Mitochondrial Transport Proteins in Cardiovascular Diseases: Metabolic Gatekeepers, Pathogenic Mediators and Therapeutic Targets
Abstract
1. Introduction
2. Classification of Mitochondrial Transporters Potentially Regulating CVDs
2.1. Porin Channels
Voltage-Dependent Anion Channels
2.2. Ion Channels
2.2.1. Transient Receptor Potential (TRP) Channels
TRPC Subfamily
TRPV Subfamily
2.2.2. Calcium Transporters
2.2.3. Potassium/Sodium/Magnesium Transporters
K+ Channels
Voltage-Gated Na+ Channels
Mg2+ Transporters
2.3. Solute Carrier Families
2.4. H+ Channels
3. Mitochondrial Transport Proteins/Channels Regulation of CVD Mechanisms
3.1. Calcium Homeostasis Regulation
3.2. Redox Signaling Modulation
3.3. Metabolic Reprogramming
3.4. Inflammation Participation
3.5. Vascular Function Regulation
4. Therapeutic Potential of Mitochondrial Transporters in Cardiovascular Diseases
4.1. Heart Failure
4.2. Ischemic Heart Disease
4.3. Cardiomyopathies
4.4. Coronary Heart Disease
4.5. Atherosclerosis
4.6. Myocardial Infarction
4.7. Targeted Delivery Strategies
5. Conclusions
5.1. Mechanisms of Mitochondrial Transporters
5.2. Significance of Work
5.3. Prospective Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Olvera Lopez, E.; Ballard, B.D.; Jan, A. Cardiovascular Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Zhang, H.; Zheng, X.; Huang, P.; Guo, L.; Zheng, Y.; Zhang, D.; Ma, X. The Burden and Trends of Heart Failure Caused by Ischaemic Heart Disease at the Global, Regional, and National Levels from 1990 to 2021. Eur. Heart J. Qual. Care Clin. Outcomes 2025, 11, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Cardiovascular Diseases. In Manual of Molecular and Clinical Laboratory Immunology; Wiley: Hoboken, NJ, USA, 2024; pp. 1054–1070. ISBN 978-1-68367-399-6.
- Liu, Y.; Huang, Y.; Xu, C.; An, P.; Luo, Y.; Jiao, L.; Luo, J.; Li, Y. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 16053. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pi, J.; Zhang, Y.; Zhou, J.; Zhang, S.; Wu, S. Effects of Ferroptosis on Cardiovascular Diseases. Mediat. Inflamm. 2023, 2023, 6653202. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, A.; Sofiou, F.-I.; Lembessis, P.; Traikov, L.L.; Karela, N.-R.; Angouras, D.C.; Philippou, A. Mitochondrial Mutations in Cardiovascular Diseases: Preliminary Findings. Genes 2024, 15, 1442. [Google Scholar] [CrossRef]
- Campos, J.C.; Bozi, L.H.M.; Bechara, L.R.G.; Lima, V.M.; Ferreira, J.C.B. Mitochondrial Quality Control in Cardiac Diseases. Front. Physiol. 2016, 7, 479. [Google Scholar] [CrossRef]
- Zorov, D.B.; Filburn, C.R.; Klotz, L.O.; Zweier, J.L.; Sollott, S.J. Reactive Oxygen Species (ROS)-Induced ROS Release: A New Phenomenon Accompanying Induction of the Mitochondrial Permeability Transition in Cardiac Myocytes. J. Exp. Med. 2000, 192, 1001–1014. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Farooqui, T. (Eds.) Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects on Cell Signaling; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9781118001943. [Google Scholar]
- Blagov, A.; Kozlov, S.; Blokhina, T.; Sukhorukov, V.; Orekhov, A. Targeting Mitochondrial Dynamics Proteins for the Development of Therapies for Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 14741. [Google Scholar] [CrossRef]
- Maneechote, C.; Chattipakorn, S.C.; Chattipakorn, N. Recent Advances in Mitochondrial Fission/Fusion-Targeted Therapy in Doxorubicin-Induced Cardiotoxicity. Pharmaceutics 2023, 15, 1182. [Google Scholar] [CrossRef]
- Saotome, M.; Ikoma, T.; Hasan, P.; Maekawa, Y. Cardiac Insulin Resistance in Heart Failure: The Role of Mitochondrial Dynamics. Int. J. Mol. Sci. 2019, 20, 3552. [Google Scholar] [CrossRef]
- Kunji, E.R.S. 8.9 Structural and Mechanistic Aspects of Mitochondrial Transport Proteins. In Comprehensive Biophysics; Elsevier: Amsterdam, The Netherlands, 2012; pp. 174–205. ISBN 978-0-08-095718-0. [Google Scholar]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in Oxidative Stress, Inflammation and Aging: From Mechanisms to Therapeutic Advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Chen, Y.-F.; Chan, H.-C.; Chung, C.-H.; Peng, H.-Y.; Ho, Y.-C.; Chen, C.-H.; Chang, K.-C.; Tang, C.-H.; Lee, A.-S. Role of Apolipoprotein E in Electronegative Low-Density Lipoprotein-Induced Mitochondrial Dysfunction in Cardiomyocytes. Metabolism 2020, 107, 154227. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, S.; Ortíz-Ledón, C.A.; Zhu, J.; Chen, S.; Duan, J. Biomimetic Assembly to Superplastic Metal–Organic Framework Aerogels for Hydrogen Evolution from Seawater Electrolysis. Exploration 2021, 1, 20210021. [Google Scholar] [CrossRef]
- Jang, S.-K.; Ahn, S.H.; Kim, G.; Kim, S.; Hong, J.; Park, K.S.; Park, I.-C.; Jin, H.-O. Inhibition of VDAC1 Oligomerization Blocks Cysteine Deprivation-Induced Ferroptosis via Mitochondrial ROS Suppression. Cell Death Dis. 2024, 15. [Google Scholar] [CrossRef]
- Noskov, S.Y.; Rostovtseva, T.K.; Bezrukov, S.M. ATP Transport through VDAC and the VDAC-Tubulin Complex Probed by Equilibrium and Nonequilibrium MD Simulations. Biochemistry 2013, 52, 9246–9256. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Fu, Q.; Yang, Q.; Yang, Y.; Li, R.; Yang, X.; Yang, Q.; Li, S.; Tian, J.; Liu, H. Different Types of Cell Death and Their Interactions in Myocardial Ischemia-Reperfusion Injury. Cell Death Discov. 2025, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, S.; Liu, B.; Susperreguy, S.; Formoso, K.; Yao, J.; Kang, J.; Shi, A.; Birnbaumer, L.; Liao, Y. Major Contribution of the 3/6/7 Class of TRPC Channels to Myocardial Ischemia/Reperfusion and Cellular Hypoxia/Reoxygenation Injuries. Proc. Natl. Acad. Sci. USA 2017, 114, E4582–E4591. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.J.; Nemani, N.; Shanmughapriya, S.; Kumar, A.; Zhang, M.; Nathan, S.R.; Thomas, M.; Carvalho, E.; Ramachandran, K.; Srikantan, S.; et al. A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury. ACS Cent. Sci. 2019, 5, 153–166. [Google Scholar] [CrossRef]
- Lu, B.; Huang, B.; Wang, Y.; Ma, G.; Cai, Z. Mitochondrial Calcium Homeostasis Mediated by Estradiol Contributes to Atrial Fibrillation Protection. Biochem. Biophys. Res. Commun. 2025, 772, 152050. [Google Scholar] [CrossRef]
