Agarwood in the Modern Era: Integrating Biotechnology and Pharmacology for Sustainable Use
Abstract
1. Introduction
1.1. Importance of Agarwood
1.2. Challenges in Authenticating and Manufacturing Agarwood
2. Species Authentication and DNA Barcoding Technology
3. Identification of Aquilaria sp.
4. Assessment of Agarwood Authenticity
Method/Technique | Key Factor | Findings | Implications for Authentication |
---|---|---|---|
Anatomical analysis | Phloem | Presence of resin in phloem [34] | Non-chemical, microscopic test for identifying fake or resin-coated wood |
Deep learning segmentation method | Segmentation of cross-sectional images; control of a CNC machine with G-code script | Automated CNC-guided resin removal through accurate resin boundary detection [37] | Machine vision method for identifying genuine resinous parts |
Metabolite profiling through GC–MS and LC–MS | Discrimination between wild agarwood and cultivated agarwood | Difference in biochemical signature between wild agarwood and cultivated agarwood [38] | Chemical fingerprinting for authenticating origin |
Artificial neural networks for oil grading | Use of artificial neural networks to process data on chemical profiles | High accuracy in classification across five oil grades [36,39] | AI-assisted grading for greater objectivity |
LESA–MS | Rapid surface authentication | Non-invasive chemical evaluation [32] | Verification of resin authenticity |
5. Natural Versus Induced Agarwood Production
6. Artificial Induction Techniques
7. Advances in Resin Induction Techniques
8. The State of the Art and Future Prospects
9. Chemical Composition and Quality Evaluation
Sesquiterpenes | A. sinensis | A. subintegra | A. crassna | A. malaccensis |
---|---|---|---|---|
β-Agarofurans | + [77] | + [78] | + [79] | + [73] |
α-Agarofuran | + [73] | --- | + [74] | + [80] |
Dihydro-β-agarofuran | + [73] | + [78] | + [81] | + [73] |
Epoxy-β-agarofuran | + [73] | ---- | ---- | + [82] |
Baimuxinol | + [83] | ---- | ---- | ---- |
Isobaimuxinol | + [73] | ---- | ---- | ---- |
Dehydrobaimuxinol | + [73] | ---- | ---- | ---- |
Baimuxifuranic acid | + [84] | ---- | ---- | ---- |
Nor-keto-agarofuran | + [73] | + [78] | + [78] | + [85] |
4-Hydroxyl-baimuxinol | + [86] | ---- | ----- | ---- |
Agarospiranes | + [73] | + [78] | + [78] | + [73] |
Isoagarospirol | ----- | ---- | ---- | + [73] |
Oxo-agarospirol (baimuxinal) | + [87] | + [78] | + [78] | + [87] |
Baimuxinic acid (Bai Mu Xiang acid) | + [88] | ---- | ---- | ---- |
Acorenone B | ---- | + [78] | + [78] | ---- |
4-epi-15-Hydroxyacorenone | + [76] | + [88,89] | + [78,81] | ---- |
4-epi-10-Hydroxyacoronene | + [73] | ---- | ---- | ---- |
15-Hydroxyacorenone | + [89] | ---- | ---- | ---- |
Eudesmanes | + [73] | + [78] | + [78] | + [73] |
(5S,7S,10S)-()-Selina-3,11-dien-9-on | ---- | + [78] | + [78] | + [78] |
Agarol (11(13)-eudesmen-12-ol) | ---- | ---- | ---- | + [73] |
Selina-3,11-dien-14-ol | ---- | + [78] | + [78] | ---- |
Isolongifolene | + [90] | ---- | ---- | ---- |
α-Eudesmol | + [73] | ---- | ---- | ---- |
α-Copaen-11-ol | + [73] | ---- | ---- | ---- |
β-Eudesmol | + [73] | + [78] | + [78] | + [78] |
g-Selinene | + + [90] | ---- | ---- | ---- |
d-Selinene | + [90] | ---- | ---- | ---- |
α-Copaene-8-ol 43 | + [73] | ---- | ---- | ---- |
