cell Rep. Med. 2025, 6, 102139. [Google Scholar] [CrossRef]
- Maatuf, Y.; Kushnir, Y.; Nemirovski, A.; Ghantous, M.; Iskimov, A.; Binshtok, A.M.; Priel, A. The Analgesic Paracetamol Metabolite AM404 Acts Peripherally to Directly Inhibit Sodium Channels. Proc. Natl. Acad. Sci. USA 2025, 122, e2413811122. [Google Scholar] [CrossRef]
- Ohashi, N.; Kohno, T. Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Front. Pharmacol. 2020, 11, 580289. [Google Scholar] [CrossRef]
- Durso, G.R.O.; Luttrell, A.; Way, B.M. Over-the-Counter Relief from Pains and Pleasures Alike: Acetaminophen Blunts Evaluation Sensitivity to Both Negative and Positive Stimuli. Psychol. Sci. 2015, 26, 750–758. [Google Scholar] [CrossRef]
- Mischkowski, D.; Crocker, J.; Way, B.M. A Social Analgesic? Acetaminophen (Paracetamol) Reduces Positive Empathy. Front. Psychol. 2019, 10, 538. [Google Scholar] [CrossRef]
- Slavich, G.M.; Shields, G.S.; Deal, B.D.; Gregory, A.; Toussaint, L.L. Alleviating Social Pain: A Double-Blind, Randomized, Placebo-Controlled Trial of Forgiveness and Acetaminophen. Ann. Behav. Med. 2019, 53, 1045–1054. [Google Scholar] [CrossRef]
- Bandoli, G.; Palmsten, K.; Chambers, C. Acetaminophen Use in Pregnancy: Examining Prevalence, Timing, and Indication of Use in a Prospective Birth Cohort. Paediatr. Perinat. Epidemiol. 2020, 34, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Sznajder, K.K.; Teti, D.M.; Kjerulff, K.H. Maternal Use of Acetaminophen During Pregnancy and Neurobehavioral Problems in Offspring at 3 Years: A Prospective Cohort Study. PLoS ONE 2022, 17, e0272593. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA Has Reviewed Possible Risks of Pain Medicine Use During Pregnancy. 2015. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-has-reviewed-possible-risks-pain-medicine-use-during-pregnancy (accessed on 2 May 2025).
- Society for Maternal-Fetal Medicine. Prenatal Acetaminophen Use and Outcomes in Children. Am. J. Obstet. Gynecol. 2017, 216, B14–B15. [Google Scholar] [CrossRef]
- Philippot, G.; Gordh, T.; Fredriksson, A.; Viberg, H. Adult Neurobehavioral Alterations in Male and Female Mice Following Developmental Exposure to Paracetamol (Acetaminophen): Characterization of a Critical Period. J. Appl. Toxicol. 2017, 37, 1174–1181. [Google Scholar] [CrossRef]
- Alwan, S.; Conover, E.A.; Harris-Sagaribay, L.; Lamm, S.H.; Lavigne, S.V.; Lusskin, S.I.; Obican, S.G.; Romeo, A.N.; Scialli, A.R.; Wisner, K.L. Paracetamol Use in Pregnancy—Caution over Causal Inference from Available Data. Nat. Rev. Endocrinol. 2022, 18, 190. [Google Scholar] [CrossRef]
- Baker, B.H.; Lugo-Candelas, C.; Wu, H.; Laue, H.E.; Boivin, A.; Gillet, V.; Aw, N.; Rahman, T.; Lepage, J.; Whittingstall, K.; et al. Association of Prenatal Acetaminophen Exposure Measured in Meconium with Risk of Attention-Deficit/Hyperactivity Disorder Mediated by Frontoparietal Network Brain Connectivity. JAMA Pediatr. 2020, 174, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Ostrea, E.M.; Brady, M.; Gause, S.; Raymundo, A.L.; Stevens, M. Drug Screening of Newborns by Meconium Analysis: A Large-Scale, Prospective, Epidemiologic Study. Pediatrics 1992, 89, 107–113. [Google Scholar] [CrossRef]