- Stanzione, R.; Forte, M.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Busceti, C.L.; Fornai, F.; Rubattu, S. Uncoupling Protein 2 as a Pathogenic Determinant and Therapeutic Target in Cardiovascular and Metabolic Diseases. Curr. Neuropharmacol. 2022, 20, 662–674. [Google Scholar] [CrossRef]
- Fink, B.D.; Reszka, K.J.; Herlein, J.A.; Mathahs, M.M.; Sivitz, W.I. Respiratory Uncoupling by UCP1 and UCP2 and Superoxide Generation in Endothelial Cell Mitochondria. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E71–E79. [Google Scholar] [CrossRef]
- Gutiérrez-Aguilar, M.; Baines, C.P. Physiological and Pathological Roles of Mitochondrial SLC25 Carriers. Biochem. J. 2013, 454, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Kunji, E.R.S.; King, M.S.; Ruprecht, J.J.; Thangaratnarajah, C. The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiology 2020, 35, 302–327. [Google Scholar] [CrossRef]
- Gan, Z.; Wei, X.; Zheng, Y.; Zheng, Q.; Fan, S.; Xiong, F. Loss-of-Function SLC25A20 Variant Causes Carnitine-Acylcarnitine Translocase Deficiency by Reducing SLC25A20 Protein Stability. Gene 2025, 940, 149201. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Konishi, A.; Kodama, T.; Tsujimoto, Y. BH4 Domain of Antiapoptotic Bcl-2 Family Members Closes Voltage-Dependent Anion Channel and Inhibits Apoptotic Mitochondrial Changes and Cell Death. Proc. Natl. Acad. Sci. USA 2000, 97, 3100–3105. [Google Scholar] [CrossRef] [PubMed]
- Rosencrans, W.M.; Queralt-Martin, M.; Lessen, H.J.; Larimi, M.G.; Rajendran, M.; Chou, T.-F.; Mahalakshmi, R.; Sodt, A.J.; Yu, T.-Y.; Bezrukov, S.M.; et al. Defining the Roles and Regulation of the Mitochondrial VDAC Isoforms One Molecule at a Time. Biophys. J. 2023, 122, 93a. [Google Scholar] [CrossRef]
- Zahedi, R.P.; Sickmann, A.; Boehm, A.M.; Winkler, C.; Zufall, N.; Schönfisch, B.; Guiard, B.; Pfanner, N.; Meisinger, C. Proteomic Analysis of the Yeast Mitochondrial Outer Membrane Reveals Accumulation of a Subclass of Preproteins. Mol. Biol. Cell 2006, 17, 1436–1450. [Google Scholar] [CrossRef]
- Argueti-Ostrovsky, S.; Barel, S.; Kahn, J.; Israelson, A. VDAC1: A Key Player in the Mitochondrial Landscape of Neurodegeneration. Biomolecules 2024, 15, 33. [Google Scholar] [CrossRef]
- Shankar, T.S.; Ramadurai, D.K.A.; Steinhorst, K.; Sommakia, S.; Badolia, R.; Thodou Krokidi, A.; Calder, D.; Navankasattusas, S.; Sander, P.; Kwon, O.S.; et al. Cardiac-Specific Deletion of Voltage Dependent Anion Channel 2 Leads to Dilated Cardiomyopathy by Altering Calcium Homeostasis. Nat. Commun. 2021, 12, 4583. [Google Scholar] [CrossRef]
- Reina, S.; Nibali, S.C.; Tomasello, M.F.; Magrì, A.; Messina, A.; De Pinto, V. Voltage Dependent Anion Channel 3 (VDAC3) Protects Mitochondria from Oxidative Stress. Redox Biol. 2022, 51, 102264. [Google Scholar] [CrossRef]
- Lee, S.A.; Yang, J.W.; Choi, S.; Jang, H.W. Nanoscale Electrodeposition: Dimension Control and 3D Conformality. Exploration 2021, 1, 20210012. [Google Scholar] [CrossRef]
- Meng, W.; Li, L. N6-Methyladenosine Modification of SPOP Relieves Ferroptosis and Diabetic Cardiomyopathy by Enhancing Ubiquitination of VDAC3. Free Radic. Biol. Med. 2025, 226, 216–229. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (Transient Receptor Potential) Ion Channel Family: Structures, Biological Functions and Therapeutic Interventions for Diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef]
- Han, L.; Li, J. Canonical Transient Receptor Potential 3 Channels in Atrial Fibrillation. Eur. J. Pharmacol. 2018, 837, 1–7. [Google Scholar] [CrossRef]
- Kim, J.; Ko, J.; Myeong, J.; Kwak, M.; Hong, C.; So, I. TRPC1 as a Negative Regulator for TRPC4 and TRPC5 Channels. Pflug. Arch. 2019, 471, 1045–1053. [Google Scholar] [CrossRef]
- Xie, J.; Cha, S.-K.; An, S.-W.; Kuro-O, M.; Birnbaumer, L.; Huang, C.-L. Cardioprotection by Klotho through Downregulation of TRPC6 Channels in the Mouse Heart. Nat. Commun. 2012, 3, 1238. [Google Scholar] [CrossRef] [PubMed]
- Thakore, P.; Clark, J.E.; Aubdool, A.A.; Thapa, D.; Starr, A.; Fraser, P.A.; Farrell-Dillon, K.; Fernandes, E.S.; McFadzean, I.; Brain, S.D. Transient Receptor Potential Canonical 5 (TRPC5): Regulation of Heart Rate and Protection against Pathological Cardiac Hypertrophy. Biomolecules 2024, 14, 442. [Google Scholar] [CrossRef]
- Wen, H.; Gwathmey, J.K.; Xie, L.-H. Role of Transient Receptor Potential Canonical Channels in Heart Physiology and Pathophysiology. Front. Cardiovasc. Med. 2020, 7, 24. [Google Scholar] [CrossRef]
- Shin, S.; Gombedza, F.C.; Awuah Boadi, E.; Yiu, A.J.; Roy, S.K.; Bandyopadhyay, B.C. Reduction of TRPC1/TRPC3 Mediated Ca2+-Signaling Protects Oxidative Stress-Induced COPD. Cell. Signal. 2023, 107, 110681. [Google Scholar] [CrossRef]
- Kulkarni, K.; Walton, R.D.; Chaigne, S. Unlocking the Potential of Cardiac TRP Channels Using Knockout Mice Models. Front. Physiol. 2025, 16, 1585356. [Google Scholar] [CrossRef]
- Zhu, Y.; Chu, Y.; Wang, S.; Tang, J.; Li, H.; Feng, L.; Yu, F.; Ma, X. Vascular Smooth Muscle TRPV4 (Transient Receptor Potential Vanilloid Family Member 4) Channels Regulate Vasoconstriction and Blood Pressure in Obesity. Hypertension 2023, 80, 757–770. [Google Scholar] [CrossRef]
- Wang, P.; Gu, Y.; Lu, J.; Song, M.; Hou, W.; Li, P.; Sun, Y.; Wang, J.; Chen, X. Endothelial TRPV4 Channel Mediates the Vasodilation Induced by Tanshinone IIA. Chem. Biol. Interact. 2024, 402, 111181. [Google Scholar] [CrossRef]
- Dematteis, G.; Lecchi, G.; Boni, G.; Pendin, D.; Distasi, C.; Grilli, M.; Lim, D.; Fresu, L.G.; Talmon, M. ATM Knock out Alters Calcium Signalling and Augments Contraction in Skeletal Muscle Cells Differentiated from Human Urine-Derived Stem Cells. Cell Death Discov. 2025, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Ahmed, A.-B.; Gill, R.; Shaikh, T.; Khorsandi, J.; Kia, A. Molecular Mechanisms of L-Type Calcium Channel Dysregulation in Heart Failure. Int. J. Mol. Sci. 2025, 26, 5738. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yu, Z.; Li, Y.; Huang, B.; Bai, Q.; Gao, Y.; Chen, Q.; Li, N.; He, L.; Zhao, Y. Structural Insight into the Allosteric Inhibition of Human Sodium-Calcium Exchanger NCX1 by XIP and SEA0400. EMBO J. 2023, 43, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Piao, L.; Fang, Y.H.; Fisher, M.; Hamanaka, R.B.; Ousta, A.; Wu, R.; Mutlu, G.M.; Garcia, A.J., 3rd; Archer, S.L.; Sharp, W.W. Dynamin-Related Protein 1 is a Critical Regulator of Mitochondrial Calcium Homeostasis during Myocardial Ischemia/Reperfusion Injury. FASEB J. 2024, 38, e23379. [Google Scholar] [CrossRef]