β-Maaliene 36 | + [80] | ---- | ---- | ---- |
β-Eudesmol acetate | ---- | + [78] | + [78] | ---- |
α-Selinene | + [91] | ---- | + [91,92] | ---- |
Eudesm-7(11)-en-4a-ol | + [91] | ---- | ---- | ---- |
Eremophilanes | + [73] | ---- | ---- | + [73] |
(+ )-(4S,5R)-Dihydrokaranone | ---- | + [78] | + [78] | + [93] |
Dehydro-jinkoh-eremol | ---- | ---- | ---- | + [94] |
Calarene | + [73] | ---- | ---- | ---- |
7b-H-9(10)-ene-11,12- poxy-8-oxoeremophilane | + [73] | ---- | ---- | ---- |
11-Hydroxy-valenc-1(10)-en-2-one | + [7] | ---- | ---- | ---- |
Ligudicin C | + [95] | ---- | ---- | ---- |
(+)-11-Hydroxyvalenc-1(10),8-dien-2-one | + [73] | ---- | + [96] | ---- |
Valencene | + [73] | + [78] | + [78] | + [73] |
Nootkatone | + [73] | ---- | ---- | ---- |
α-Guaianes | ---- | + [78] | + [78] | + [78] |
α-Bulnesene | ---- | + [78] | + [78] | + [97] |
(-)-Epoxyguai-11-ene (epoxybulnesene) | ---- | + [78] | + [78] | + [78] |
(-)-Guaia-1(10),11-dien-15-ol | ---- | + [78] | + [78] | + [78] |
(-)-Guaia-1(10),11-dien-15-al | ---- | ---- | ---- | + [73] |
(-)-Guaia-1(10),11-diene-15-carboxylic acid | ---- | ---- | ---- | + [73] |
Rotundone | ---- | ---- | ---- | + [73] |
Sinenofuranol | + [73] | ---- | ---- | ---- |
Sinenofuranal | + [73] | ---- | ---- | ---- |
Viridifloorol | + [73] | ---- | ---- | ---- |
Ledol | + [73] | ---- | ---- | ---- |
Longifolene | + [73] | ---- | ---- | ---- |
Aromadendrene | ---- | ---- | + [87] | ---- |
Guaiol | + [90] | ---- | ---- | ---- |
Chamaejasmone | ---- | ---- | ---- | + [90] |
Chamaejasmone | ---- | ---- | ---- | + [90] |
Candinanes | ---- | ---- | ---- | + [98] |
Gmelofuran | ---- | ---- | ---- | + [98] |
(7b,8b,9b)-8,9-Epoxycalamenen-10-one | ---- | ---- | + [92] | ---- |
Prezizanes | ---- | ---- | ---- | + l [91] |
Jinkohol | ---- | ---- | ---- | + [76] |
Daphnauranol B | ---- | ---- | ---- | + [73] |
Daphnauranol C | ---- | ---- | ---- | + [92] |
Daphnauranol D | ---- | ---- | ---- | + [92] |
Others | ||||
Patchoulialcohol | + [15] | ---- | ---- | ---- |
(+)-8b-Hydroxy-longicamphenylone | + [99] | ---- | ---- | ---- |
Valerenol | ---- | ---- | + [78] | ---- |
Valerenic acid | + [73] | ---- | + [78] | ---- |
Valerenal | + [99] | ---- | + [96] | ---- |
Dihydro-neoclovene | ---- | ---- | + [96] | ---- |
2,6-Dimethyl-10-methylene-12-oxatricyclo tridec-2-ene 2 | + [73,91] | ---- | ----- | ---- |
β-Elemene | ---- | + [78] | + [78] | ---- |
α-Bisabolol acetate | ---- | + [78] | ---- | ---- |
α-Caryophyllene | + [73] | ---- | ---- | ---- |
α-Humulene | + [73] | ---- | ---- | ---- |
Humulene diepoxide A | + [100] | ---- | ---- | ---- |
Kobusone | + [73] | ---- | ---- | ---- |
Santalol | + [91] | ---- | ---- | ---- |
(E)-Nerolidol | ---- | + [78] | + [78] | + [78] |
Caryophyllenol-II | + [73] | ---- | ---- | ---- |
Caryophylleneoxide | + [73] | ---- | ---- | + [73] |
Baldrina | + [99] | ---- | ---- | ---- |
α-Muurolene | + [99] | ---- | ---- | ---- |
Elemol | + [97] | ---- | ---- | ---- |
cis-Z-α-Bisabolene epoxide | + [98] | ---- | ---- | ---- |
Cubenol | + [91] | ---- | ---- | ---- |
1,2,5,5,8 α-Pentamethyl-1,2,3,5,6,7,8,8 α -octahydronaphthalen-1-ol | + [91] | ---- | ---- | ---- |
1,5,9-Trimethyl-1,5,9-cyclododecatriene | + [73] | ---- | ---- | ---- |
