Unravelling the Complexity of Sarcopenia Through a Systems Biology Approach
Abstract
1. Introduction
1.1. Pathophysiology of Sarcopenia
1.2. Molecular and Clinical Biomarkers of Sarcopenia
1.3. Diagnosis
Diagnostic Approach | Description | Common Methods | References |
---|---|---|---|
Screening Questionnaires | Initial screening to assess risk and functional status | SARC-F, SARC-CalF, SARC-F+EBM | [7] |
Muscle Mass Measurement | Quantifying muscle mass to confirm sarcopenia diagnosis | CT, MRI, DXA, BIA | [8] |
Muscle Strength Assessment | Measuring muscle strength as an indicator of muscle function | Handgrip Strength Dynamometer, Chair Stand Test | [75] |
Physical Performance Testing | Functional assessment of mobility and endurance | Gait speed test, Short Physical Performance Battery, Timed Up and Go | [7] |
Composite Diagnostic Criteria | Integrates muscle mass, strength, and physical performance | EWGSOP, EWGSOP2, AWGS, AWGS 2, IWGS, FNIH, SDOC | [73] |
Anthropometric Measures | Simple measurements as surrogates for muscle mass and nutritional status | Calf Circumference, Mid-upper Arm Circumference | [76] |
1.4. Current Treatment Options
Treatment Type | Non-Pharmacological Approach | Description | Mechanism of Action | References |
---|---|---|---|---|
Exercise Interventions | Progressive Resistance Training | Structured weight-bearing exercises using progressive overload principles | Upregulates protein synthesis, increases type II muscle fibre size | [82] |
Low Resistance Training | Gentler form of resistance training suitable for frail elderly or those with joint limitations | Promotes muscle protein synthesis with reduced joint stress | [87] | |
Blood Flow Restriction Training | Innovative technique combining low-intensity exercise with partial vascular occlusion using specialized cuffs | Metabolic stress-induced hypertrophy, enhanced protein synthesis | [87] | |
Aerobic Exercise | Cardiovascular training including walking, cycling, swimming, or dancing | Improves cardiovascular function, enhances muscle oxidative capacity | [88] | |
Combined Training | Multimodal approach integrating resistance training, aerobic exercise, balance, and flexibility components | Synergistic effects on multiple physiological systems | [88] | |
Nutritional Interventions | Protein Supplementation | High-quality protein intake to meet increased needs in older adults | Provides essential amino acids for muscle protein synthesis | [89] |
Leucine Supplementation | Branched-chain amino acid supplementation focusing on leucine, the primary trigger for muscle protein synthesis | Stimulates mTOR pathway, triggers muscle protein synthesis | [89] | |
Essential Amino Acids | Complete amino acid supplementation providing all nine essential amino acids that cannot be synthesized by the body | Direct substrate for muscle protein synthesis | [89] | |
Vitamin D Supplementation | Fat-soluble vitamin essential for muscle function and calcium homeostasis | Improves muscle fibre function, calcium homeostasis | [89] | |
Omega-3 Fatty Acids | Anti-inflammatory fatty acids that support muscle health by reducing inflammation and potentially enhancing muscle protein synthesis response to exercise and protein intake | Anti-inflammatory effects, enhances muscle protein synthesis | [89] | |
Herbal Medicine and Natural Supplements | Curcumin | Active compound from turmeric with potent anti-inflammatory and antioxidant properties | Anti-inflammatory, antioxidant, promotes muscle regeneration | [90] |
Green Tea Extract | Polyphenol-rich extract containing epigallocatechin gallate, a powerful antioxidant that may protect against muscle atrophy and support muscle protein synthesis pathways | Antioxidant, enhances muscle protein synthesis | [91] | |
Ginseng | Traditional adaptogenic herb used for centuries to combat fatigue and enhance physical performance | Adaptogenic, improves energy metabolism, anti-fatigue | [92] | |
Astragalus membranaceus | Traditional Chinese medicine herb with immune-modulating properties | Immune modulation, muscle preservation | [93] | |
Rhodiola rosea | Arctic root herb with adaptogenic properties that may help improve exercise capacity, reduce fatigue, and enhance recovery from physical stress in aging populations | Adaptogenic, anti-fatigue, improves physical performance | [94] | |
Creatine Monohydrate | A supplement that increases muscle phosphocreatine stores, enabling rapid ATP regeneration during high-intensity activities | Increases phosphocreatine stores, enhances ATP regeneration | [95] | |
β-Hydroxy β-Methylbutyrate | Metabolite of leucine with anti-catabolic properties | Reduces protein breakdown, anti-catabolic effects | [96] | |
Physical Therapy Approaches | Neuromuscular Electrical Stimulation | Therapeutic technique using electrical impulses to stimulate muscle contractions | Direct muscle fibre stimulation, protein synthesis activation | [97] |
Whole-Body Vibration | Platform-based therapy delivering mechanical vibrations to the entire body during standing or exercise positions | Enhances neuromuscular activation, bone-muscle interaction | [98] | |
Balance Training | Exercises focusing on proprioception, stability, and postural control | Improves neuromuscular control, reduces fall risk | [99] | |
Functional Training | Task-specific exercises that mimic activities of daily living | Task-specific muscle activation, functional improvement | [100] | |
Other Non-Pharmacological Interventions | Heat Therapy | Application of heat through saunas, hot baths, or heating pads to promote muscle recovery and adaptation | Increases heat shock proteins, improves muscle protein synthesis | [101] |
Soft Tissue Manipulation | Manual manipulation of soft tissues to improve circulation, reduce muscle tension, and enhance recovery | Improves circulation, reduces muscle tension | [102] | |
Acupuncture | Traditional Chinese medicine technique involving insertion of fine needles at specific body points | Stimulates sensory nerves at acupoints, enhances muscle repair processes | [103] |
Drug Name | Description | Development Stage | References |