- Yang, H.-M. Mitochondrial Dysfunction in Cardiovascular Diseases. Int. J. Mol. Sci. 2025, 26, 1917. [Google Scholar] [CrossRef]
- Bischof, H.; Maier, S.; Koprowski, P.; Kulawiak, B.; Burgstaller, S.; Jasińska, J.; Serafimov, K.; Zochowska, M.; Gross, D.; Schroth, W.; et al. mitoBKCa Is Functionally Expressed in Murine and Human Breast Cancer Cells and Potentially Contributes to Metabolic Reprogramming. eLife 2024, 12, RP92511. [Google Scholar] [CrossRef]
- Inferrera, F.; Marino, Y.; Genovese, T.; Cuzzocrea, S.; Fusco, R.; Di Paola, R. Mitochondrial Quality Control: Biochemical Mechanism of Cardiovascular Disease. Biochim. Biophys. Acta Mol. Cell Res. 2025, 1872, 119906. [Google Scholar] [CrossRef]
- Feng, X.; Cai, W.; Li, Q.; Zhao, L.; Meng, Y.; Xu, H. Activation of Lysosomal Ca2+ Channels Mitigates Mitochondrial Damage and Oxidative Stress. J. Cell Biol. 2025, 224, e202403104. [Google Scholar] [CrossRef]
- Cartes-Saavedra, B.; Ghosh, A.; Hajnóczky, G. The Roles of Mitochondria in Global and Local Intracellular Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2025, 26, 456–475. [Google Scholar] [CrossRef]
- Chen-Izu, Y.; Shaw, R.M.; Pitt, G.S.; Yarov-Yarovoy, V.; Sack, J.T.; Abriel, H.; Aldrich, R.W.; Belardinelli, L.; Cannell, M.B.; Catterall, W.A.; et al. Na+ Channel Function, Regulation, Structure, Trafficking and Sequestration. J. Physiol. 2015, 593, 1347–1360. [Google Scholar] [CrossRef]
- Tokuyama, T.; Yanagi, S. Role of Mitochondrial Dynamics in Heart Diseases. Genes 2023, 14, 1876. [Google Scholar] [CrossRef]
- Karmazyn, M.; Pierce, G.N.; Fliegel, L. The Remaining Conundrum of the Role of the Na+/H+ Exchanger Isoform 1 (NHE1) in Cardiac Physiology and Pathology: Can It Be Rectified? Rev. Cardiovasc. Med. 2022, 23, 284. [Google Scholar] [CrossRef] [PubMed]
- Monsour, M.; Gordon, J.; Lockard, G.; Alayli, A.; Borlongan, C.V. Mitochondria in Cell-Based Therapy for Stroke. Antioxidants 2023, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Epithelial Sodium Channels (ENaC). Br. J. Pharmacol. 2009, 158, S137–S138. [CrossRef]
- Baldin, J.-P.; Barth, D.; Fronius, M. Epithelial Na+ Channel (ENaC) Formed by One or Two Subunits Forms Functional Channels That Respond to Shear Force. Front. Physiol. 2020, 11, 141. [Google Scholar] [CrossRef]
- Nagase, T.; Nagase, M. Piezo Ion Channels: Long-Sought-after Mechanosensors Mediating Hypertension and Hypertensive Nephropathy. Hypertens. Res. 2024, 47, 2786–2799. [Google Scholar] [CrossRef]
- Chen, H.; Xia, Z.; Dong, J.; Huang, B.; Zhang, J.; Zhou, F.; Yan, R.; Shi, Y.; Gong, J.; Jiang, J.; et al. Structural Mechanism of Voltage-Gated Sodium Channel Slow Inactivation. Nat. Commun. 2024, 15, 3691. [Google Scholar] [CrossRef]
- Alsaloum, M.; Dib-Hajj, S.D.; Page, D.A.; Ruben, P.C.; Krainer, A.R.; Waxman, S.G. Voltage-Gated Sodium Channels in Excitable Cells as Drug Targets. Nat. Rev. Drug Discov. 2025, 24, 358–378. [Google Scholar] [CrossRef]
- Chen, Z.; Lv, Z.; Zhang, Z.; Weitz, D.A.; Zhang, H.; Zhang, Y.; Cui, W. Advanced Microfluidic Devices for Fabricating Multi-structural Hydrogel Microsphere. Exploration 2021, 1, 20210036. [Google Scholar] [CrossRef]
- Chung, Y.J.; Hoare, Z.; Baark, F.; Yu, C.S.; Guo, J.; Fuller, W.; Southworth, R.; Katschinski, D.M.; Murphy, M.P.; Eykyn, T.R.; et al. Elevated Na Is a Dynamic and Reversible Modulator of Mitochondrial Metabolism in the Heart. Nat. Commun. 2024, 15, 4277. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.T.F.; Balaraman, J.; Zhou, F.; Matthies, D. Cryo-EM Structures of Human Magnesium Channel MRS2 Reveal Gating and Regulatory Mechanisms. Nat. Commun. 2023, 14, 7207. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, M.; Zhu, T.-T.; Zheng, Z.-J.; Li, S.; Sui, Z.-Y.; Guo, X.; Wu, S.; Zhang, N.-N.; Yu, Z.-Y.; et al. The TRPM7 Chanzyme in Smooth Muscle Cells Drives Abdominal Aortic Aneurysm in Mice. Nat. Cardiovasc. Res. 2025, 4, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Vishnu, N.; Venkatesan, M.; Madaris, T.R.; Venkateswaran, M.K.; Stanley, K.; Ramachandran, K.; Chidambaram, A.; Madesh, A.K.; Yang, W.; Nair, J.; et al. ERMA (TMEM94) Is a P-Type ATPase Transporter for Mg2+ Uptake in the Endoplasmic Reticulum. Mol. Cell 2024, 84, 1321–1337.e11. [Google Scholar] [CrossRef]
- Paar, V.; Jirak, P.; Larbig, R.; Zagidullin, N.S.; Brandt, M.C.; Lichtenauer, M.; Hoppe, U.C.; Motloch, L.J. Pathophysiology of Calcium Mediated Ventricular Arrhythmias and Novel Therapeutic Options with Focus on Gene Therapy. Int. J. Mol. Sci. 2019, 20, 5304. [Google Scholar] [CrossRef]
- Nesci, S.; Rubattu, S. UCP2, a Member of the Mitochondrial Uncoupling Proteins: An Overview from Physiological to Pathological Roles. Biomedicines 2024, 12, 1307. [Google Scholar] [CrossRef]
- Schweitzer, M.K.; Wilting, F.; Sedej, S.; Dreizehnter, L.; Dupper, N.J.; Tian, Q.; Moretti, A.; My, I.; Kwon, O.; Priori, S.G.; et al. Suppression of Arrhythmia by Enhancing Mitochondrial Ca2+ Uptake in Catecholaminergic Ventricular Tachycardia Models. JACC Basic Transl. Sci. 2017, 2, 737–747. [Google Scholar] [CrossRef]
- Lotz, C.; Herrmann, J.; Notz, Q.; Meybohm, P.; Kehl, F. Mitochondria and Pharmacologic Cardiac Conditioning-At the Heart of Ischemic Injury. Int. J. Mol. Sci. 2021, 22, 3224. [Google Scholar] [CrossRef]
- Vecellio Reane, D.; Serna, J.D.C.; Raffaello, A. Unravelling the Complexity of the Mitochondrial Ca2+ Uniporter: Regulation, Tissue Specificity, and Physiological Implications. Cell Calcium 2024, 121, 102907. [Google Scholar] [CrossRef]
- Baughman, J.M.; Perocchi, F.; Girgis, H.S.; Plovanich, M.; Belcher-Timme, C.A.; Sancak, Y.; Bao, X.R.; Strittmatter, L.; Goldberger, O.; Bogorad, R.L.; et al. Integrative Genomics Identifies MCU as an Essential Component of the Mitochondrial Calcium Uniporter. Nature 2011, 476, 341–345. [Google Scholar] [CrossRef]
- Bernardi, P.; Gerle, C.; Halestrap, A.P.; Jonas, E.A.; Karch, J.; Mnatsakanyan, N.; Pavlov, E.; Sheu, S.-S.; Soukas, A.A. Identity, Structure, and Function of the Mitochondrial Permeability Transition Pore: Controversies, Consensus, Recent Advances, and Future Directions. Cell Death Differ. 2023, 30, 1869–1885. [Google Scholar] [CrossRef]