- Ahlqvist, V.H.; Sjöqvist, H.; Dalman, C.; Karlsson, H.; Stephansson, O.; Johansson, S.; Magnusson, C.; Gardner, R.M.; Lee, B.K. Acetaminophen Use During Pregnancy and Children’s Risk of Autism, ADHD, and Intellectual Disability. JAMA—J. Am. Med. Assoc. 2024, 331, 1205–1214. [Google Scholar] [CrossRef]
- Kang, J.; Kim, H.J.; Kim, T.; Lee, H.; Kim, M.; Lee, S.W.; Kim, M.S.; Koyanagi, A.; Smith, L.; Fond, G.; et al. Prenatal Opioid Exposure and Subsequent Risk of Neuropsychiatric Disorders in Children: Nationwide Birth Cohort Study in South Korea. BMJ 2024, 385, e077664. [Google Scholar] [CrossRef]
- Prada, D.; Ritz, B.; Bauer, A.Z.; Baccarelli, A.A. Evaluation of the Evidence on Acetaminophen Use and Neurodevelopmental Disorders using the Navigation Guide Methodology. Environ. Health 2025, 24, 56. [Google Scholar] [CrossRef]
- Vignato, J.; Mehner, B.; Negrete, A.; Segre, L.S. Over-the-Counter Pain Medication Use During Pregnancy. MCN—Am. J. Matern. Child Nurs. 2023, 48, 209–214. [Google Scholar] [CrossRef]
- Korte, B.A.C.; Smeets, N.J.L.; Colbers, A.; Bemt, B.J.F.; Gelder, M.M.H.J. Adherence to Prescription Medication During Pregnancy: Do Pregnant Women Use Pharmacological Treatment as Prescribed? Br. J. Clin. Pharmacol. 2023, 89, 1521–1531. [Google Scholar] [CrossRef]
- Olesen, C.; Søndergaard, C.; Thrane, N.; Nielsen, G.L.; de Jong-van den Berg, L.; Olsen, J. Do Pregnant Women Report Use of Dispensed Medications? Epidemiology 2001, 12, 497–501. [Google Scholar] [CrossRef]
- Gustavson, K.; Ystrom, E.; Ask, H.; Ask Torvik, F.; Hornig, M.; Susser, E.; Lipkin, W.I.; Lupattelli, A.; Stoltenberg, C.; Magnus, P.; et al. Acetaminophen Use During Pregnancy and Offspring Attention Deficit Hyperactivity Disorder—A Longitudinal Sibling Control Study. JCPP Adv. 2021, 1, e12020. [Google Scholar] [CrossRef]
- Brandlistuen, R.E.; Ystrom, E.; Nulman, I.; Koren, G.; Nordeng, H. Prenatal Paracetamol Exposure and Child Neurodevelopment: A Sibling-Controlled Cohort Study. Int. J. Epidemiol. 2013, 42, 1702–1713. [Google Scholar] [CrossRef]
- Baker, B.H.; Rafikian, E.E.; Hamblin, P.B.; Strait, M.D.; Yang, M.; Pearson, B.L. Sex-Specific Neurobehavioral and Prefrontal Cortex Gene Expression Alterations Following Developmental Acetaminophen Exposure in Mice. Neurobiol. Dis. 2023, 177, 105970. [Google Scholar] [CrossRef]
- Leppert, B.; Havdahl, A.; Riglin, L.; Jones, H.J.; Zheng, J.; Davey Smith, G.; Tilling, K.; Thapar, A.; Reichborn-Kjennerud, T.; Stergiakouli, E. Association of Maternal Neurodevelopmental Risk Alleles with Early-Life Exposures. JAMA Psychiatry 2019, 76, 834–842. [Google Scholar] [CrossRef]
- MacFabe, D.F. Enteric Short-Chain Fatty Acids: Microbial Messengers of Metabolism, Mitochondria, and Mind: Implications in Autism Spectrum Disorders. Microb. Ecol. Health Dis. 2015, 26, 28177. [Google Scholar] [CrossRef]