Aquilanol A | ---- | ---- | ---- | + [73] |
Aquilanol B | ---- | ---- | ---- | + [73] |
12-Hydroxyhumula-2Z,6E,9E-triene | ---- | ---- | ---- | + [73] |
14-Hydroxy-α-humulene | + [89] | ---- | ---- | ---- |
10. Exploration of Molecular Mechanisms Underlying Agarwood Production
11. Pharmacological Properties
Property | Aquilaria Species | Key Findings | Mechanism/Active Compounds | Potential Applications |
---|---|---|---|---|
Sedative and anxiolytic | A.malaccensisA. sinensis | Modulates central nervous system activity and reduces stress and insomnia | GABAergic interaction; sesquiterpenes (agarospirol and jinkoh-eremol) | Anxiety and sleep disorders |
Analgesic and anti-inflammatory | A.crassna A.malaccensis | Alleviates pain and inflammation in animal models | Inhibition of tumor necrosis factor-α and interleukin-6 [111]; various compounds (linalool, 10-epi-γ-eudesmol, and agarospirol) [112,113] | Arthritis [114] and inflammatory conditions |
Antioxidative | A.sinensisA. agallocha | Scavenge free radicals [115] and prevents oxidative damage | Phenolic compounds and DPPH radical reduction | Oxidative stress-related diseases |
Antimicrobial | A.agallocha | Effective against bacteria (e.g., Staphylococcus aureus and Escherichia coli) and fungi (e.g., Candida albicans) [116] | Baimuxinol, agarospirol, and essential oils | Bacterial/fungal infections [117] |
Antidiabetic | A.malaccensis | Reduces blood glucose level and improves insulin sensitivity [118] | Iriflophenone 3-C-β-glucoside and ethanol/methanol extracts | Diabetes management [119] |
Anticancer | A.crassna | Inhibits angiogenesis and induces apoptosis in cancer cells | β-caryophyllene [120] and phenanthrene derivatives | Adjunct cancer therapy [27] |
12. Agarwood Extract: Variability, Contaminants, and Regulatory Challenges
13. Key Insights from Major Studies
14. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MatK | Maturase K |
Rbcl | ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit |
ITS | internal transcribed spacer |
LESA–MS | liquid extraction surface analysis |
MS | mass spectrometry |
GC | gas chromatography |
LC | liquid chromatography |
CA-Kit | culture agarwood kit |
NMR | nuclear magnetic resonance |
TDFs | transcript-deprived fragments |
GABA | gamma-aminobutyric acid |
TrnL-trnF | RNA leucine-transfer RNA phenylalamine |
ML | machine learning |
CNC | computer numerical record |
AI | artificial intelligence |
JA | jasmonic acid |
SA | salicyclic acid |
ROS | relative oxygen species |
MVA | mevalonate |
MEP | methylerythritol phosphate |
References
- Ma, S.; Fu, Y.; Li, Y.; Wei, P.; Liu, Z. The formation and quality evaluation of agarwood induced by the fungi in Aquilaria sinensis. Ind. Crop. Prod. 2021, 173, 114129. [Google Scholar] [CrossRef]
- Abdin, M.J. The Agar Wood Industry: Yet to Utilize in Bangladesh. Int. J. Econ. Manag. Sci. 2014, 3. [Google Scholar] [CrossRef]
- Zhang, N. Effects of various artificial agarwood-induction techniques on the metabolome of Aquilaria sinensis. BMC Plant Biol. 2021, 21, 591. [Google Scholar] [CrossRef]
- Hashim, Y.Z.; Phirdaous, A.; Azura, A. Screening of anticancer activity from agarwood essential oil. Pharmacogn. Res. 2014, 6, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Mohamed, R. The Origin and Domestication of Aquilaria, an Important Agarwood-Producing Genus; Springer: Berlin, Germany, 2016; pp. 1–20. [Google Scholar] [CrossRef]