- de la Fuente, A.G.; Pelucchi, S.; Mertens, J.; Di Luca, M.; Mauceri, D.; Marcello, E. Novel Therapeutic Approaches to Target Neurodegeneration. Br. J. Pharmacol. 2023, 180, 1651–1673. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Guo, W.; Zheng, L.; Wu, J.-X.; Liu, M.; Zhou, X.; Zhang, X.; Chen, L. Structure of the Receptor-Activated Human TRPC6 and TRPC3 Ion Channels. Cell Res. 2018, 28, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xia, W.; Li, Y.; Wang, Q.; Lin, S.; Wang, B.; Zhou, C.; Cui, Y.; Jiang, Y.; Pu, X.; et al. High-Salt Intake Increases TRPC3 Expression and Enhances TRPC3-Mediated Calcium Influx and Systolic Blood Pressure in Hypertensive Patients. Hypertens. Res. 2020, 43, 679–687. [Google Scholar] [CrossRef]
- Johnson, E.; Albakri, J.S.; Allemailem, K.S.; Sultan, A.; Alwanian, W.M.; Alrumaihi, F.; Almansour, N.M.; Aldakheel, F.M.; Khalil, F.M.A.; Abduallah, A.M.; et al. Mitochondrial Dysfunction and Calcium Homeostasis in Heart Failure: Exploring the Interplay between Oxidative Stress and Cardiac Remodeling for Future Therapeutic Innovations. Curr. Probl. Cardiol. 2025, 50, 102968. [Google Scholar] [CrossRef]
- Abudureyimu, M.; Yang, M.; Wang, X.; Luo, X.; Ge, J.; Peng, H.; Zhang, Y.; Ren, J. Berberine Alleviates Myocardial Diastolic Dysfunction by Modulating Drp1-Mediated Mitochondrial Fission and Ca2+ Homeostasis in a Murine Model of HFpEF. Front. Med. 2023, 17, 1219–1235. [Google Scholar] [CrossRef]
- Voorsluijs, V.; Avanzini, F.; Falasco, G.; Esposito, M.; Skupin, A. Calcium Oscillations Optimize the Energetic Efficiency of Mitochondrial Metabolism. iScience 2024, 27, 109078. [Google Scholar] [CrossRef]
- Jang, S.; Javadov, S. OPA1 Regulates Respiratory Supercomplexes Assembly: The Role of Mitochondrial Swelling. Mitochondrion 2020, 51, 30–39. [Google Scholar] [CrossRef]
- Cao, T.; Fan, S.; Zheng, D.; Wang, G.; Yu, Y.; Chen, R.; Song, L.-S.; Fan, G.-C.; Zhang, Z.; Peng, T. Increased Calpain-1 in Mitochondria Induces Dilated Heart Failure in Mice: Role of Mitochondrial Superoxide Anion. Basic Res. Cardiol. 2019, 114, 17. [Google Scholar] [CrossRef]
- Teshima, Y.; Akao, M.; Jones, S.P.; Marbán, E. Uncoupling Protein-2 Overexpression Inhibits Mitochondrial Death Pathway in Cardiomyocytes. Circ. Res. 2003, 93, 192–200. [Google Scholar] [CrossRef]
- Ji, L.; Liu, F.; Jing, Z.; Huang, Q.; Zhao, Y.; Cao, H.; Li, J.; Yin, C.; Xing, J.; Li, F. MICU1 Alleviates Diabetic Cardiomyopathy Through Mitochondrial Ca2+–Dependent Antioxidant Response. Diabetes 2017, 66, 1586–1600. [Google Scholar] [CrossRef]
- Carraro, M.; Carrer, A.; Urbani, A.; Bernardi, P. Molecular Nature and Regulation of the Mitochondrial Permeability Transition Pore(s), Drug Target(s) in Cardioprotection. J. Mol. Cell. Cardiol. 2020, 144, 76–86. [Google Scholar] [CrossRef]
- Borkowski, B.J.; Cheema, Y.; Shahbaz, A.U.; Bhattacharya, S.K.; Weber, K.T. Cation Dyshomeostasis and Cardiomyocyte Necrosis: The Fleckenstein Hypothesis Revisited. Eur. Heart J. 2011, 32, 1846–1853. [Google Scholar] [CrossRef]
- Kim, J.; Gupta, R.; Blanco, L.P.; Yang, S.; Shteinfer-Kuzmine, A.; Wang, K.; Zhu, J.; Yoon, H.E.; Wang, X.; Kerkhofs, M.; et al. VDAC Oligomers Form Mitochondrial Pores to Release mtDNA Fragments and Promote Lupus-like Disease. Science 2019, 366, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Naert, R.; López-Requena, A.; Talavera, K. TRPA1 Expression and Pathophysiology in Immune Cells. Int. J. Mol. Sci. 2021, 22, 11460. [Google Scholar] [CrossRef] [PubMed]
- She, P.; Gao, B.; Li, D.; Wu, C.; Zhu, X.; He, Y.; Mo, F.; Qi, Y.; Jin, D.; Chen, Y.; et al. The Transcriptional Repressor HEY2 Regulates Mitochondrial Oxidative Respiration to Maintain Cardiac Homeostasis. Nat. Commun. 2025, 16, 232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, W.; Xue, S.; Gao, P.; Wang, H.; Chen, H.; Hong, Y.; Sun, Q.; Lu, L.; Wang, Y.; et al. Qishen Granule Attenuates Doxorubicin-Induced Cardiotoxicity by Protecting Mitochondrial Function and Reducing Oxidative Stress through Regulation of Sirtuin3. J. Ethnopharmacol. 2024, 319, 117134. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, H.; Ni, Y.; Wang, X.; Chen, Y.; Chen, J.; Wang, Y.; Lin, J.; Xu, Y.; Zhao, J.-Y.; et al. Tripartite Motif 25 Ameliorates Doxorubicin-Induced Cardiotoxicity by Degrading P85α. Cell Death Dis. 2022, 13, 643. [Google Scholar] [CrossRef]
- Fan, D.; Jin, Z.; Cao, J.; Li, Y.; He, T.; Zhang, W.; Peng, L.; Liu, H.; Wu, X.; Chen, M.; et al. Leucine Zipper Protein 1 Prevents Doxorubicin-Induced Cardiotoxicity in Mice. Redox Biol. 2023, 64, 102780. [Google Scholar] [CrossRef]
- Luo, W.; Zou, X.; Wang, Y.; Dong, Z.; Weng, X.; Pei, Z.; Song, S.; Zhao, Y.; Wei, Z.; Gao, R.; et al. Critical Role of the cGAS-STING Pathway in Doxorubicin-Induced Cardiotoxicity. Circ. Res. 2023, 132, e223–e242. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, A.; Vaeth, M.; Feske, S. Calcium Regulation of T Cell Metabolism. Curr. Opin. Physiol. 2020, 17, 207–223. [Google Scholar] [CrossRef]
- Lee, S.H.; Duron, H.E.; Chaudhuri, D. Beyond the TCA Cycle: New Insights into Mitochondrial Calcium Regulation of Oxidative Phosphorylation. Biochem. Soc. Trans. 2023, 51, 1661–1673. [Google Scholar] [CrossRef]
- Gollmer, J.; Zirlik, A.; Bugger, H. Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes Metab. J. 2020, 44, 33–53. [Google Scholar] [CrossRef]
- Di Marco, G.; Gherardi, G.; De Mario, A.; Piazza, I.; Baraldo, M.; Mattarei, A.; Blaauw, B.; Rizzuto, R.; De Stefani, D.; Mammucari, C. The Mitochondrial ATP-Dependent Potassium Channel (mitoKATP) Controls Skeletal Muscle Structure and Function. Cell Death Dis. 2024, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Sato, T.; Ohler, A.; O’Rourke, B.; Marbán, E. Activation of Mitochondrial ATP-dependent Potassium Channels by Nitric Oxide. Circulation 2000, 101, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Valero, T. Mitochondrial Biogenesis: Pharmacological Approaches. Curr. Pharm. Des. 2014, 20, 5507–5509. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Xie, J.; Zhang, Z.; Tsujikawa, H.; Fusco, D.; Silverman, D.; Liang, B.; Yue, L. TRPM7-Mediated Ca2+ Signals Confer Fibrogenesis in Human Atrial Fibrillation. Circ. Res. 2010, 106, 992–1003. [Google Scholar] [CrossRef]