- Viberg, H.; Eriksson, P.; Gordh, T.; Fredriksson, A. Paracetamol (Acetaminophen) Administration During Neonatal Brain Development Affects Cognitive Function and Alters Its Analgesic and Anxiolytic Response in Adult Male Mice. Toxicol. Sci. 2014, 138, 139–147. [Google Scholar] [CrossRef]
- Jamal, W.; Cardinaux, A.; Haskins, A.J.; Kjelgaard, M.; Sinha, P. Reduced Sensory Habituation in Autism and its Correlation with Behavioral Measures. J. Autism Dev. Disord. 2021, 51, 3153–3164. [Google Scholar] [CrossRef]
- Rodríguez-Carrillo, A.; Verheyen, V.J.; Van Nuijs, A.L.N.; Fernández, M.F.; Remy, S. Brain-Derived Neurotrophic Factor (BDNF): An Effect Biomarker of Neurodevelopment in Human Biomonitoring Programs. Front. Toxicol. 2024, 5, 1319788. [Google Scholar] [CrossRef]
- Yang, F.; You, H.; Mizui, T.; Ishikawa, Y.; Takao, K.; Miyakawa, T.; Li, X.; Bai, T.; Xia, K.; Zhang, L.; et al. Inhibiting proBDNF to Mature BDNF Conversion Leads to ASD-Like Phenotypes in Vivo. Mol. Psychiatry 2024, 29, 3462–3474. [Google Scholar] [CrossRef]
- Thiele, K.; Solano, M.E.; Huber, S.; Flavell, R.A.; Kessler, T.; Barikbin, R.; Jung, R.; Karimi, K.; Tiegs, G.; Arck, P.C. Prenatal Acetaminophen Affects Maternal Immune and Endocrine Adaptation to Pregnancy, Induces Placental Damage, and Impairs Fetal Development in Mice. Am. J. Pathol. 2015, 185, 2805–2818. [Google Scholar] [CrossRef]
- Deserno, M.K.; Bathelt, J.; Groenman, A.P.; Geurts, H.M. Probing the Overarching Continuum Theory: Data-Driven Phenotypic Clustering of Children with ASD or ADHD. Eur. Child Adolesc. Psychiatry 2023, 32, 1909–1923. [Google Scholar] [CrossRef]
- James, R.J.E.; Dubey, I.; Smith, D.; Ropar, D.; Tunney, R.J. The Latent Structure of Autistic Traits: A Taxometric, Latent Class and Latent Profile Analysis of the Adult Autism Spectrum Quotient. J. Autism Dev. Disord. 2016, 46, 3712–3728. [Google Scholar] [CrossRef]
- Tsang, L.P.M.; How, C.H.; Yeleswarapu, S.P.; Wong, C.M. Autism Spectrum Disorder: Early Identification and Management in Primary Care. Singap. Med. J. 2019, 60, 324–328. [Google Scholar] [CrossRef]
- Murphy, J.W.; Foxe, J.J.; Peters, J.B.; Molholm, S. Susceptibility to Distraction in Autism Spectrum Disorder: Probing the Integrity of Oscillatory Alpha-Band Suppression Mechanisms. Autism Res. 2014, 7, 442–458. [Google Scholar] [CrossRef]
- Mannion, A.; Leader, G. Comorbidity in Autism Spectrum Disorder: A Literature Review. Res. Autism Spectr. Disord. 2013, 7, 1595–1616. [Google Scholar] [CrossRef]
- Al-Beltagi, M. Autism Medical Comorbidities. World J. Clin. Pediatr. 2021, 10, 15–28. [Google Scholar] [CrossRef]
- Substance Abuse and Mental Health Services Administration. DSM-5 Changes: Implications for Child Serious Emotional Disturbance. 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519708/ (accessed on 31 August 2025).
- Gallo, C. How a Popular TV Doc Has Learned to Explain ADHD Simply. Forbes. 2014. Available online: https://www.forbes.com/sites/carminegallo/2014/08/05/how-a-popular-tv-doc-has-learned-to-explain-adhd-simply/ (accessed on 23 May 2025).