---|---|---|---|
ACE-083 | a recombinant fusion protein for muscle growth | clinical research | [9] |
Bimagrumab | a monoclonal antibody for activin receptor | clinical research | [104] |
Dehydroepiandrosterone | an endogenous steroid hormone precursor | clinical research | [105] |
Enobosarm | a selective androgen receptor modulator | clinical research | [10] |
Growth hormone | a peptide hormone produced by the pituitary gland | clinical research | [106] |
GSK-2881078 | a selective androgen receptor modulator | clinical research | [10] |
Isomyosamine | a synthetic derivative of tobacco plant alkaloids | clinical research | [107] |
Landogrozumab | a monoclonal antibody to target myostatin | clinical research | [108] |
Ligandrol | a selective androgen receptor modulator | clinical research | [10] |
LPCN 1148 | an oral androgen receptor agonist | clinical research | [109] |
MK-0773 | a selective androgen receptor modulator | clinical research | [11] |
Oestrogen | the primary female sex hormone | clinical research | [15] |
Perindopril | an angiotensin-converting enzyme inhibitor | clinical research | [16] |
RJx-01 | a combination of metformin and galantamine | clinical research | [14] |
Sarconeos | a MAS receptor activator | clinical research | [110] |
Testosterone | the primary male sex hormone | clinical research | [12] |
Trevogrumab | a monoclonal antibody to target myostatin | clinical research | [111] |
Apelin | a peptide hormone | preclinical research | [112] |
Irisin | a hormone and myokine | preclinical research | [113] |
MG-132 | a cell-permeable proteasome inhibitor | preclinical research | [17] |
NT-1654 | a C-terminal fragment of mouse agrin | preclinical research | [114] |
Troglitazone | an antidiabetic and anti-inflammatory drug | preclinical research | [17] |
Vorinostat | a histone deacetylase inhibitor | preclinical research | [115] |
1.5. Preventive Strategies
2. Systems Biology
Methodologies
3. Integrating Systems Biology Approaches in Sarcopenia Studies
The Relationship Between Sarcopenia and Other Diseases
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grima-Terrén, M.; Campanario, S.; Ramírez-Pardo, I.; Cisneros, A.; Hong, X.; Perdiguero, E.; Serrano, A.L.; Isern, J.; Muñoz-Cánoves, P. Muscle Aging and Sarcopenia: The Pathology, Etiology, and Most Promising Therapeutic Targets. Mol. Asp. Med. 2024, 100, 101319. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, A.; Williams, F.R.; Quinlan, J.I.; Allen, S.L.; Greig, C.; Filer, A.; Raza, K.; Ghosh, S.; Lavery, G.G.; Newsome, P.N. Evaluation of the Mechanisms of Sarcopenia in Chronic Inflammatory Disease: Protocol for a Prospective Cohort Study. Skelet. Muscle 2021, 11, 27. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Epidemiology of Sarcopenia: Prevalence, Risk Factors, and Consequences. Metabolism 2023, 144, 155533. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; He, X.; Fu, X.; Zhang, X.; Tong, M.; Li, W.; Zhang, W.; Shi, X.; Liu, K. The Prevalence of Sarcopenia and Risk Factors in the Older Adult in China: A Systematic Review and Meta-Analysis. Front. Public Health 2024, 12, 1415398. [Google Scholar] [CrossRef]
- El Miedany, Y.; El Gaafary, M.; Gadallah, N.; Elwakil, W.; Hassan, W.; Fathi, N.; Abu-Zaid, M.H.; Tabra, S.A.A.; Shalaby, R.H.; Mahran, S. Sarcopenia in Egypt: Epidemiology of Sarcopenia Risk among Older Adults Presenting with Fragility Fractures—An Initiative by the Egyptian Academy of Bone Health. Egypt. Rheumatol. Rehabil. 2023, 50, 62. [Google Scholar] [CrossRef]
- Bhat, G.; Ireland, A.; Shah, N.; Gondhalekar, K.; Mandlik, R.; Kajale, N.; Katapally, T.; Bhawra, J.; Damle, R.; Khadilkar, A. Prevalence and Factors Associated with Sarcopenia among Urban and Rural Indian Adults in Middle Age: A Cross-Sectional Study from Western India. PLoS Glob. Public Health 2024, 4, e0003553. [Google Scholar] [CrossRef] [PubMed]
- Chaiamnuay, S.; Kanjanavaikoon, N.; Saisirivechakun, P. Comparative Evaluation of Screening Tools for Sarcopenia in Patients with Axial Spondyloarthritis. Sci. Rep. 2024, 14, 14407. [Google Scholar] [CrossRef]
- Ackermans, L.L.G.C.; Rabou, J.; Basrai, M.; Schweinlin, A.; Bischoff, S.C.; Cussenot, O.; Cancel-Tassin, G.; Renken, R.J.; Gómez, E.; Sánchez-González, P. Screening, Diagnosis and Monitoring of Sarcopenia: When to Use Which Tool? Clin. Nutr. ESPEN 2022, 48, 36–44. [Google Scholar] [CrossRef]
- Pearsall, R.S.; Davies, M.V.; Cannell, M.; Li, J.; Widrick, J.; Mulivor, A.W.; Wallner, S.; Troy, M.E.; Spaits, M.; Liharska, K.; et al. Follistatin-Based Ligand Trap ACE-083 Induces Localized Hypertrophy of Skeletal Muscle with Functional Improvement in Models of Neuromuscular Disease. Sci. Rep. 2019, 9, 11392. [Google Scholar] [CrossRef]
- Da Fonseca, G.W.P.; Dworatzek, E.; Ebner, N.; Von Haehling, S. Selective Androgen Receptor Modulators (SARMs) as Pharmacological Treatment for Muscle Wasting in Ongoing Clinical Trials. In Expert Opinion on Investigational Drugs; Taylor and Francis Ltd.: London, UK, 2020; pp. 881–891. [Google Scholar] [CrossRef]
- Papanicolaou, D.A.; Ather, S.N.; Zhu, H.; Zhou, Y.; Lutkiewicz, J.; Scott, B.B.; Chandler, J. A Phase IIA Randomized, Placebo-Controlled Clinical Trial to Study the Efficacy and Safety of the Selective Androgen Receptor Modulator (SARM), MK-0773 in Female Participants with Sarcopenia. J. Nutr. Health Aging 2013, 17, 533–543. [Google Scholar] [CrossRef]
- Study Details|Anabolic and Inflammatory Responses to Short-Term Testosterone Administration in Older Men|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT00957801 (accessed on 27 January 2025).
- Kawahara, T.; Suzuki, G.; Mizuno, S.; Tominaga, N.; Toda, M.; Toyama, N.; Inazu, T.; Kawahara, C.; Okada, Y.; Tanaka, Y. Active Vitamin D Treatment in the Prevention of Sarcopenia in Adults with Prediabetes (DPVD Ancillary Study): A Randomised Controlled Trial. Lancet Healthy Longev. 2024, 5, e255–e263. [Google Scholar] [CrossRef] [PubMed]
- Rejuvenate Biomed—Positive Results Phase 1b Trial in Sarcopenia. Available online: https://www.rejuvenatebiomed.com/en/news/positive-results-phase-1b-trial-in-sarcopenia (accessed on 27 January 2025).