- Pellegrini, C.; Martelli, A.; Antonioli, L.; Fornai, M.; Blandizzi, C.; Calderone, V. NLRP3 Inflammasome in Cardiovascular Diseases: Pathophysiological and Pharmacological Implications. Med. Res. Rev. 2021, 41, 1890–1926. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, J.; Li, L.; Liu, S.; Li, X.; Shan, H.; Yin, H.; Yang, H.-T. Uncoupling Protein 3 Protects against Pathological Cardiac Hypertrophy via Downregulation of Aspartate. J. Mol. Cell Cardiol. 2025, 202, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, S.; Hao, Y.; Xu, T.; An, P.; Luo, Y.; Luo, J. Nicotinamide Mononucleotide Protects against High-Fat-Diet-Induced Atherosclerosis in Mice and Dampens Aortic Inflammation and Oxidative Stress. J. Funct. Foods 2024, 112, 105985. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Chen, X.; He, X.; Li, X.; Wei, H.; Tan, Y.; Min, J.; Azam, T.; Xue, M.; et al. TRAP1 Drives Smooth Muscle Cell Senescence and Promotes Atherosclerosis via HDAC3-Primed Histone H4 Lysine 12 Lactylation. Eur. Heart J. 2024, 45, 4219–4235. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, Z.; Li, J.; Wang, J.; Zhu, H.; Chang, X.; Wang, Y. TMBIM6 Prevents VDAC1 Multimerization and Improves Mitochondrial Quality Control to Reduce Sepsis-Related Myocardial Injury. Metabolism 2023, 140, 155383. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Qu, L.; Yu, M.; Ye, L.; Shi, L.; Ye, G.; Yang, J.; Wang, Y.; Fan, H.; Wang, Y.; et al. Thiamine-Modified Metabolic Reprogramming of Human Pluripotent Stem Cell-Derived Cardiomyocyte under Space Microgravity. Signal Transduct. Target. Ther. 2024, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, C.; Chen, G.; Li, Y.; Liu, X.; Luo, S. Dapagliflozin Promotes Metabolic Reprogramming against Myocardial Infarction through the MAPK-FOXO3-STC1 and HIF-1a-STC1 Pathways. Life Sci. 2025, 377, 123798. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, X.; An, P.; Luo, J.; Luo, Y. Mitochondrial Homeostasis in VSMCs as a Central Hub in Vascular Remodeling. Int. J. Mol. Sci. 2023, 24, 3483. [Google Scholar] [CrossRef]
- Oda, S.; Nishiyama, K.; Furumoto, Y.; Yamaguchi, Y.; Nishimura, A.; Tang, X.; Kato, Y.; Numaga-Tomita, T.; Kaneko, T.; Mangmool, S.; et al. Myocardial TRPC6-Mediated Zn2+ Influx Induces Beneficial Positive Inotropy through β-Adrenoceptors. Nat. Commun. 2022, 13, 6374. [Google Scholar] [CrossRef]
- Zhang, X.; Buckley, C.; Lee, M.D.; Salaun, C.; MacDonald, M.; Wilson, C.; McCarron, J.G. Increased TRPV4 Channel Expression Enhances and Impairs Blood Vessel Function in Hypertension. Hypertension 2025, 82, 57–68. [Google Scholar] [CrossRef]
- Luo, Y.; Luo, J.; An, P.; Zhao, Y.; Zhao, W.; Fang, Z.; Xia, Y.; Zhu, L.; Xu, T.; Zhang, X.; et al. The Activator Protein-1 Complex Governs a Vascular Degenerative Transcriptional Programme in Smooth Muscle Cells to Trigger Aortic Dissection and Rupture. Eur. Heart J. 2024, 45, 287–305. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Wan, S.; Qi, J.; Hao, Y.; An, P.; Luo, Y.; Luo, J. Ameliorative Effect of Coenzyme Q10 on Phenotypic Transformation in Human Smooth Muscle Cells with FBN1 Knockdown. Int. J. Mol. Sci. 2024, 25, 2662. [Google Scholar] [CrossRef]
- Acharya, T.K.; Mahapatra, P.; Kumar, S.; Dubey, N.K.; Rajalaxmi, S.; Ghosh, A.; Kumar, A.; Goswami, C. Conserved and Unique Mitochondrial Target Sequence of TRPV4 Can Independently Regulate Mitochondrial Functions. Proteins 2025, 93, 908–919. [Google Scholar] [CrossRef]
- Lopez-Mateos, D.; Narang, K.; Yarov-Yarovoy, V. Exploring Voltage-Gated Sodium Channel Conformations and Protein-Protein Interactions Using AlphaFold2. bioRxiv 2024, 2024.10.15.618559. [Google Scholar] [CrossRef]
- Song, W.; Shou, W. Cardiac Sodium Channel Nav1.5 Mutations and Cardiac Arrhythmia. Pediatr. Cardiol. 2012, 33, 943–949. [Google Scholar] [CrossRef]
- Daghbouche-Rubio, N.; López-López, J.R.; Pérez-García, M.T.; Cidad, P. Vascular Smooth Muscle Ion Channels in Essential Hypertension. Front. Physiol. 2022, 13, 1016175. [Google Scholar] [CrossRef] [PubMed]
- Zuo, B.; Fan, X.; Xu, D.; Zhao, L.; Zhang, B.; Li, X. Deciphering the Mitochondria-Inflammation Axis: Insights and Therapeutic Strategies for Heart Failure. Int. Immunopharmacol. 2024, 139, 112697. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Chen, X.; He, X.; Wei, H.; Li, X.; Tan, Y.; Min, J.; Chen, M.; Zhang, Y.; Dong, M.; et al. METTL4-Mediated Mitochondrial DNA N6-Methyldeoxyadenosine Promoting Macrophage Inflammation and Atherosclerosis. Circulation 2025, 151, 946–965. [Google Scholar] [CrossRef] [PubMed]
- Marchi, S.; Guilbaud, E.; Tait, S.W.G.; Yamazaki, T.; Galluzzi, L. Mitochondrial Control of Inflammation. Nat. Rev. Immunol. 2023, 23, 159–173. [Google Scholar] [CrossRef]
- Hughes, T.E.T.; Pumroy, R.A.; Yazici, A.T.; Kasimova, M.A.; Fluck, E.C.; Huynh, K.W.; Samanta, A.; Molugu, S.K.; Zhou, Z.H.; Carnevale, V.; et al. Structural Insights on TRPV5 Gating by Endogenous Modulators. Nat. Commun. 2018, 9, 4198. [Google Scholar] [CrossRef]
- Pepin, M.E.; Konrad, P.J.M.; Nazir, S.; Bazgir, F.; Maack, C.; Nickel, A.; Gorman, J.M.; Hohl, M.; Schreiter, F.; Dewenter, M.; et al. Mitochondrial NNT Promotes Diastolic Dysfunction in Cardiometabolic HFpEF. Circ. Res. 2025, 136, 1564–1578. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial Dysfunction: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef]
- Anderson, M.; Parrott, C.F.; Haykowsky, M.J.; Brubaker, P.H.; Ye, F.; Upadhya, B. Skeletal Muscle Abnormalities in Heart Failure with Preserved Ejection Fraction. Heart Fail. Rev. 2023, 28, 157–168. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Q.; Meng, H.; Duan, H.; Liu, X.; Wu, J.; Gao, F.; Wang, S.; Tan, R.; Yuan, J. Ischemia-Reperfusion Injury: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Target. Ther. 2024, 9, 12. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, S.; Liu, J.; Liu, X.; Sha, X.; Huang, C.; Hu, L.; Sun, S.; Gao, Y.; Chen, H.; et al. Mitochondrial GSNOR Alleviates Cardiac Dysfunction via ANT1 Denitrosylation. Circ. Res. 2023, 133, 220–236. [Google Scholar] [CrossRef] [PubMed]
- Regan, J.A.; Mentz, R.J.; Nguyen, M.; Green, J.B.; Truby, L.K.; Ilkayeva, O.; Newgard, C.B.; Buse, J.B.; Sourij, H.; Sjöström, C.D.; et al. Mitochondrial Metabolites Predict Adverse Cardiovascular Events in Individuals with Diabetes. JCI Insight 2023, 8, e168563. [Google Scholar] [CrossRef] [PubMed]