- Hours, C.; Recasens, C.; Baleyte, J. ASD and ADHD Comorbidity: What Are We Talking About? Front. Psychiatry 2022, 13, 837424. [Google Scholar] [CrossRef]
- Stam, A.J.; Schothorst, P.F.; Vorstman, J.A.; Staal, W.G. The Genetic Overlap of Attention Deficit Hyperactivity Disorder and Autistic Spectrum Disorder. Appl. Clin. Genet. 2009, 2, 7–13. [Google Scholar] [CrossRef]
- Peyre, H.; Schoeler, T.; Liu, C.; Williams, C.M.; Hoertel, N.; Havdahl, A.; Pingault, J. Combining Multivariate Genomic Approaches to Elucidate the Comorbidity Between Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder. J. Child Psychol. Psychiatry 2021, 62, 1285–1296. [Google Scholar] [CrossRef]
- Bradstreet, J.J.; Smith, S.; Baral, M.; Rossignol, D.A. Biomarker-Guided Interventions of Clinically Relevant Conditions Associated with Autism Spectrum Disorders and Attention Deficit Hyperactivity Disorder. Altern. Med. Rev. 2010, 15, 15–32. [Google Scholar]
- Eccles, J.A.; Iodice, V.; Dowell, N.G.; Owens, A.; Hughes, L.; Skipper, S.; Lycette, Y.; Humphries, K.; Harrison, N.A.; Mathias, C.J.; et al. Joint Hypermobility and Autonomic Hyperactivity: Relevance to Neurodevelopmental Disorders. J. Neurol. Neurosurg. Psychiatry 2014, 85, e3. [Google Scholar] [CrossRef]
- Lugo, J.; Fadeuilhe, C.; Gisbert, L.; Setien, I.; Delgado, M.; Corrales, M.; Richarte, V.; Ramos-Quiroga, J.A. Sleep in Adults with Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2020, 38, 1–24. [Google Scholar] [CrossRef]
- Rose, S.; Niyazov, D.M.; Rossignol, D.A.; Goldenthal, M.; Kahler, S.G.; Frye, R.E. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol. Diagn. Ther. 2018, 22, 571–593. [Google Scholar] [CrossRef]
- Verma, P.; Singh, A.; Nthenge-Ngumbau, D.N.; Rajamma, U.; Sinha, S.; Mukhopadhyay, K.; Mohanakumar, K.P. Attention Deficit-Hyperactivity Disorder Suffers from Mitochondrial Dysfunction. BBA Clin. 2016, 6, 153–158. [Google Scholar] [CrossRef]
- Agrawal, S.; Khazaeni, B. Acetaminophen Toxicity. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441917/ (accessed on 30 July 2024).
- Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB Summary: Pathways of Acetaminophen Metabolism at the Therapeutic Versus Toxic Doses. Pharmacogenet. Genom. 2015, 25, 416–426. [Google Scholar] [CrossRef]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative Stress, Mitochondrial Damage and Neurodegenerative Diseases. Neural Regen. Res. 2013, 8, 2003–2014. [Google Scholar] [CrossRef]
- Ben-Shachar, R.; Chen, Y.; Luo, S.; Hartman, C.; Reed, M.; Nijhout, H.F. The Biochemistry of Acetaminophen Hepatotoxicity and Rescue: A Mathematical Model. Theor. Biol. Med. Model. 2012, 9, 55. [Google Scholar] [CrossRef]
- Leeming, M.G.; Gamon, L.F.; Wille, U.; Donald, W.A.; O’Hair, R.A.J. What Are the Potential Sites of Protein Arylation by N-Acetyl-p-benzoquinone Imine (NAPQI)? Chem. Res. Toxicol. 2015, 28, 2224–2233. [Google Scholar] [CrossRef]
- Burcham, P.C.; Harman, A.W. Acetaminophen Toxicity Results in Site-Specific Mitochondrial Damage in Isolated Mouse Hepatocytes. J. Biol. Chem. 1991, 266, 5049–5054. [Google Scholar] [CrossRef]
- Cover, C.; Mansouri, A.; Knight, T.R.; Bajt, M.L.; Lemasters, J.J.; Pessayre, D.; Jaeschke, H. Peroxynitrite-Induced Mitochondrial and Endonuclease-Mediated Nuclear DNA Damage in Acetaminophen Hepatotoxicity. J. Pharmacol. Exp. Ther. 2005, 315, 879–887. [Google Scholar] [CrossRef]