- Kenny, A.M.; Kleppinger, A.; Wang, Y.; Prestwood, K.M. Effects of Ultra-Low-Dose Estrogen Therapy on Muscle and Physical Function in Older Women. J. Am. Geriatr. Soc. 2005, 53, 1973–1977. [Google Scholar] [CrossRef]
- Group, L.S.; Achison, M.; Adamson, S.; Akpan, A.; Aspray, T.; Avenell, A.; Band, M.M.; Bashir, T.; Burton, L.A.; Cvoro, V. Effect of Perindopril or Leucine on Physical Performance in Older People with Sarcopenia: The LACE Randomized Controlled Trial. J. Cachexia Sarcopenia Muscle 2022, 13, 858–871. [Google Scholar] [CrossRef]
- Ceyhan, A.B.; Ozcan, M.; Kim, W.; Li, X.; Altay, O.; Zhang, C.; Mardinoglu, A. Novel Drug Targets and Molecular Mechanisms for Sarcopenia Based on Systems Biology. Biomed. Pharmacother. 2024, 176, 116920. [Google Scholar] [CrossRef]
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Yokohama, K.; Nishiguchi, S.; Higuchi, K. Pathophysiology and Mechanisms of Primary Sarcopenia (Review). Int. J. Mol. Med. 2021, 48, 1–8. [Google Scholar] [CrossRef]
- Pareja-Cajiao, M.; Barrera, M.A.; Ducaji, R.A.; Gransee, H.M.; Hellyer, N.J.; Sieck, G.C.; Mantilla, C.B. Autophagy Impairment and Sarcopenia in Type-Identified Muscle Fibers of Aging Extensor Digitorum Longus Muscle. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Kramer, I.F.; Snijders, T.; Smeets, J.S.J.; Leenders, M.; Van Kranenburg, J.; Den Hoed, M.; Verdijk, L.B.; Poeze, M.; Van Loon, L.J.C. Extensive Type II Muscle Fiber Atrophy in Elderly Female Hip Fracture Patients. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2017, 72, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.S.; Justice, J.N.; Thompson, L.D. Lipotoxicity, Aging, and Muscle Contractility: Does Fiber Type Matter? GeroScience 2019, 41, 297–308. [Google Scholar] [CrossRef]
- Narici, M.V.; Maffulli, N. Sarcopenia: Characteristics, Mechanisms and Functional Significance. Br. Med. Bull. 2010, 95, 139–159. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, S.; Huang, L.; Wang, J. Prospective Intervention Strategies Between Skeletal Muscle Health and Mitochondrial Changes During Aging. Adv. Biol. 2024, 9, e2400235. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Coelho-Junior, H.J.; Picca, A. Mitochondrial Pathways and Sarcopenia in the Geroscience Era. J. Nutr. Health Aging 2024, 28, 100397. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial Dysfunction and Sarcopenia of Aging: From Signaling Pathways to Clinical Trials. Int. J. Biochem. Cell Biol. 2013, 45, 2288–2301. [Google Scholar] [CrossRef]
- Bellanti, F.; Buglio, A.L.; Vendemiale, G. Mitochondrial Impairment in Sarcopenia. Biology 2021, 10, 31. [Google Scholar] [CrossRef]
- Alway, S.E. Chapter 1—Linking Mitochondrial Dysfunction to Sarcopenia. In Sarcopenia; Sakuma, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–58. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, D.; Yang, Y.; Xie, W.; He, M.; Yu, D.; Wu, Y.; Wang, X.; Xiao, W.; Li, Y. The Role and Therapeutic Potential of Stem Cells in Skeletal Muscle in Sarcopenia. Stem Cell Res. Ther. 2022, 13, 28. [Google Scholar] [CrossRef]
- Huo, F.; Liu, Q.; Liu, H. Contribution of Muscle Satellite Cells to Sarcopenia. Front. Physiol. 2022, 13, 892749. [Google Scholar] [CrossRef]
- Marzetti, E.; Lozanoska-Ochser, B.; Calvani, R.; Landi, F.; Coelho-Júnior, H.J.; Picca, A. Restoring Mitochondrial Function and Muscle Satellite Cell Signaling: Remedies against Age-Related Sarcopenia. Biomolecules 2024, 14, 415. [Google Scholar] [CrossRef]
- Linton, C.; Wright, H.H.; Wadsworth, D.P.; Schaumberg, M.A. Dietary Inflammatory Index and Associations with Sarcopenia Symptomology in Community-Dwelling Older Adults. Nutrients 2022, 14, 5319. [Google Scholar] [CrossRef] [PubMed]
- Antuña, E.; Cachán-Vega, C.; Bermejo-Millo, J.C.; Potes, Y.; Caballero, B.; Vega-Naredo, I.; Coto-Montes, A.; Garcia-Gonzalez, C. Inflammaging: Implications in Sarcopenia. Int. J. Mol. Sci. 2022, 23, 15039. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zong, Y.; Zhao, J.; Yang, Y.; Li, L.; Li, N.; Gao, Y.; Xie, X.; Bao, Q.; Jiang, L.; et al. Characterizing the Skeletal Muscle Immune Microenvironment for Sarcopenia: Insights from Transcriptome Analysis and Histological Validation. Front. Immunol. 2024, 15, 1414387. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhou, D.; Hong, Z. Adipose Tissue in Older Individuals: A Contributing Factor to Sarcopenia. Metabolism 2024, 160, 155998. [Google Scholar] [CrossRef]
- Kamper, R.S.; Alcazar, J.; Andersen, L.L.; Haddock, B.; Jørgensen, N.R.; Hovind, P.; Suetta, C. Associations between Inflammatory Markers, Body Composition, and Physical Function: The Copenhagen Sarcopenia Study. J. Cachexia Sarcopenia Muscle 2021, 12, 1641–1652. [Google Scholar] [CrossRef]
- Morawin, B.; Tylutka, A.; Bielewicz, F.; Zembron-Lacny, A. Diagnostics of Inflammaging in Relation to Sarcopenia. Front. Public Health 2023, 11, 1162385. [Google Scholar] [CrossRef]
- Bian, A.; Ma, Y.; Zhou, X.; Guo, Y.; Wang, W.; Zhang, Y.; Wang, X. Association between Sarcopenia and Levels of Growth Hormone and Insulin-like Growth Factor-1 in the Elderly. BMC Musculoskelet. Disord. 2020, 21, 214. [Google Scholar] [CrossRef]
- Gupta, P.; Kumar, S. Sarcopenia and Endocrine Ageing: Are They Related? Cureus 2022, 14, e28787. [Google Scholar] [CrossRef]
- Shin, M.J.; Jeon, Y.K.; Kim, I.J. Testosterone and Sarcopenia. World J. Men’s Health 2018, 36, 192. [Google Scholar] [CrossRef] [PubMed]
- Saul, D.; Schilling, A.F.; Kosinsky, R.L. Why Age Matters: Inflammation, Cancer and Hormones in the Development of Sarcopenia. J. Osteoporos. Phys. Act 2017, 5. [Google Scholar] [CrossRef]
- Aragon, A.A.; Tipton, K.D.; Schoenfeld, B.J. Age-Related Muscle Anabolic Resistance: Inevitable or Preventable? Nutr. Rev. 2023, 81, 441–454. [Google Scholar] [CrossRef]
- Arnold, W.D.; Clark, B.C. Is Sarcopenia Driven by Motor Neuron/Unit Loss? An Unresolved Question. Muscle Nerve 2017, 55, 930. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.N.; Yoon, S.S. Sarcopenia: Neurological Point of View. J. Bone Metab. 2017, 24, 83. [Google Scholar] [CrossRef]