- Rupp, H.; Rupp, T.P.; Alter, P.; Maisch, B. Acute Heart Failure—Basic Pathomechanism and New Drug Targets. Herz 2006, 31, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Camara, A.K.S.; Bienengraeber, M.; Stowe, D.F. Mitochondrial Approaches to Protect against Cardiac Ischemia and Reperfusion Injury. Front. Physiol. 2011, 2, 13. [Google Scholar] [CrossRef]
- Pekson, R.; Liang, F.G.; Axelrod, J.L.; Lee, J.; Qin, D.; Wittig, A.J.H.; Paulino, V.M.; Zheng, M.; Peixoto, P.M.; Kitsis, R.N. The Mitochondrial ATP Synthase Is a Negative Regulator of the Mitochondrial Permeability Transition Pore. Proc. Natl. Acad. Sci USA 2023, 120, e2303713120. [Google Scholar] [CrossRef]
- Castillo, E.C.; Morales, J.A.; Chapoy-Villanueva, H.; Silva-Platas, C.; Treviño-Saldaña, N.; Guerrero-Beltrán, C.E.; Bernal-Ramírez, J.; Torres-Quintanilla, A.; García, N.; Youker, K.; et al. Mitochondrial Hyperacetylation in the Failing Hearts of Obese Patients Mediated Partly by a Reduction in SIRT3: The Involvement of the Mitochondrial Permeability Transition Pore. Cell Physiol. Biochem. 2019, 53, 465–479. [Google Scholar] [CrossRef]
- Walkon, L.L.; Strubbe-Rivera, J.O.; Bazil, J.N. Calcium Overload and Mitochondrial Metabolism. Biomolecules 2022, 12, 1891. [Google Scholar] [CrossRef]
- Motegi, K.; Tanonaka, K.; Takenaga, Y.; Takagi, N.; Takeo, S. Preservation of Mitochondrial Function May Contribute to Cardioprotective Effects of Na+/Ca2+ Exchanger Inhibitors in Ischaemic/Reperfused Rat Hearts. Br. J. Pharmacol. 2007, 151, 963–978. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Krych, S.; Kramkowski, K.; Jęczmyk, A.; Hrapkowicz, T. Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events. Int. J. Mol. Sci. 2024, 25, 12467. [Google Scholar] [CrossRef]
- Maiolino, M.; Castaldo, P.; Lariccia, V.; Piccirillo, S.; Amoroso, S.; Magi, S. Essential Role of the Na+-Ca2+ Exchanger (NCX) in Glutamate-Enhanced Cell Survival in Cardiac Cells Exposed to Hypoxia/Reoxygenation. Sci. Rep. 2017, 7, 13073. [Google Scholar] [CrossRef]
- Kumar, S.; Flacke, J.-P.; Kostin, S.; Appukuttan, A.; Reusch, H.P.; Ladilov, Y. SLC4A7 Sodium Bicarbonate Co-Transporter Controls Mitochondrial Apoptosis in Ischaemic Coronary Endothelial Cells. Cardiovasc. Res. 2011, 89, 392–400. [Google Scholar] [CrossRef]
- Mastoor, Y.; Murphy, E.; Roman, B. Mechanisms of Postischemic Cardiac Death and Protection Following Myocardial Injury. J. Clin. Investig. 2025, 135, e184134. [Google Scholar] [CrossRef]
- Gushchin, A.L.; Laricheva, Y.A.; Abramov, P.A.; Sokolov, M.N. Synthesis and Electrochemical Properties of [RuIV2O(PhCN)4Cl6]. Inorg. Chem. Commun. 2018, 95, 163–166. [Google Scholar] [CrossRef]
- Xie, S.; Sun, Y.; Zhao, X.; Xiao, Y.; Zhou, F.; Lin, L.; Wang, W.; Lin, B.; Wang, Z.; Fang, Z.; et al. An Update of the Molecular Mechanisms Underlying Anthracycline Induced Cardiotoxicity. Front. Pharmacol. 2024, 15, 1406247. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, F. The Mitochondrial Transporter Family SLC25: Identification, Properties and Physiopathology. Mol. Asp. Med. 2013, 34, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Xu, X.; Qu, X.; Yang, Y. Transient Receptor Potential Vanilloid Type 1 Protects Against Pressure Overload-Induced Cardiac Hypertrophy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes. J. Cardiovasc. Pharmacol. 2022, 80, 430–441. [Google Scholar] [CrossRef]
- Vahidi Ferdowsi, P.; Ahuja, K.D.K.; Beckett, J.M.; Myers, S. TRPV1 Activation by Capsaicin Mediates Glucose Oxidation and ATP Production Independent of Insulin Signalling in Mouse Skeletal Muscle Cells. Cells 2021, 10, 1560. [Google Scholar] [CrossRef]
- Zhao, F.; Zou, M.-H. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front. Cardiovasc. Med. 2021, 8, 749756. [Google Scholar] [CrossRef]
- Hoppe, U.C. Mitochondrial Calcium Channels. FEBS Lett. 2010, 584, 1975–1981. [Google Scholar] [CrossRef]
- Huang, P.; Qu, C.; Rao, Z.; Wu, D.; Zhao, J. Bidirectional Regulation Mechanism of TRPM2 Channel: Role in Oxidative Stress, Inflammation and Ischemia-Reperfusion Injury. Front. Immunol. 2024, 15, 1391355. [Google Scholar] [CrossRef]
- De Logu, F.; Tonello, R.; Materazzi, S.; Nassini, R.; Fusi, C.; Coppi, E.; Li Puma, S.; Marone, I.M.; Sadofsky, L.R.; Morice, A.H.; et al. TRPA1 Mediates Aromatase Inhibitor-Evoked Pain by the Aromatase Substrate Androstenedione. Cancer Res. 2016, 76, 7024–7035. [Google Scholar] [CrossRef]
- Wan, S.; Qi, J.; Xia, Y.; Fan, C.; Xu, T.; Zhang, X.; Shi, J.; Wang, C.; Cheng, Y.; Zhang, D.; et al. Cardiac Slc25a49-Mediated Energy Reprogramming Governs Doxorubicin-Induced Cardiomyopathy through the G6P–AP-1–Sln Axis. Adv. Sci. 2025, 12. [Google Scholar] [CrossRef] [PubMed]
- Noble, M.; Colussi, D.M.; Junop, M.; Stathopulos, P.B. The MCU and MCUb Amino-Terminal Domains Tightly Interact: Mechanisms for Low Conductance Assembly of the Mitochondrial Calcium Uniporter Complex. iScience 2024, 27, 109699. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tang, Q. Early Administration of Trimetazidine May Prevent or Ameliorate Diabetic Cardiomyopathy. Med. Hypotheses 2011, 76, 181–183. [Google Scholar] [CrossRef]
- Wei, Y.; Ji, Y.; Meng, J.; Yu, L.; Tang, Y.; Fang, W.-J. Acid Sphingomyelinase Promotes Diabetic Cardiomyopathy via Disruption of Mitochondrial Calcium Homeostasis. Cardiovasc. Diabetol. 2025, 24, 272. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Lim, S.Y.; Ong, S.G.; Davidson, S.M.; Yellon, D.M. Mitochondrial Cyclophilin-D as a Critical Mediator of Ischaemic Preconditioning. Cardiovasc. Res. 2010, 88, 67–74. [Google Scholar] [CrossRef]
- Garbincius, J.F.; Elrod, J.W. Mitochondrial Calcium Exchange in Physiology and Disease. Physiol. Rev. 2022, 102, 893–992. [Google Scholar] [CrossRef]
- Liao, Y.; Dong, Y.; Cheng, J. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders. Int. J. Mol. Sci. 2017, 18, 248. [Google Scholar] [CrossRef]
- Jia, M.; Liu, S.; Xiao, Y.; Zhang, Z.; Li, M.; Qi, X.; Qi, X.; Yu, L.; Zhang, C.; Jiang, T.; et al. Deletion of the Mitochondrial Calcium Uniporter in Adipose Tissue Promotes Energy Expenditure and Alleviates Diet-Induced Obesity. Mol. Metab. 2024, 80, 101873. [Google Scholar] [CrossRef]