- Moles, A.; Torres, S.; Baulies, A.; Garcia-Ruiz, C.; Fernandez-Checa, J.C. Mitochondrial–Lysosomal Axis in Acetaminophen Hepatotoxicity. Front. Pharmacol. 2018, 9, 453. [Google Scholar] [CrossRef]
- Lee, K.K.; Imaizumi, N.; Chamberland, S.R.; Alder, N.N.; Boelsterli, U.A. Targeting Mitochondria with Methylene Blue Protects Mice against Acetaminophen-Induced Liver Injury. Hepatology 2015, 61, 326–336. [Google Scholar] [CrossRef]
- Hassan, R. Acetaminophen Induces Programmed Necrosis. Arch. Toxicol. 2019, 93, 3641–3642. [Google Scholar] [CrossRef]
- Rivera, G.; Sule, R.; Gomes, A. Acetaminophen Causes Mitochondrial Dysfunction in Heart Cardiomyocytes. Physiology 2023, 38, 5733274. [Google Scholar] [CrossRef]
- Allegaert, K.; van den Anker, J.N. Perinatal and Neonatal Use of Paracetamol for Pain Relief. Semin. Fetal Neonatal Med. 2017, 22, 308–313. [Google Scholar] [CrossRef]
- Rani, P.; Dhok, A. Effects of Pollution on Pregnancy and Infants. Cureus 2023, 15, e33906. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Birundha, S. Estimation of Glutathione Level in Second Trimester of Pregnancy without Complications. Sch. Int. J. Biochem. 2019, 2, 237–239. [Google Scholar] [CrossRef]
- Küster, A.; Tea, I.; Ferchaud-Roucher, V.; Le Borgne, S.; Plouzennec, C.; Winer, N.; Rozé, J.; Robins, R.J.; Darmaun, D. Cord Blood Glutathione Depletion in Preterm Infants: Correlation with Maternal Cysteine Depletion. PLoS ONE 2011, 6, e27626. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Nielsen, T.C.; Mohammad, S.S.; Hofer, M.J.; Gold, W.; Brilot, F.; Lain, S.J.; Nassar, N.; et al. Maternal Acute and Chronic Inflammation in Pregnancy is Associated with Common Neurodevelopmental Disorders: A Systematic Review. Transl. Psychiatry 2021, 11, 71. [Google Scholar] [CrossRef]
- Ginsberg, Y.; Khatib, N.; Weiner, Z.; Beloosesky, R. Maternal Inflammation, Fetal Brain Implications and Suggested Neuroprotection: A Summary of 10 Years of Research in Animal Models. Rambam Maimonides Med. J. 2017, 8, e0028. [Google Scholar] [CrossRef]
- Wiegand, U.W.; Chou, R.C.; Maulik, D.; Levy, G. Assessment of Biotransformation During Transfer of Propoxyphene and Acetaminophen Across the Isolated Perfused Human Placenta. Pediatr. Pharmacol. 1984, 4, 145–153. [Google Scholar]
- Öğütlü, H.; Kaşak, M.; Tutku Tabur, S. Mitochondrial Dysfunction in Attention Deficit Hyperactivity Disorder. Eurasian J. Med. 2022, 54 (Suppl. S1), S187–S195. [Google Scholar] [CrossRef]
- Varga, N.Á.; Pentelényi, K.; Balicza, P.; Gézsi, A.; Reményi, V.; Hársfalvi, V.; Bencsik, R.; Illés, A.; Prekop, C.; Molnár, M.J. Mitochondrial Dysfunction and Autism: Comprehensive Genetic Analyses of Children with Autism and mtDNA Deletion. Behav. Brain Funct. 2018, 14, 4. [Google Scholar] [CrossRef]
- Balachandar, V.; Rajagopalan, K.; Jayaramayya, K.; Jeevanandam, M.; Iyer, M. Mitochondrial Dysfunction: A Hidden Trigger of Autism? Genes Dis. 2021, 8, 629–639. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Elwell, C.; Johnson, M.H. Mitochondrial Dysfunction in Autism Spectrum Disorders. Autism-Open Access 2016, 6, 1000190. [Google Scholar] [CrossRef]
- Toscano, C.V.A.; Barros, L.; Lima, A.B.; Nunes, T.; Carvalho, H.M.; Gaspar, J.M. Neuroinflammation in Autism Spectrum Disorders: Exercise as a “Pharmacological” Tool. Neurosci. Biobehav. Rev. 2021, 129, 63–74. [Google Scholar] [CrossRef]