- Zhang, Y. Temporal characteristics of agarwood formation in Aquilaria sinensis after applying whole-tree agarwood-inducing technique. Chin. Herb. Med. 2023, 15, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.R.; Li, W.; Luo, S.; Zhao, X.; Ma, C.H.; Liu, S.X. GC-MS Study of the Chemical Components of Different Aquilaria sinensis (Lour.) Gilgorgans and Agarwood from Different Asian Countries. Molecules 2018, 23, 2168. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wei, J.; Gao, Z.; Zhang, Z.; Lyu, J. A Review of Quality Assessment and Grading for Agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Herath, H.M.W.A.I.; Jinendra, B.M.S. Design, Development and Performance Evaluation of Pneumatic Type Agarwood Inoculum Injector (PAII). J. Agro-Technol. Rural Sci. 2024, 3, 36–42. [Google Scholar] [CrossRef]
- Ullah, M.A.; Agricultural, P.; Council, R.; Pakistan, I. Boosting up the economy of Pakistan through agarwood production. Int. J. Hortic. Food Sci. 2020, 2, 25–35. [Google Scholar] [CrossRef]
- Thompson, I.D.; Lim, T.; Turjaman, M. Expensive, Exploited and Endangered: A Review of the Agarwood-Producing Genera Aquilaria and Gyrinops: CITES Considerations, Trade Patterns, Conservation, and Management; ITTO Technical Series; International Tropical Timber Organization (ITTO): Yokohama, Japan, 2022. [Google Scholar]
- Schmidt, B.M. Regulatory and quality issues with the essential oils supply chain. ACS Symp. Ser. 2016, 1218, 27–48. [Google Scholar] [CrossRef]
- Tan, C.S.; Isa, N.M.; Ismail, I.; Zainal, Z. Agarwood Induction: Current Developments and Future Perspectives. Front. Plant Sci. 2019, 10, 122. [Google Scholar] [CrossRef]
- Wang, H.L.; Wong, T.H.; Liu, K.Y.E.; Tsang, H.L.R.; Lau, D.T.W. 3D documentation and classification of incense tree Aquilaria sinensis (Lour.) Spreng. wounds by photogrammetry and its potential conservation applications. Ecol. Evol. 2024, 14, e11536. [Google Scholar] [CrossRef]
- Garner, T.W.J.; Stephen, I.; Wombwell, E.; Fisher, M.C. The Amphibian trade: Bans or best practice? Ecohealth 2009, 6, 148–151. [Google Scholar] [CrossRef]
- Bakansing, S.M.; Sahri, M.H.; Liew, K.C. Wood Anatomical Structure of Aquilaria malaccensis Associated with Agarwood Occurrence and the Uses of Agarwood. In Prospects and Utilization of Tropical Plantation Trees; CRC Press: Boca Raton, FL, USA, 2019; pp. 179–221. [Google Scholar] [CrossRef]
- Tulik, M.; Jura-Morawiec, J. An arrangement of secretory cells involved in the formation and storage of resin in tracheid-based secondary xylem of arborescent plants. Front. Plant Sci. 2023, 14, 1268643. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liu, Q.; Qiu, S.; Dai, J.; Gao, X. DNA barcoding: An efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin. Med. 2022, 17, 112. [Google Scholar] [CrossRef]
- Thitikornpong, W.; Palanuvej, C.; Ruangrungsi, N. DNA barcoding for authentication of the endangered plants in genus Aquilaria. Thai J. Pharm. Sci. 2018, 42, 214–220. [Google Scholar] [CrossRef]
- Hadacek, F. Secondary metabolites as plant traits: Current assessment and future perspectives. CRC Crit. Rev. Plant Sci. 2002, 21, 273–322. [Google Scholar] [CrossRef]