- Ait-Aissa, K.; Blaszak, S.C.; Beutner, G.; Tsaih, S.-W.; Morgan, G.; Santos, J.H.; Flister, M.J.; Joyce, D.L.; Camara, A.K.S.; Gutterman, D.D.; et al. Mitochondrial Oxidative Phosphorylation Defect in the Heart of Subjects with Coronary Artery Disease. Sci. Rep. 2019, 9, 7623. [Google Scholar] [CrossRef]
- Wei, H.; Harper, M.T. ABT-737 Triggers Caspase-Dependent Inhibition of Platelet Procoagulant Extracellular Vesicle Release during Apoptosis and Secondary Necrosis In Vitro. Thromb. Haemost. 2019, 119, 1665–1674. [Google Scholar] [CrossRef]
- Peng, F.; Wu, Y.; Dong, X.; Huang, P. Proton-Activated Chloride Channel: Physiology and Disease. Front. Biosci. 2023, 28, 11. [Google Scholar] [CrossRef]
- Wang, W.; Wan, M.; Liao, D.; Peng, G.; Xu, X.; Yin, W.; Guo, G.; Jiang, F.; Zhong, W.; He, J. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis. BioMed Res. Int. 2017, 2017, 4751780. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, W.; Liu, W.; Bai, C.; Zhang, Y.; Jiang, Y.; Song, W. (Pro)Renin Receptor Inhibited ABCA1/G1 Expression Associated with Low HDL-c and Promoted Atherosclerosis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Coleman, J.A.; Quazi, F.; Molday, R.S. Mammalian P4-ATPases and ABC Transporters and Their Role in Phospholipid Transport. Biochim. Biophys. Acta 2013, 1831, 555–574. [Google Scholar] [CrossRef]
- Wang, N.; Westerterp, M. ABC Transporters, Cholesterol Efflux, and Implications for Cardiovascular Diseases. Adv. Exp. Med. Biol. 2020, 1276, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Ghenciu, L.A.; Hațegan, O.A.; Stoicescu, E.R.; Iacob, R.; Șișu, A.M. Emerging Therapeutic Approaches and Genetic Insights in Stargardt Disease: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 8859. [Google Scholar] [CrossRef] [PubMed]
- De Angeli, P.; Reuter, P.; Hauser, S.; Schöls, L.; Stingl, K.; Wissinger, B.; Kohl, S. Effective Splicing Restoration of a Deep-Intronic ABCA4 Variant in Cone Photoreceptor Precursor Cells by CRISPR/SpCas9 Approaches. Mol. Ther. Nucleic Acids 2022, 29, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.P.K.; Reinhold, J.; Yu, H.; Starks, L.; Uryga, A.K.; Foote, K.; Finigan, A.; Figg, N.; Pung, Y.-F.; Logan, A.; et al. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2322–2332. [Google Scholar] [CrossRef]
- Kemp, S.; Theodoulou, F.L.; Wanders, R.J.A. Mammalian Peroxisomal ABC Transporters: From Endogenous Substrates to Pathology and Clinical Significance. Br. J. Pharmacol. 2011, 164, 1753–1766. [Google Scholar] [CrossRef]
- Geillon, F.; Trompier, D.; Gondcaille, C.; Lizard, G.; Savary, S. Peroxisomal ABC transporters and X-linked adrenoleukodystrophy. Med. Sci. 2012, 28, 1087–1094. [Google Scholar] [CrossRef]
- Belosludtsev, K.N.; Serov, D.A.; Ilzorkina, A.I.; Starinets, V.S.; Dubinin, M.V.; Talanov, E.Y.; Karagyaur, M.N.; Primak, A.L.; Belosludtseva, N.V. Pharmacological and Genetic Suppression of VDAC1 Alleviates the Development of Mitochondrial Dysfunction in Endothelial and Fibroblast Cell Cultures upon Hyperglycemic Conditions. Antioxidants 2023, 12, 1459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cao, R.-J.; Niu, J.-L.; Chen, Z.-H.; Mu, S.-Q.; Cao, T.; Pang, J.-X.; Dong, L.-H. G6PD Maintains the VSMC Synthetic Phenotype and Accelerates Vascular Neointimal Hyperplasia by Inhibiting the VDAC1-Bax-Mediated Mitochondrial Apoptosis Pathway. Cell. Mol. Biol. Lett. 2024, 29, 47. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Xie, Y.; Meng, Y.; Ma, W.; Tong, Z.; Yang, X.; Lai, S.; Zhou, Y.; He, M.; Liao, Z. Resveratrol Protects Cardiomyocytes against Anoxia/Reoxygenation via Dephosphorylation of VDAC1 by Akt-GSK3 β Pathway. Eur. J. Pharmacol. 2019, 843, 80–87. [Google Scholar] [CrossRef]
- Qu, M.; Du, L. Upregulation of TRPC1 Protects against High Glucose-Induced HUVECs Dysfunction by Inhibiting Oxidative Stress. Biochem. Biophys. Res. Commun. 2024, 699, 149560. [Google Scholar] [CrossRef]
- Baines, C.P. The Molecular Composition of the Mitochondrial Permeability Transition Pore. J. Mol. Cell. Cardiol. 2009, 46, 850–857. [Google Scholar] [CrossRef]
- Morota, S.; Manolopoulos, T.; Eyjolfsson, A.; Kimblad, P.-O.; Wierup, P.; Metzsch, C.; Blomquist, S.; Hansson, M.J. Functional and Pharmacological Characteristics of Permeability Transition in Isolated Human Heart Mitochondria. PLoS ONE 2013, 8, e67747. [Google Scholar] [CrossRef]
- Piot, C.; Croisille, P.; Staat, P.; Thibault, H.; Rioufol, G.; Mewton, N.; Elbelghiti, R.; Cung, T.T.; Bonnefoy, E.; Angoulvant, D.; et al. Effect of Cyclosporine on Reperfusion Injury in Acute Myocardial Infarction. N. Engl. J. Med. 2008, 359, 473–481. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Javadov, S.; Margreiter, R.; Grimm, M.; Hagenbuchner, J.; Ausserlechner, M.J. The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants 2019, 8, 454. [Google Scholar] [CrossRef]
- Huo, J.; Lu, S.; Kwong, J.Q.; Bround, M.J.; Grimes, K.M.; Sargent, M.A.; Brown, M.E.; Davis, M.E.; Bers, D.M.; Molkentin, J.D. MCUb Induction Protects the Heart From Postischemic Remodeling. Circ. Res. 2020, 127, 379–390. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Q.; Hou, J.; Pasunooti, K.K.; Bermea, K.; Li, K.; Ramirez-Correa, G.A.; Yang, X.; Wu, J. Editorial: Design of Novel Inhibitors for Ischemia/Reperfusion Injury Targeting Ferroptosis. Front. Pharmacol. 2024, 15, 1475526. [Google Scholar] [CrossRef]
- Suzuki, I.; Xing, H.; Giblin, J.; Ashraf, A.; Chung, E.J. Nanoparticle-based Therapeutic Strategies for Mitochondrial Dysfunction in Cardiovascular Disease. J. Biomed. Mater. Res. 2024, 112, 895–913. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, D.; Zhang, C.; Cui, H.; Liu, M.; Zhang, B.; Mei, Q.; Lu, Z.; Zhou, S. Mitochondria-Targeted Antioxidant Delivery for Precise Treatment of Myocardial Ischemia–Reperfusion Injury through a Multistage Continuous Targeted Strategy. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 236–249. [Google Scholar] [CrossRef]
- Matiuto, N.; Applewhite, B.; Habash, N.; Martins, A.; Wang, B.; Jiang, B. Harnessing Mitochondrial Transplantation to Target Vascular Inflammation in Cardiovascular Health. JACC Basic Transl. Sci. 2025, 10, 101331. [Google Scholar] [CrossRef]