- Zawadzka, A.; Cieślik, M.; Adamczyk, A. The Role of Maternal Immune Activation in the Pathogenesis of Autism: A Review of the Evidence, Proposed Mechanisms, and Implications for Treatment. Int. J. Mol. Sci. 2021, 22, 11516. [Google Scholar] [CrossRef]
- Nishimura, Y.; Kanda, Y.; Sone, H.; Aoyama, H. Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. Oxidative Med. Cell. Longev. 2021, 2021, 6685204. [Google Scholar] [CrossRef]
- Parker, W.; Hornik, C.D.; Bilbo, S.; Holzknecht, Z.E.; Gentry, L.; Rao, R.; Lin, S.S.; Herbert, M.R.; Nevison, C.D. The Role of Oxidative Stress, Inflammation and Acetaminophen Exposure from Birth to Early Childhood in the Induction of Autism. J. Int. Med. Res. 2017, 45, 407–438. [Google Scholar] [CrossRef]
- Parker, W.; Anderson, L.G.; Jones, J.P.; Anderson, R.; Williamson, L.; Bono-Lunn, D.; Konsoula, Z. The Dangers of Acetaminophen for Neurodevelopment Outweigh Scant Evidence for Long-Term Benefits. Children 2024, 11, 44. [Google Scholar] [CrossRef]
- Frye, R.E. Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Semin. Pediatr. Neurol. 2020, 35, 100829. [Google Scholar] [CrossRef]
- Omotosho, I.O.; Akinade, A.O.; Lagunju, I.A.; Yakubu, M.A. Oxidative Stress Indices in ASD Children in Sub-Sahara Africa. J. Neurodev. Disord. 2021, 13, 50. [Google Scholar] [CrossRef]
- Gu, F.; Chauhan, V.; Kaur, K.; Brown, W.T.; LaFauci, G.; Wegiel, J.; Chauhan, A. Alterations in Mitochondrial DNA Copy Number and the Activities of Electron Transport Chain Complexes and Pyruvate Dehydrogenase in the Frontal Cortex from Subjects with Autism. Transl. Psychiatry 2013, 3, e299. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef]
- Weissman, J.R.; Kelley, R.I.; Bauman, M.L.; Cohen, B.H.; Murray, K.F.; Mitchell, R.L.; Kern, R.L.; Natowicz, M.R. Mitochondrial Disease in Autism Spectrum Disorder Patients: A Cohort Analysis. PLoS ONE 2008, 3, e3815. [Google Scholar] [CrossRef]
- Fullerton, M.; McFarland, R.; Taylor, R.W.; Alston, C.L. The Genetic Basis of Isolated Mitochondrial Complex II Deficiency. Mol. Genet. Metab. 2020, 131, 53–65. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Osko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczynska, K. Mitochondrial Oxidative Stress—A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef] [PubMed]
- Shoffner, J.; Hyams, L.; Langley, G.N.; Cossette, S.; Mylacraine, L.; Dale, J.; Ollis, L.; Kuoch, S.; Bennett, K.; Aliberti, A.; et al. Fever Plus Mitochondrial Disease Could be Risk Factors for Autistic Regression. J. Child Neurol. 2010, 25, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Uddin, M.N.; Manley, K.; Lawrence, D.A. Improvements of Autism-Like Behaviors but Limited Effects on Immune Cell Metabolism After Mitochondrial Replacement in BTBR T+ltpr3tf/J Mice. J. Neuroimmunol. 2022, 368, 577893. [Google Scholar] [CrossRef]
- Ahn, Y.; Sabouny, R.; Villa, B.R.; Yee, N.C.; Mychasiuk, R.; Uddin, G.M.; Rho, J.M.; Shutt, T.E. Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism is Improved by Two Weeks of Ketogenic Diet. Int. J. Mol. Sci. 2020, 21, 3266. [Google Scholar] [CrossRef] [PubMed]
- Cantando, I.; Centofanti, C.; D’Alessandro, B.; Limatola, C.; Bezzi, P. Metabolic Dynamics in Astrocytes and Microglia During Post-Natal Development and Their Implications for Autism Spectrum Disorders. Front. Cell. Neurosci. 2024, 18, 1354259. [Google Scholar] [CrossRef]