- Hapuarachchi, H.C.; Wong, W.Y.; Koo, C.; Tien, W.P.; Yeo, G.; Rajarethinam, J.; Tan, E.; Chiang, S.; Chong, C.S.; Tan, C.H.; et al. Transient transmission of Chikungunya virus in Singapore exemplifies successful mitigation of severe epidemics in a vulnerable population. Int. J. Infect. Dis. 2021, 110, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Hishamuddin, M.S.; Lee, S.Y.; Syazwan, S.A.; Ramlee, S.I.; Lamasudin, D.U.; Mohamed, R. Highly divergent regions in the complete plastome sequences of Aquilaria are suitable for DNA barcoding applications including identifying species origin of agarwood products. 3 Biotech 2023, 13, 78. [Google Scholar] [CrossRef]
- Letsiou, S.; Madesis, P.; Vasdekis, E.; Montemurro, C.; Grigoriou, M.E.; Skavdis, G.; Moussis, V.; Koutelidakis, A.E.; Tzakos, A.G. DNA Barcoding as a Plant Identification Method. Appl. Sci. 2024, 14, 1415. [Google Scholar] [CrossRef]
- Kang, Y. Molecular identification of Aquilaria species with distribution records in China using DNA barcode technology. Mitochondrial DNA Part B 2021, 6, 1525–1535. [Google Scholar] [CrossRef]
- Hashim, Y.Z.H.Y.; Kerr, P.G.; Abbas, P.; Salleh, H.M. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef]
- Xu, J.; Du, R.; Wu, K.; Chen, J. Development of SSR markers related to agarwood production and genetic diversity of Aquilaria sinensis (Lour.) Spreng wild populations. J. Appl. Res. Med. Aromat. Plants 2024, 42, 100565. [Google Scholar] [CrossRef]
- Yarza, P.; Richter, M.; Peplies, J.; Euzeby, J.; Amann, R.; Schleifer, K.H.; Ludwig, W.; Glöckner, F.O.; Rosselló-Móra, R. The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 2008, 31, 241–250. [Google Scholar] [CrossRef]
- Kalra, R.; Kaushik, N. A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.). Phytochem. Rev. 2017, 16, 1045–1079. [Google Scholar] [CrossRef]
- Jung, D. The Cultural Biography of Agarwood—Perfumery in Eastern Asia and the Asian Neighbourhood1. J. R. Asiat. Soc. 2013, 23, 103–125. [Google Scholar] [CrossRef]
- Xie, Y.; Li, L.; Chen, Y.; Yang, Y.; Xu, H.; Wang, Z.; Yang, L. Rapid authentication of agarwood by using liquid extraction surface analysis mass spectrometry (LESA-MS). Phytochem. Anal. 2020, 31, 801–808. [Google Scholar] [CrossRef]
- Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Liu, Y.; Liu, P.; Yang, Y.; Xie, A.; Wei, J. Resinous included phloem as a key indicator of authentic or fake agarwood. PLoS ONE 2024, 19, e0312102. [Google Scholar] [CrossRef] [PubMed]
- Ramlı, A.N.M.; Yusof, S.; Bhuyar, P.; Amınan, A.W.; Tajuddın, S.N. Fungi mediated agarwood (A. malaccensis) production and their pharmaceutical applications: A systematic review. Int. J. Plant Based Pharm. 2022, 2, 261–270. [Google Scholar] [CrossRef]
- Jiang, S.; Ni, C.; Chen, G.; Liu, Y. A novel data fusion strategy based on multiple intelligent sensory technologies and its application in the quality evaluation of Jinhua dry-cured hams. Sens. Actuators B Chem. 2021, 344, 130324. [Google Scholar] [CrossRef]
- Hipiny, I.; Abdullah, J.; Bolhassan, N.A. Image-based Agarwood Resinous Area Segmentation using Deep Learning. April 2024. Available online: https://arxiv.org/pdf/2404.05129 (accessed on 9 July 2025).