- Kubat, G.B.; Picone, P.; Tuncay, E.; Aryan, L.; Girgenti, A.; Palumbo, L.; Turkel, I.; Akat, F.; Singh, K.K.; Nuzzo, D. Biotechnological Approaches and Therapeutic Potential of Mitochondria Transfer and Transplantation. Nat. Commun. 2025, 16, 5709. [Google Scholar] [CrossRef]
Family | Key Members | Localization | Core Physiological Functions | Roles in Cardiovascular Diseases | Therapeutic Targets/Strategies | Refs. |
---|---|---|---|---|---|---|
Anion channels | VDAC1/2/3 | OMM | ATP/ADP transport; Ca2+ homeostasis | VDAC1 oligomerization → apoptosis (HF, IHD); VDAC3 →antioxidant defense (atherosclerosis) | VDAC1 inhibitors (e.g., ABT-737); VDAC3 targeting | [17,18] |
TRP channels | TRPC3 | IMM | Ca2+/Na+ influx; oxidative stress regulation | TRPC3 overexpression → Ca2+ overload → fibrosis (hypertension, HF); | TRPC3 inhibitors; | [19,20] |
Metal ion transporters | MCU Complex (MCU, MICU1/2) | IMM | Ca2+ influx; ATP synthesis | MCU overactivation → Ca2+ overload → mPTP opening → apoptosis (MI, I/R injury); MICU1/2 deficiency → HF | MCU inhibitors (e.g., Ru360); NCLX activators | [21,22] |
H+ channels | UCP2/3 | IMM | Proton leak; ROS reduction; energy metabolism | UCP2↓→ endothelial oxidative stress/inflammation (atherosclerosis); UCP3↑→ cardioprotection (I/R) | UCP2/3 activators | [23,24] |
SLC25 Family (Metabolite transporters) | ANT (SLC25A4), SLC25A20 | IMM | ATP/ADP exchange; FAO promotion | ANT dysfunction → ATP synthesis↓ (HF); SLC25A20 deficiency → lipid accumulation → mitochondrial dysfunction (diabetic cardiomyopathy) | ANT activators; SLC25A20 targeting | [25,26,27] |
Transporters/Complexes | Localization | Physiological Functions | Pathological Mechanisms | Therapeutic Interventions | Refs. |
---|---|---|---|---|---|
MCU Complex | IMM | Mediates high-calcium Ca2+ influx (>1 μM); activates TCA cycle enzymes; promotes ATP production | Over-activation → mitochondrial Ca2+ overload → mPTP opening → apoptosis (MI, I/R injury); Reduced activity → decreased ATP synthesis | Ru360, mitoxantrone (inhibitors); Oleuropein (activator) | [72,74] |
NCLX | IMM | Mediates Ca2+ efflux (Na+ exchange); balances MCU-mediated influx; maintains Ca2+ homeostasis | Deficiency → impaired Ca2+ efflux → exacerbates Ca2+ overload/oxidative stress (I/R injury) | Efsevin (activator) | [84] |
VDAC2/3 | OMM | VDAC2 stabilizes Ca2+ uptake; VDAC3 enables high Ca2+ permeability; regulates ER-mitochondria Ca2+ signaling | VDAC2 deletion → Ca2+ imbalance → dilated cardiomyopathy; VDAC1 oligomerization → enhanced Ca2+ leakage → apoptosis (HF, MI) | VDAC2 targeting (enhances buffering); VDAC1 oligomerization inhibitors (e.g., compound C) | [32] |
TRPC3 | IMM | Mediates Ca2+ influx; participates in oxidative stress/cell proliferation signaling | High-salt/chemotherapy-induced overexpression → Ca2+ overload → myocardial fibrosis (hypertension, chemo-induced cardiomyopathy) | Genetic knockout/pharmacological inhibition (e.g., HC-030043) | [20,77,78] |
mitoBKCa Channel | IMM | Calcium-activated K+ efflux; stabilizes ΔΨm; prevents Ca2+ overload | Over-activation → ΔΨm collapse → impaired OXPHOS → increased oxidative stress (HF) | Channel activity regulation | [53] |
Disease | Targeted Mitochondrial Transporter | Pathogenic Role | Therapeutic Strategy | Mechanism of Intervention | Refs. |
---|---|---|---|---|---|
Heart failure | ANT | Impaired ADP/ATP exchange leads to energetic deficit | Malate supplementation | Activates ANT to restore ATP synthesis | [126,127] |
MCU Complex | Ca2+ overload | MCU-siRNA | Suppresses MCU-mediated Ca2+ influx | [131] | |
mPTP | Permeability transition leads to ΔΨm collapse | Cyclosporin A | Binds CypD to inhibit mPTP opening | [130] | |
Ischemic heart disease | TRPC3/6 | Pathological Ca2+ influx | TRPC3/6 inhibitors (GSK compounds) | Blocks Ca2+ entry channels | [20] |
MCU Complex | Mitochondrial Ca2+ uptake | Ru360 | Directly inhibits MCU pore | [22] | |
ANT | ATP depletion | Energy crisis from ATP depletion | Enhances ANT-driven ADP/ATP exchange | [98] | |
Cardiomyopathies | TRPM2 | Ca2+ overload leads to cardiomyocyte death | ACA | Inhibits TRPM2 channel activity | [145] |
SLC25A49 | Metabolic reprogramming and doxorubicin toxicity | T-5224 (AP-1 inhibitor) | Suppresses AP-1-mediated Sln overexpression | [147] | |
Atherosclerosis | ABCA1/ABCG1 | Defective cholesterol efflux contributes to foam cells | T0901317 (LXR agonist) | Upregulates ABCA1/G1 expression | [102] |
VDAC1 | NLRP3 inflammasome activation | ABT-737 | Disrupts VDAC1-Bcl-xL interaction to inhibit apoptosis | [169] | |
Coronary heart disease | MCU complex | Ca2+ homeostasis | Ru360/Mitoxantrone | Inhibits MCU-mediated Ca2+ uptake | [153,154] |
VDAC | Enhanced glycolysis & reduced complex I activity | VDAC3-targeted therapy | Boosts glutathione import to combat oxidative stress | [106] | |
Myocardial infarction | mPTP/CypD | I/R-induced mitochondrial swelling | I/R-induced mitochondrial swelling | Sanglifehrin A (CypD inhibitor) | [171] |
MCU | Ca2+ efflux | CRISPR-MCU editing | Gene-editing knockdown of MCU expression | [71,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Y.; Wan, S.; Qi, J.; Xi, X.; Zhu, Y.; An, P.; Luo, J.; Luo, Y. Mitochondrial Transport Proteins in Cardiovascular Diseases: Metabolic Gatekeepers, Pathogenic Mediators and Therapeutic Targets. Int. J. Mol. Sci. 2025, 26, 8475. https://doi.org/10.3390/ijms26178475
Pei Y, Wan S, Qi J, Xi X, Zhu Y, An P, Luo J, Luo Y. Mitochondrial Transport Proteins in Cardiovascular Diseases: Metabolic Gatekeepers, Pathogenic Mediators and Therapeutic Targets. International Journal of Molecular Sciences. 2025; 26(17):8475. https://doi.org/10.3390/ijms26178475
Chicago/Turabian StylePei, Yue, Sitong Wan, Jingyi Qi, Xueyao Xi, Yinhua Zhu, Peng An, Junjie Luo, and Yongting Luo. 2025. "Mitochondrial Transport Proteins in Cardiovascular Diseases: Metabolic Gatekeepers, Pathogenic Mediators and Therapeutic Targets" International Journal of Molecular Sciences 26, no. 17: 8475. https://doi.org/10.3390/ijms26178475
APA StylePei, Y., Wan, S., Qi, J., Xi, X., Zhu, Y., An, P., Luo, J., & Luo, Y. (2025). Mitochondrial Transport Proteins in Cardiovascular Diseases: Metabolic Gatekeepers, Pathogenic Mediators and Therapeutic Targets. International Journal of Molecular Sciences, 26(17), 8475. https://doi.org/10.3390/ijms26178475