- Ogutlu, H.; Esin, I.S.; Erdem, H.B.; Tatar, A.; Dursun, O.B. Mitochondrial DNA Copy Number is Associated with Attention Deficit Hyperactivity Disorder. Psychiatr. Danub. 2020, 32, 168–175. [Google Scholar] [CrossRef]
- Killeen, P.R.; Russell, V.A.; Sergeant, J.A. A Behavioral Neuroenergetics Theory of ADHD. Neurosci. Biobehav. Rev. 2013, 37, 625–657. [Google Scholar] [CrossRef]
- Magistretti, P.J.; Allaman, I. Lactate in the Brain: From Metabolic End-Product to Signaling Molecule. Nat. Rev. Neurosci. 2018, 19, 235–249. [Google Scholar] [CrossRef]
- Mason, S. Lactate Shuttles in Neuroenergetics—Homeostasis, Allostasis and Beyond. Front. Neurosci. 2017, 11, 43. [Google Scholar] [CrossRef]
- Yang, J.; Ruchti, E.; Petit, J.; Jourdain, P.; Grenningloh, G.; Allaman, I.; Magistretti, P.J. Lactate Promotes Plasticity Gene Expression by Potentiating NMDA Signaling in Neurons. Proc. Natl. Acad. Sci. USA 2014, 111, 12228–12233. [Google Scholar] [CrossRef] [PubMed]
- Bouzier-Sore, A.; Voisin, P.; Canioni, P.; Magistretti, P.J.; Pellerin, L. Lactate is a Preferential Oxidative Energy Substrate Over Glucose for Neurons in Culture. J. Cereb. Blood Flow Metab. 2003, 23, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.A.; Korol, D.L.; Gold, P.E. Lactate Produced by Glycogenolysis in astrocytes Regulates Memory Processing. PLoS ONE 2011, 6, e28427. [Google Scholar] [CrossRef] [PubMed]
- Van Der Meere, J.J. The Role of Attention. In Monographs on Child and Adolescent Psychiatry: Hyperactivity Disorders, 2nd ed.; Sandberg, S., Ed.; Cambridge University Press: Cambridge, UK, 2002; pp. 162–213. [Google Scholar]
- Li, Y.; Ma, S.; Zhang, X.; Gao, L. ASD and ADHD: Divergent Activating Patterns of Prefrontal Cortex in Executive Function Tasks? J. Psychiatr. Res. 2024, 172, 187–196. [Google Scholar] [CrossRef]
- Hart, H.; Radua, J.; Mataix-Cols, D.; Rubia, K. Meta-Analysis of fMRI Studies of Timing in Attention-Deficit Hyperactivity Disorder (ADHD). Neurosci. Biobehav. Rev. 2012, 36, 2248–2256. [Google Scholar] [CrossRef]
- Zametkin, A.J.; Nordahl, T.E.; Gross, M.; King, A.C.; Semple, W.E.; Rumsey, J.; Hamburger, S.; Cohen, R.M. Cerebral Glucose Metabolism in Adults with Hyperactivity of Childhood Onset. N. Engl. J. Med. 1990, 323, 1361–1366. [Google Scholar] [CrossRef]
- Howells, F.M.; Stein, D.J.; Russell, V.A. Synergistic Tonic and Phasic Activity of the Locus Coeruleus Norepinephrine (LC-NE) Arousal System is Required for Optimal Attentional Performance. Metab. Brain Dis. 2012, 27, 267–274. [Google Scholar] [CrossRef]
- Russell, V.A.; Oades, R.D.; Tannock, R.; Killeen, P.R.; Auerbach, J.G.; Johanses, E.B.; Sagvolden, T. Response Variability in Attention-Deficit/Hyperactivity Disorder: A Neuronal and Glial Energetics Hypothesis. Behav. Brain Funct. 2006, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Medin, T.; Medin, H.; Hefte, M.B.; Storm-Mathisen, J.; Bergersen, L.H. Upregulation of the Lactate Transporter Monocarboxylate Transporter 1 at the Blood-Brain Barrier in a Rat Model of Attention-Deficit/Hyperactivity Disorder Suggests Hyperactivity Could be a Form of Self-Treatment. Behav. Brain Res. 2019, 360, 279–285. [Google Scholar] [CrossRef]
- Dienel, G.A. Brain Lactate Metabolism: The Discoveries and the Controversies. J. Cereb. Blood Flow Metab. 2012, 32, 1107–1138. [Google Scholar] [CrossRef] [PubMed]