- Drey, M.; Krieger, B.; Sieber, C.C.; Bauer, J.M.; Hettwer, S.; Bertsch, T. Motoneuron Loss Is Associated with Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 435–439. [Google Scholar] [CrossRef]
- Sarto, F.; Franchi, M.V.; McPhee, J.S.; Stashuk, D.W.; Paganini, M.; Monti, E.; Rossi, M.; Sirago, G.; Zampieri, S.; Motanova, E.S.; et al. Neuromuscular Impairment at Different Stages of Human Sarcopenia. J. Cachexia Sarcopenia Muscle 2024, 15, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Kalantarhormozi, M.R.; Afshar, A.; Hajeb, F.; Bahreini, R.; Afshari, N. Neurological Aspects of Sarcopenia: A Comprehensive Update on Pathophysiology, Diagnosis, and Therapeutic Advances. West Kazakhstan Med. J. 2024, 66, 185–200. [Google Scholar] [CrossRef]
- Sarto, F.; Franchi, M.; McPhee, J.S.; Stashuk, D.; Paganini, M.; Monti, E.; Rossi, M.; Sirago, G.; Zampieri, S.; Motanova, E.; et al. Motor Unit Loss and Neuromuscular Junction Degeneration Precede Clinically Diagnosed Sarcopenia. Physiology 2024, 39 (Suppl. S1), 770. [Google Scholar] [CrossRef]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E. Sarcopenia and Cardiovascular Diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Shin, M.J.; Saini, S.K.; Custodero, C.; Aggarwal, M.; Anton, S.D.; Leeuwenburgh, C.; Mankowski, R.T. Vascular Dysfunction as a Potential Culprit of Sarcopenia. Exp. Gerontol. 2021, 145, 111220. [Google Scholar] [CrossRef]
- Li, W.; Sheng, R.; Cao, M.; Rui, Y. Exploring the Relationship Between Gut Microbiota and Sarcopenia Based on Gut–Muscle Axis. Food Sci. Nutr. 2024, 12, 8779–8792. [Google Scholar] [CrossRef]
- Yang, W.; Si, S.-C.; Wang, W.-H.; Li, J.; Ma, Y.-X.; Zhao, H.; Liu, J. Gut Dysbiosis in Primary Sarcopenia: Potential Mechanisms and Implications for Novel Microbiome-Based Therapeutic Strategies. Front. Microbiol. 2025, 16, 1526764. [Google Scholar] [CrossRef]
- Yuan, C. Molecular Mechanisms and Therapeutic Strategies of Gut Microbiota Modulation in Sarcopenia. Oncol. Lett. 2024, 29, 104. [Google Scholar] [CrossRef] [PubMed]
- da Costa Teixeira, L.A.; Avelar, N.C.P.; Peixoto, M.F.D.; Parentoni, A.N.; dos Santos, J.M.; Pereira, F.S.M.; Danielewicz, A.L.; Leopoldino, A.A.O.; Costa, S.P.; Arrieiro, A.N.; et al. Inflammatory Biomarkers at Different Stages of Sarcopenia in Older Women. Sci. Rep. 2023, 13, 10367. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; Pluijm, S.M.F.; Deeg, D.J.H.; Visser, M. Inflammatory Markers and Loss of Muscle Mass (Sarcopenia) and Strength. Am. J. Med. 2006, 119, 526.e9–526.e17. [Google Scholar] [CrossRef]
- Asoudeh, F.; Dashti, F.; Raeesi, S.; Heshmat, R.; Bidkhori, M.; Jalilian, Z.; Hashemi, R. Inflammatory Cytokines and Sarcopenia in Iranian Adults-Results from SARIR Study. Sci. Rep. 2022, 12, 5471. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Liu, X.; Si, Q.; Zhang, D.; Li, M.; Li, X.; Zhao, Y.; Hu, F.; Zhang, M.; Liu, Y.; et al. Associations of CBC-Derived Inflammatory Indicators with Sarcopenia and Mortality in Adults: Evidence from Nhanes 1999~2006. BMC Geriatr. 2024, 24, 432. [Google Scholar] [CrossRef]
- Schweighofer, N.; Haudum, C.W.; Trummer, O.; Lind, A.; Kolesnik, E.; Mursic, I.; Schmidt, A.; Scherr, D.; Zirlik, A.; Pieber, T.R.; et al. Dp-UcMGP as a Biomarker in Sarcopenia. Nutrients 2022, 14, 5400. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.H.; Chang, P.S.; Chang, Y.H.; Lin, P.T. Identification of Coenzyme Q10 and Skeletal Muscle Protein Biomarkers as Potential Factors to Assist in the Diagnosis of Sarcopenia. Antioxidants 2022, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Casati, M.; Costa, A.S.; Capitanio, D.; Ponzoni, L.; Ferri, E.; Agostini, S.; Lori, E. The Biological Foundations of Sarcopenia: Established and Promising Markers. Front. Med. 2019, 6, 184. [Google Scholar] [CrossRef]
- Hsu, W.H.; Wang, S.Y.; Chao, Y.M.; Chang, K.V.; Han, D.S.; Lin, Y.L. Novel Metabolic and Lipidomic Biomarkers of Sarcopenia. J. Cachexia Sarcopenia Muscle 2024, 15, 2175–2186. [Google Scholar] [CrossRef]
- L’hôte, C.; Cordier, B.; Labasse, A.; Boileau, C.; Costes, B.; Henrotin, Y. Identification of New Biomarkers for Sarcopenia and Characterization of Cathepsin D Biomarker. JCSM Rapid Commun. 2021, 4, 122–132. [Google Scholar] [CrossRef]
- Seo, J.H.; Koh, J.M.; Cho, H.J.; Kim, H.; Lee, Y.S.; Kim, S.J.; Yoon, P.W.; Kim, W.; Bae, S.J.; Kim, H.K.; et al. Sphingolipid Metabolites as Potential Circulating Biomarkers for Sarcopenia in Men. J. Cachexia Sarcopenia Muscle 2024, 15, 2476–2486. [Google Scholar] [CrossRef]
- Aparicio, P.; Navarrete-Villanueva, D.; Gómez-Cabello, A.; López-Royo, T.; Santamaría, E.; Fernández-Irigoyen, J.; Ausín, K.; Arruebo, M.; Sebastian, V.; Vicente-Rodríguez, G.; et al. Proteomic Profiling of Human Plasma Extracellular Vesicles Identifies PF4 and C1R as Novel Biomarker in Sarcopenia. J. Cachexia Sarcopenia Muscle 2024, 15, 1883–1897. [Google Scholar] [CrossRef]
- Cui, H.; Hu, D.; Liu, Y.; Zhao, J. Identifying Acss1, Mtfp1 and Oxct1 as Key Regulators and Promising Biomarkers of Sarcopenia in Various Models. Gene 2024, 896, 148053. [Google Scholar] [CrossRef]
- Shin, H.E.; Jang, J.Y.; Jung, H.; Won, C.W.; Kim, M. MicroRNAs as Commonly Expressed Biomarkers for Sarcopenia and Frailty: A Systematic Review. Exp. Gerontol. 2024, 197, 112600. [Google Scholar] [CrossRef]
- Lee, J.; Kang, H. Role of MicroRNAs and Long Non-Coding RNAs in Sarcopenia. Cells 2022, 11, 187. [Google Scholar] [CrossRef]
- Lian, R.; Liu, Q.; Jiang, G.; Zhang, X.; Tang, H.; Lu, J.; Yang, M. Blood Biomarkers for Sarcopenia: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies. Ageing Res. Rev. 2023, 93, 102148. [Google Scholar] [CrossRef]