- Shetreat-Klein, M.; Shinnar, S.; Rapin, I. Abnormalities of Joint Mobility and Gait in Children with Autism Spectrum Disorders. Brain Dev. 2014, 36, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, L.; Wang, H.; Chen, L. Effects of Prenatal Acetaminophen Exposure at Different Stages, Doses and Courses on Articular Cartilage of Offspring Mice. Food Chem. Toxicol. 2023, 180, 114003. [Google Scholar] [CrossRef] [PubMed]
- Glasco, D.M.; Wang, Z.; Kang, S.; Funkhouser, A.T. Acetaminophen Disrupts the Development of Pharyngeal Arch-Derived Cartilage and Muscle in Zebrafish. J. Dev. Biol. 2022, 10, 30. [Google Scholar] [CrossRef]
Study Type | Authors/Year | Population/Model | Exposure Measurement | Key Findings | Notes/Limitations |
---|---|---|---|---|---|
Human—Longitudinal | Ji et al., 2019 [3] | 996 mother-child dyads | Cord blood APAP and metabolite levels | High exposure group: 3.6× ↑ ASD, 2.9× ↑ ADHD risk | Controlled for stress, BMI, age, etc. |
Murine—Behavioral | Philippot et al., 2017 [25] | Mice exposed postnatally | Neonatal APAP injection | ↓ Spontaneous behavior; ↓ habituation | Shows no appreciable difference between sexes |
Human—Longitudinal | Baker et al., 2020 [27] | 345 children (Canadian cohort) | Meconium APAP content + MRI analysis | ↑ ADHD diagnosis; ↓ connectivity in key brain networks | Only 48 MRI participants; ongoing data collection |
Human—Sibling Study | Ahlqvist et al., 2024 [29] | ~2.5 million (Swedish cohort) | Prescription records during pregnancy | Weak association: sibling control showed no causal link | Did not capture OTC APAP; poor dose quantification |
Human—Sibling Study | Gustavson et al., 2021 [35] | 9820 sibling pairs (Norwegian cohort) | Self-reported usage during pregnancy | Introduced potential family factors regarding ASD/ADHD development | Self-reporting and adherence limited accuracy |
Human—Sibling Study | Brandlistuen et al., 2013 [36] | 2919 sibling pairs (Norwegian cohort) | Self-reported usage during pregnancy | Delayed development associated with high acetaminophen usage | Contradicts data of similar study completed with same cohort |
Murine—Biochemical | Baker et al., 2023 [37] | Neonatal APAP-exposed mice | Gene expression in prefrontal cortex | ↑ DNA damage and oxidative stress genes; ↓ BDNF in frontal cortex | Confirms mitochondrial dysfunction and neuroinflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, S.; Woodfin, S.; Bayliss, E.; Smith, M.; Fulp, A.; Mirabelli, E.; Moore, W. Acetaminophen’s Role in Autism and ADHD: A Mitochondrial Perspective. Int. J. Mol. Sci. 2025, 26, 8585. https://doi.org/10.3390/ijms26178585
Chu S, Woodfin S, Bayliss E, Smith M, Fulp A, Mirabelli E, Moore W. Acetaminophen’s Role in Autism and ADHD: A Mitochondrial Perspective. International Journal of Molecular Sciences. 2025; 26(17):8585. https://doi.org/10.3390/ijms26178585
Chicago/Turabian StyleChu, Stephanie, Seth Woodfin, Emily Bayliss, Merritt Smith, Alan Fulp, Ersilia Mirabelli, and William Moore. 2025. "Acetaminophen’s Role in Autism and ADHD: A Mitochondrial Perspective" International Journal of Molecular Sciences 26, no. 17: 8585. https://doi.org/10.3390/ijms26178585
APA StyleChu, S., Woodfin, S., Bayliss, E., Smith, M., Fulp, A., Mirabelli, E., & Moore, W. (2025). Acetaminophen’s Role in Autism and ADHD: A Mitochondrial Perspective. International Journal of Molecular Sciences, 26(17), 8585. https://doi.org/10.3390/ijms26178585