- Scharf, G.; Heineke, J. Finding Good Biomarkers for Sarcopenia. J. Cachex Sarcopenia Muscle 2012, 3, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.Y.; Hwang, H.; Kim, S.K.; Choi, J.Y.; Lee, S.M.; Bang, H.; Kwon, E.S.; Lee, K.P.; Chung, S.G.; Kwon, K.S. Prediction of Sarcopenia Using a Combination of Multiple Serum Biomarkers. Sci. Rep. 2018, 8, 8574. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31, Erratum in Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Wu, W.Y.; Dong, J.J.; Huang, X.C.; Chen, Z.J.; Chen, X.L.; Dong, Q.T.; Bai, Y.Y. AWGS2019 vs EWGSOP2 for Diagnosing Sarcopenia to Predict Longterm Prognosis in Chinese Patients with Gastric Cancer after Radical Gastrectomy. World J. Clin. Cases 2021, 9, 4668–4680. [Google Scholar] [CrossRef]
- Voulgaridou, G.; Tyrovolas, S.; Detopoulou, P.; Tsoumana, D.; Drakaki, M.; Apostolou, T.; Chatziprodromidou, I.P.; Papandreou, D.; Giaginis, C.; Papadopoulou, S.K. Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence. Nutrients 2024, 16, 436. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Takeuchi, T.; Goto, M.; Ogura, T.; Nakamura, S.; Kakimoto, K.; Miyazaki, T.; Nishiguchi, S. Screening Tools for Sarcopenia. In Vivo 2021, 35, 3001–3009. [Google Scholar] [CrossRef]
- Han, X.; Zhang, G.S.; Li, Q.R.; Zhang, Z. Current Approach to the Diagnosis of Sarcopenia in Cardiovascular Diseases. Front. Nutr. 2024, 11, 1422663. [Google Scholar] [CrossRef]
- Cacciatore, S.; Calvani, R.; Esposito, I.; Massaro, C.; Gava, G.; Picca, A.; Tosato, M.; Marzetti, E.; Landi, F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024, 16, 3271. [Google Scholar] [CrossRef] [PubMed]
- Najm, A.; Niculescu, A.G.; Grumezescu, A.M.; Beuran, M. Emerging Therapeutic Strategies in Sarcopenia: An Updated Review on Pathogenesis and Treatment Advances. Int. J. Mol. Sci. 2024, 25, 4300. [Google Scholar] [CrossRef] [PubMed]
- Nasso, R.; D’Errico, A.; Motti, M.L.; Masullo, M.; Arcone, R. Dietary Protein and Physical Exercise for the Treatment of Sarcopenia. Clin. Pract. 2024, 14, 1451–1467. [Google Scholar] [CrossRef]
- Cannataro, R.; Cione, E.; Bonilla, D.A.; Cerullo, G.; Angelini, F.; D’Antona, G. Strength Training in Elderly: An Useful Tool against Sarcopenia. Front. Sports Act. Living 2022, 4, 950949. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Cheng, R.; Song, G.; Teng, J.; Shen, S.; Fu, X.; Yan, Y.; Liu, C. The Effect of Resistance Training on the Rehabilitation of Elderly Patients with Sarcopenia: A Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 15491. [Google Scholar] [CrossRef]
- Hurst, C.; Robinson, S.M.; Witham, M.D.; Dodds, R.M.; Granic, A.; Buckland, C.; De Biase, S.; Finnegan, S.; Rochester, L.; Skelton, D.A.; et al. Resistance Exercise as a Treatment for Sarcopenia: Prescription and Delivery. Age Ageing 2022, 51, afac003. [Google Scholar] [CrossRef]
- Carbone, J.W.; Pasiakos, S.M. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef]
- Rolland, Y.; Dray, C.; Vellas, B.; Barreto, P.D.S. Current and Investigational Medications for the Treatment of Sarcopenia. Metabolism 2023, 149, 155597. [Google Scholar] [CrossRef]
- Sakuma, K.; Hamada, K.; Yamaguchi, A.; Aoi, W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023, 12, 2422. [Google Scholar] [CrossRef]
- Tezze, C.; Amendolagine, F.I.; Nogara, L.; Baraldo, M.; Ciciliot, S.; Arcidiacono, D.; Zaramella, A.; Masiero, G.; Ferrarese, G.; Realdon, S. A Combination of Metformin and Galantamine Exhibits Synergistic Benefits in the Treatment of Sarcopenia. JCI Insight 2023, 8, 168787. [Google Scholar] [CrossRef]
- Yasuda, T. Selected Methods of Resistance Training for Prevention and Treatment of Sarcopenia. Cells 2022, 11, 1389. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-Z.; No, M.-H.; Heo, J.-W.; Park, D.-H.; Kang, J.-H.; Kim, S.H.; Kwak, H.-B. Role of Exercise in Age-Related Sarcopenia. J. Exerc. Rehabil. 2018, 14, 551. [Google Scholar] [CrossRef]
- Ganiyani, M.A.; Shah, A.; Holge, S.; Shah, P.; Shah, P.K. Nutritional Interventions for the Prevention and Management of Sarcopenia in Elderly Population: A Comprehensive Review. Int. J. Geriatr. Gerontol. 2023, 6, 2577–2748. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, Q.; Sun, J.; Wang, L.; Li, Y. Phytonutrients as Potential Dietary Supplements to Ameliorate Sarcopenia via the Involvement of Autophagic Pathway. Food Rev. Int. 2024, 40, 2539–2579. [Google Scholar] [CrossRef]
- Liu, H.-W.; Chang, S.-J. Effects of Green Tea–Derived Natural Products on Resistance Exercise Training in Sarcopenia: A Retrospective Narrative Mini-Review. J. Food Drug Anal. 2023, 31, 381. [Google Scholar] [CrossRef]
- Zha, W.; Sun, Y.; Gong, W.; Li, L.; Kim, W.; Li, H. Ginseng and Ginsenosides: Therapeutic Potential for Sarcopenia. Biomed. Pharmacother. 2022, 156, 113876. [Google Scholar] [CrossRef]
- Yao, J.; Xia, S. Exploring the Role of Traditional Chinese Medicine in Sarcopenia: Mechanisms and Therapeutic Advances. Front. Pharmacol. 2025, 16, 1541373. [Google Scholar] [CrossRef]
- Huang, Z.; Fang, Q.; Ma, W.; Zhang, Q.; Qiu, J.; Gu, X.; Yang, H.; Sun, H. Skeletal Muscle Atrophy Was Alleviated by Salidroside through Suppressing Oxidative Stress and Inflammation during Denervation. Front. Pharmacol. 2019, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; Stout, J.R.; Candow, D.G.; Jiménez-García, J.D.; Gómez-Miranda, L.M.; Ortiz-Ortiz, M.; Forbes, S.C.; Ostojic, S.M.; Vargas-Molina, S.; Kreider, R.B. The Power of Creatine plus Resistance Training for Healthy Aging: Enhancing Physical Vitality and Cognitive Function. Front. Physiol. 2024, 15, 1496544. [Google Scholar] [CrossRef]
- Su, H.; Zhou, H.; Gong, Y.; Xiang, S.; Shao, W.; Zhao, X.; Ling, H.; Chen, G.; Tong, P.; Li, J. The Effects of β-Hydroxy-β-Methylbutyrate or HMB-Rich Nutritional Supplements on Sarcopenia Patients: A Systematic Review and Meta-Analysis. Front. Med. 2024, 11, 1348212. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.S.; Campos, S.M.; Sanches, M.A.A.; Bagnato, V.S.; Corazza, A.V. Neuromuscular electrical stimulation and photobiomodulation in the functional recovery of sarcopenia. Braz. J. Phys. Ther. 2024, 28, 100896. [Google Scholar] [CrossRef]
- Chang, S.-F.; Lin, P.-C.; Yang, R.-S.; Yang, R.-J. The Preliminary Effect of Whole-Body Vibration Intervention on Improving the Skeletal Muscle Mass Index, Physical Fitness, and Quality of Life among Older People with Sarcopenia. BMC Geriatr. 2018, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, R.; Jiang, J.; Tan, L.; Yang, M. A Randomized Controlled Trial of Resistance and Balance Exercise for Sarcopenic Patients Aged 80–99 Years. Sci. Rep. 2020, 10, 18756. [Google Scholar] [CrossRef]
- Mile, M.; Balogh, L.; Papp, G.; Pucsok, J.M.; Szabó, K.; Barna, L.; Csiki, Z.; Lekli, I. Effects of Functional Training on Sarcopenia in Elderly Women in the Presence or Absence of ACE Inhibitors. Int. J. Environ. Res. Public Health 2021, 18, 6594. [Google Scholar] [CrossRef] [PubMed]
- Barfoot, M.K.; Braun, J.L.; Wallace, P.J.; Marcella, B.M.; Baranowski, R.W.; MacPherson, R.E.K.; Cheung, S.S.; Fajardo, V.A. Heat Therapy Preserves Myofibre Size and SERCA-mediated Ca2+ Uptake in the Mouse Soleus after Tenotomy Surgery. Physiol. Rep. 2025, 13, e70385. [Google Scholar] [CrossRef]
- Mustaklem, B.; Loghmani, M.T.; Waterfill, A.K.; Caron, M.; Glore, D.A.; Meyer, N.R.; Shelton, L.D.; Day, E.A.; Marciano, C.; Gepfert, A. Soft Tissue Manipulation Enhances Recovery of Muscle Mass in a Disuse Model of Sarcopenia. J. Osteopath. Med. 2025. [Google Scholar] [CrossRef]
- Guo, C.; Ma, Y.; Liu, S.; Zhu, R.; Xu, X.; Li, Z.; Fang, L. Traditional Chinese Medicine and Sarcopenia: A Systematic Review. Front. Aging Neurosci. 2022, 14, 872233. [Google Scholar] [CrossRef]
- Rooks, D.; Praestgaard, J.; Hariry, S.; Laurent, D.; Petricoul, O.; Perry, R.G.; Lach-Trifilieff, E.; Roubenoff, R. Treatment of Sarcopenia with Bimagrumab: Results from a Phase II, Randomized, Controlled, Proof-of-Concept Study. J. Am. Geriatr. Soc. 2017, 65, 1988–1995. [Google Scholar] [CrossRef]
- Morales, A.J.; Haubrich, R.H.; Hwang, J.Y.; Asakura, H.; Yen, S.S.C. The Effect of Six Months Treatment with a 100 Mg Daily Dose of Dehydroepiandrosterone (DHEA) on Circulating Sex Steroids, Body Composition and Muscle Strength in Age-advanced Men and Women. Clin. Endocrinol. 1998, 49, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Giannoulis, M.G.; Sonksen, P.H.; Umpleby, M.; Breen, L.; Pentecost, C.; Whyte, M.; McMillan, C.V.; Bradley, C.; Martin, F.C. The Effects of Growth Hormone and/or Testosterone in Healthy Elderly Men: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2006, 91, 477–484. [Google Scholar] [CrossRef]
- MYMD-1®—A Novel Drug For Immunotherapy|MyMD. Available online: https://tnfpharma.com/pipeline/mymd-1 (accessed on 24 January 2025).
- Becker, C.; Lord, S.R.; Studenski, S.A.; Warden, S.J.; Fielding, R.A.; Recknor, C.P.; Hochberg, M.C.; Ferrari, S.L.; Blain, H.; Binder, E.F.; et al. Myostatin Antibody (LY2495655) in Older Weak Fallers: A Proof-of-Concept, Randomised, Phase 2 Trial. Lancet Diabetes Endocrinol. 2015, 3, 948–957. [Google Scholar] [CrossRef]
- Study Details|A Study to Assess the Efficacy, Safety, and Tolerability of Oral LPCN 1148 in Male Subjects with Cirrhosis of the Liver and Sarcopenia|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04874350 (accessed on 27 January 2025).
- Biophytis Gears Up for Phase III Sarcopenia Trial in the EU. Available online: https://www.clinicaltrialsarena.com/news/biophytis-sarconeos-sarcopenia/ (accessed on 24 January 2025).
- Trevogrumab—Regeneron Pharmaceuticals—AdisInsight. Available online: https://adisinsight.springer.com/drugs/800035555 (accessed on 24 January 2025).
- Vinel, C.; Lukjanenko, L.; Batut, A.; Deleruyelle, S.; Pradère, J.P.; Le Gonidec, S.; Dortignac, A.; Geoffre, N.; Pereira, O.; Karaz, S.; et al. The Exerkine Apelin Reverses Age-Associated Sarcopenia. Nat. Med. 2018, 24, 1360–1371. [Google Scholar] [CrossRef]
- Guo, M.; Yao, J.; Li, J.; Zhang, J.; Wang, D.; Zuo, H.; Zhang, Y.; Xu, B.; Zhong, Y.; Shen, F.; et al. Irisin Ameliorates Age-Associated Sarcopenia and Metabolic Dysfunction. J. Cachexia Sarcopenia Muscle 2023, 14, 391–405. [Google Scholar] [CrossRef]
- Hettwer, S.; Lin, S.; Kucsera, S.; Haubitz, M.; Oliveri, F.; Fariello, R.G.; Ruegg, M.A.; Vrijbloed, J.W. Injection of a Soluble Fragment of Neural Agrin (NT-1654) Considerably Improves the Muscle Pathology Caused by the Disassembly of the Neuromuscular Junction. PLoS ONE 2014, 9, e88739. [Google Scholar] [CrossRef]
- Liang, S.; Liu, D.; Xiao, Z.; Greenbaum, J.; Shen, H.; Xiao, H.; Deng, H. Repurposing Approved Drugs for Sarcopenia Based on Transcriptomics Data in Humans. Pharmaceuticals 2023, 16, 607. [Google Scholar] [CrossRef]
- Lee, E.; Kim, I.-D.; Lim, S.-T. Physical Activity and Protein-Intake Strategies to Prevent Sarcopenia in Older People. Int. Health 2025, 17, 423–430. [Google Scholar] [CrossRef]
- Law, T.D.; Clark, L.A.; Clark, B.C. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annu. Rev. Gerontol. Geriatr. 2016, 36, 205. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.C.; Mehmood, A.; Wei, D.; Nawab, S.; Sahi, S.; Kumar, A. (Eds.) Biological Systems to Computational Systems Biology. In Cheminformatics and Bioinformatics at the Interface with Systems Biology: Bridging Chemistry and Medicine; Royal Society of Chemistry: Cambridge, UK, 2023; Volume 24. [Google Scholar] [CrossRef]
- Rai, N.; Singh, N.A.; Jain, V.; Jain, P.; Choi, A.; Sinha, S.K. Introduction to Systems Biology. In Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases; Joshi, S., Ray, R.R., Nag, M., Lahiri, D., Eds.; Springer Nature: Singapore, 2024; pp. 1–25. [Google Scholar] [CrossRef]
- Shyam, K.P.; Ramya, V.; Nadiya, S.; Parashar, A.; Gideon, D.A. Chapter 15—Systems Biology Approaches to Unveiling the Expression of Phospholipases in Various Types of Cancer—Transcriptomics and Protein-Protein Interaction Networks. In Phospholipases in Physiology and Pathology; Chakraborti, S., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 271–307. [Google Scholar] [CrossRef]
- Jasmine, R.; Soundararajan, S.; Sherlin Rosita, A.; Deena Priscilla, H. Systems Biology and Human Diseases. In Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases; Joshi, S., Ray, R.R., Nag, M., Lahiri, D., Eds.; Springer Nature: Singapore, 2024; pp. 27–54. [Google Scholar] [CrossRef]
- Micheel, C.M.; Nass, S.J.; Omenn, G.S. Omics-Based Clinical Discovery: Science, Technology, and Applications. In Evolution of Translational Omics: Lessons Learned and the Path Forward; National Academies Press (US): Washington DC, USA, 2012. [Google Scholar]
- Ceyhan, A.B.; Kaynar, A.; Altay, O.; Zhang, C.; Temel, S.G.; Turkez, H.; Mardinoglu, A. Identifying Hub Genes and Metabolic Pathways in Collagen VI-Related Dystrophies: A Roadmap to Therapeutic Intervention. Biomolecules 2024, 14, 1376. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Jin, H.; Yulug, B.; Altay, O.; Li, X.; Hanoglu, L.; Cankaya, S.; Coskun, E.; Idil, E.; Nogaylar, R.; et al. Multi-Omics Analysis Reveals the Key Factors Involved in the Severity of the Alzheimer’s Disease. Alzheimer’s Res. Ther. 2024, 16, 213. [Google Scholar] [CrossRef]
- Yan, J.; Risacher, S.L.; Shen, L.; Saykin, A.J. Network Approaches to Systems Biology Analysis of Complex Disease: Integrative Methods for Multi-Omics Data. Brief. Bioinform. 2017, 19, 1370–1381. [Google Scholar] [CrossRef] [PubMed]
- Kaynar, A.; Kim, W.; Ceyhan, A.B.; Zhang, C.; Uhlén, M.; Turkez, H.; Shoaie, S.; Mardinoglu, A. Unveiling the Molecular Mechanisms of Glioblastoma through an Integrated Network-Based Approach. Biomedicines 2024, 12, 2237. [Google Scholar] [CrossRef] [PubMed]
- Mardinoglu, A.; Palsson, B. Genome-Scale Models in Human Metabologenomics. Nat. Rev. Genet. 2024, 26, 123–140. [Google Scholar] [CrossRef]
- Turanli, B.; Gulfidan, G.; Aydogan, O.O.; Kula, C.; Selvaraj, G.; Arga, K.Y. Genome-Scale Metabolic Models in Translational Medicine: The Current Status and Potential of Machine Learning in Improving the Effectiveness of the Models. Mol. Omics 2024, 20, 234–247. [Google Scholar] [CrossRef]
- Narad, P.; Gupta, R.; Kulshrestha, S.; Sengupta, A. Systems Biology in Understanding the Human Gut Microbiome and Related Diseases Highlighting Metabolic Modeling and Analysis. In Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases; Joshi, S., Ray, R.R., Nag, M., Lahiri, D., Eds.; Springer Nature: Singapore, 2024; pp. 437–465. [Google Scholar] [CrossRef]
- Domenzain, I.; Sánchez, B.; Anton, M.; Kerkhoven, E.J.; Millán-Oropeza, A.; Henry, C.; Siewers, V.; Morrissey, J.P.; Sonnenschein, N.; Nielsen, J. Reconstruction of a Catalogue of Genome-Scale Metabolic Models with Enzymatic Constraints Using GECKO 2.0. Nat. Commun. 2022, 13, 3766. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, H.; Huang, X.; Chang, L.; Yang, B.; Chen, W. Precise Metabolic Modeling in Post-Omics Era: Accomplishments and Perspectives. Crit. Rev. Biotechnol. 2024, 45, 683–701. [Google Scholar] [CrossRef]
- Semenova, E.A.; Pranckevičienė, E.; Bondareva, E.A.; Gabdrakhmanova, L.J.; Ahmetov, I.I. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023, 15, 758. [Google Scholar] [CrossRef]
- Jin, H.; Yoo, H.J.; Kim, Y.A.; Lee, J.H.; Lee, Y.; Kwon, S.H.; Seo, Y.J.; Lee, S.H.; Koh, J.M.; Ji, Y.; et al. Unveiling Genetic Variants for Age-Related Sarcopenia by Conducting a Genome-Wide Association Study on Korean Cohorts. Sci. Rep. 2022, 12, 3501. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, G.; Zhang, F.; Yu, D.; Jia, X.; Ma, B.; Chen, W.; Cai, X.; Mao, L.; Zhuang, C.; et al. Identification of a Novel Immune-Related Transcriptional Regulatory Network in Sarcopenia. BMC Geriatr. 2023, 23, 463. [Google Scholar] [CrossRef] [PubMed]
- Ubaida-Mohien, C.; Lyashkov, A.; Gonzalez-Freire, M.; Tharakan, R.; Shardell, M.; Moaddel, R.; Semba, R.D.; Chia, C.W.; Gorospe, M.; Sen, R. Discovery Proteomics in Aging Human Skeletal Muscle Finds Change in Spliceosome, Immunity, Proteostasis and Mitochondria. eLife 2019, 8, e49874. [Google Scholar] [CrossRef]
- Ohlendieck, K. Proteomic Profiling of Fast-to-Slow Muscle Transitions during Aging. Front. Physiol. 2011, 2, 105. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Lane, N.E.; Wu, J.; Yang, T.; Li, J.; He, H.; Wei, J.; Zeng, C.; Lei, G. Population-Based Metagenomics Analysis Reveals Altered Gut Microbiome in Sarcopenia: Data from the Xiangya Sarcopenia Study. J. Cachexia Sarcopenia Muscle 2022, 13, 2340–2351. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Mancabelli, L.; Tagliaferri, S.; Nouvenne, A.; Milani, C.; Del Rio, D.; Lauretani, F.; Maggio, M.G.; Ventura, M.; Meschi, T. The Gut–Muscle Axis in Older Subjects with Low Muscle Mass and Performance: A Proof of Concept Study Exploring Fecal Microbiota Composition and Function with Shotgun Metagenomics Sequencing. Int. J. Mol. Sci. 2020, 21, 8946. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Sharma, S. Potential of Probiotics in Improving Sarcopenic Muscle Targeting ‘Gut-Muscle Axis’ through Gut Microbiota: A Solution for Healthy Aging. Biochem. Cell. Arch. 2022, 22, 4219–4229. [Google Scholar] [CrossRef]
- Xu, R.; Ma, L.L.; Cui, S.; Chen, L.; Xu, H. Bioinformatics and Systems Biology Approach to Identify the Pathogenetic Link between Heart Failure and Sarcopenia. Arq. Bras. Cardiol. 2023, 120, e20220874. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ren, W.; Zhu, L.; Hu, Y.; Ye, C. Identification of Genes and Key Pathways Underlying the Pathophysiological Association between Sarcopenia and Chronic Obstructive Pulmonary Disease. Exp. Gerontol. 2024, 187, 112373. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Yuan, H.; Yang, J.; Du, Y.; Li, Z.; Liu, X.; Yang, H.; Wang, Z.; Wang, Z.; Jiang, L.; et al. Bioinformatics and System Biology Approach to Identify Potential Common Pathogenesis for COVID-19 Infection and Sarcopenia. Front. Med. 2024, 11, 1378846. [Google Scholar] [CrossRef]
- Feng, Z.; Zhao, F.; Wang, Z.; Tang, X.; Xie, Y.; Qiu, L. The Relationship between Sarcopenia and Metabolic Dysfunction-Associated Fatty Liver Disease among the Young and Middle-Aged Populations. BMC Gastroenterol. 2024, 24, 1–11. [Google Scholar] [CrossRef]
- Yang, T.; Liu, Z.; Xiu, M.; Qing, X.; Liu, S.; Xiao, W.; Lü, M. Sarcopenia-Related Traits and 10 Digestive System Disorders: Insight from Genetic Correlation and Mendelian Randomization. Front. Public Health 2024, 12, 1412842. [Google Scholar] [CrossRef]
- Su, Q.; Jin, C.; Yang, Y.; Wang, J.; Wang, J.; Zeng, H.; Chen, Y.; Zhou, J.; Wang, Y. Association Between Autoimmune Diseases and Sarcopenia: A Two-Sample Mendelian Randomization Study. Clin. Epidemiol. 2023, 15, 901–910. [Google Scholar] [CrossRef]
- An, H.J.; Tizaoui, K.; Terrazzino, S.; Cargnin, S.; Lee, K.H.; Nam, S.W.; Kim, J.S.; Yang, J.W.; Lee, J.Y.; Smith, L.; et al. Sarcopenia in Autoimmune and Rheumatic Diseases: A Comprehensive Review. Int. J. Mol. Sci. 2020, 21, 5678. [Google Scholar] [CrossRef]
- Bezzio, C.; Brinch, D.; Ribaldone, D.G.; Cappello, M.; Ruzzon, N.; Vernero, M.; Scalvini, D.; Loy, L.; Donghi, S.; Ciminnisi, S.; et al. Prevalence, Risk Factors and Association with Clinical Outcomes of Malnutrition and Sarcopenia in Inflammatory Bowel Disease: A Prospective Study. Nutrients 2024, 16, 3983. [Google Scholar] [CrossRef]
- Liu, J.C.; Dong, S.S.; Shen, H.; Yang, D.Y.; Chen, B.B.; Ma, X.Y.; Peng, Y.R.; Xiao, H.M.; Deng, H.W. Multi-Omics Research in Sarcopenia: Current Progress and Future Prospects. Ageing Res. Rev. 2022, 76, 101576. [Google Scholar] [CrossRef]
- Lamaudiere, M.; Sergaki, C. Appropriate Biological Standardisation to Bring Confidence to Omics Data: The Example of the Microbiome. Food Sci. Nutr. Cases 2024, 2024, fsncases20240004. [Google Scholar] [CrossRef]
- Pham, L.A.T.; Nguyen, B.T.; Huynh, D.T.; Nguyen, B.M.L.T.; Tran, P.A.N.; Van Vo, T.; Bui, H.H.T.; Thai, T.T. Community-Based Prevalence and Associated Factors of Sarcopenia in the Vietnamese Elderly. Sci. Rep. 2024, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wei, Y.; Shao, L.; Li, M.; Zhang, X.; Li, W.; Zhao, S.; Xia, X.; Liu, P. Association of Dietary Patterns and Sarcopenia in the Elderly Population: A Cross-Sectional Study. Front. Aging 2023, 4, 1239945. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, A.J.; Amog, K.; Phillips, S.; Parise, G.; McNicholas, P.D.; De Souza, R.J.; Thabane, L.; Raina, P. The Prevalence of Sarcopenia in Community-Dwelling Older Adults, an Exploration of Differences between Studies and within Definitions: A Systematic Review and Meta-Analyses. Age Ageing 2018, 48, 48–56. [Google Scholar] [CrossRef]
- Abellan van Kan, G.; Cameron Chumlea, W.; Gillette-Guyonet, S.; Houles, M.; Dupuy, C.; Rolland, Y.; Vellas, B. Clinical Trials on Sarcopenia: Methodological Issues Regarding Phase 3 Trials. Clin. Geriatr. Med. 2011, 27, 471–482. [Google Scholar] [CrossRef]
- Cegielski, J.; Bass, J.J.; Willott, R.; Gordon, A.L.; Wilkinson, D.J.; Smith, K.; Atherton, P.J.; Phillips, B.E. Exploring the Variability of Sarcopenia Prevalence in a Research Population Using Different Disease Definitions. Aging Clin. Exp. Res. 2023, 35, 2271–2275. [Google Scholar] [CrossRef] [PubMed]
- Supriya, R.; Singh, K.P.; Gao, Y.; Li, F.; Dutheil, F.; Baker, J.S. A Multifactorial Approach for Sarcopenia Assessment: A Literature Review. Biology 2021, 10, 1354. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Kwon, K.S. Pharmacological Interventions for Treatment of Sarcopenia: Current Status of Drug Development for Sarcopenia. Ann. Geriatr. Med. Res. 2019, 23, 98–104. [Google Scholar] [CrossRef]
- Prokop, J.W.; May, T.; Strong, K.; Bilinovich, S.M.; Bupp, C.; Rajasekaran, S.; Worthey, E.A.; Lazar, J. Genome Sequencing in the Clinic: The Past, Present, and Future of Genomic Medicine. Physiol. Genomics 2018, 50, 563–579. [Google Scholar] [CrossRef]
- Koppad, S.; B, A.; Gkoutos, G.V.; Acharjee, A. Cloud Computing Enabled Big Multi-Omics Data Analytics. Bioinform. Biol. Insights 2021, 15, 11779322211035921. [Google Scholar] [CrossRef] [PubMed]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised Nutrition and Health. BMJ 2018, 361, bmj.k2173. [Google Scholar] [CrossRef] [PubMed]
- Seok, M.; Kim, W. Sarcopenia Prediction for Elderly People Using Machine Learning: A Case Study on Physical Activity. Healthcare 2023, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Genomics and Personalised Medicine: Partner with the UK to Develop New Treatments, Diagnostics, and Care Solutions. Available online: https://www.gov.uk/government/publications/genomics-and-personalised-medicines-partner-with-the-uk-to-develop-new-treatments/genomics-and-personalised-medicine-partner-with-the-uk-to-develop-new-treatments-diagnostics-and-care-solutions (accessed on 23 January 2025).
- Tech Secretary Welcomes Foreign Investment in UK Data Centres Which Will Spur Economic Growth and AI Innovation in Britain. Available online: https://www.gov.uk/government/news/tech-secretary-welcomes-foreign-investment-in-uk-data-centres-which-will-spur-economic-growth-and-ai-innovation-in-britain (accessed on 23 January 2025).
- Liu, X.; Yue, J. Precision Intervention for Sarcopenia. Precis. Clin. Med. 2022, 5, pbac013. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceyhan, A.B.; Altay, O.; Zhang, C.; Temel, S.G.; Turkez, H.; Mardinoglu, A. Unravelling the Complexity of Sarcopenia Through a Systems Biology Approach. Int. J. Mol. Sci. 2025, 26, 8527. https://doi.org/10.3390/ijms26178527
Ceyhan AB, Altay O, Zhang C, Temel SG, Turkez H, Mardinoglu A. Unravelling the Complexity of Sarcopenia Through a Systems Biology Approach. International Journal of Molecular Sciences. 2025; 26(17):8527. https://doi.org/10.3390/ijms26178527
Chicago/Turabian StyleCeyhan, Atakan Burak, Ozlem Altay, Cheng Zhang, Sehime Gulsun Temel, Hasan Turkez, and Adil Mardinoglu. 2025. "Unravelling the Complexity of Sarcopenia Through a Systems Biology Approach" International Journal of Molecular Sciences 26, no. 17: 8527. https://doi.org/10.3390/ijms26178527
APA StyleCeyhan, A. B., Altay, O., Zhang, C., Temel, S. G., Turkez, H., & Mardinoglu, A. (2025). Unravelling the Complexity of Sarcopenia Through a Systems Biology Approach. International Journal of Molecular Sciences, 26(17), 8527. https://doi.org/10.3390/ijms26178527