- Martinez-Velasco, J.D.; Filomena-Ambrosio, A.; Garzón-Castro, C.L. Technological tools for the measurement of sensory characteristics in food: A review. F1000Research 2023, 12, 340. [Google Scholar] [CrossRef]
- Yao, C.; Qi, L.; Zhong, F.; Li, N.; Ma, Y. An integrated chemical characterization based on FT-NIR, GC–MS and LC-MS for the comparative metabolite profiling of wild and cultivated agarwood. J. Chromatogr. B 2022, 1188, 123056. [Google Scholar] [CrossRef]
- Ismail, N.; Rahiman, M.H.F.; Taib, M.N.; Ali, N.A.M.; Jamil, M.; Tajuddin, S.N. Application of ANN in agarwood oil grade classification. In Proceedings of the 2014 IEEE 10th International Colloquium on Signal Processing and Its Applications, CSPA, Langkawi, Malaysia, 1–2 March 2024; pp. 216–220. [Google Scholar] [CrossRef]
- Mei, W.L.; Yang, D.L.; Wang, H.; Yang, J.L.; Zeng, Y.B.; Guo, Z.K.; Dong, W.H.; Li, W.; Dai, H.F. Characterization and Determination of 2-(2-Phenylethyl)chromones in Agarwood by GC-MS. Molecules 2013, 18, 12324–12345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiang-Zhao, M.; Ran, J.; Gao, M.; Li, N.X.; Ma, Y.M.; Sun, Y.; Li, Y. Fusarium oxysporum infection-induced formation of agarwood (FOIFA): A rapid and efficient method for inducing the production of high quality agarwood. PLoS ONE 2022, 17, e0277136. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Yang, J.; Zhou, J.; Yuan, Y.; Jiang, C.; Chi, X.; Huang, L. Agarwood wound locations provide insight into the association between fungal diversity and volatile compounds in Aquilaria sinensis. R. Soc. Open Sci. 2019, 6, 190211. [Google Scholar] [CrossRef]
- Shivanand, P.; Arbie, N.F.; Krishnamoorthy, S.; Ahmad, N. Agarwood—The Fragrant Molecules of a Wounded Tree. Molecules 2022, 27, 3386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Liu, Y.Y.; Wei, J.H.; Yang, Y.; Zhang, Z.; Huang, J.Q.; Chen, H.Q.; Liu, Y.J. Production of high-quality agarwood in Aquilaria sinensis trees via whole-tree agarwood-induction technology. Chin. Chem. Lett. 2012, 23, 727–730. [Google Scholar] [CrossRef]
- Du, T.-Y.; Karunarathna, S.C.; Zhang, X.; Dai, D.-Q.; Mapook, A.; Suwannarach, N.; Xu, J.-C.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; et al. Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens. J. Fungi 2022, 8, 1197. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Yu, M.; Feng, J.; Wei, J.; Liu, Y. 2-(2-Phenylethyl)chromones increase in Aquilaria sinensis with the formation of agarwood. Front. Plant Sci. 2024, 15, 1437105. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Yang, Y.; Zhang, Z.; Wei, J.; Meng, H.; Chen, W.; Feng, J.; Gan, B.; Chen, X.; et al. Whole-tree Agarwood-Inducing Technique: An Efficient Novel Technique for Producing High-Quality Agarwood in Cultivated Aquilaria sinensis Trees. Molecules 2013, 18, 3086–3106. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, L. Characteristic quality analysis for biologically induced agarwood columns in Aquilaria sinensis. Env. Res. 2023, 235, 116633. [Google Scholar] [CrossRef]
- Yan, T.; Yang, S.; Chen, Y.; Wang, Q.; Li, G. Chemical Profiles of Cultivated Agarwood Induced by Different Techniques. Molecules 2019, 24, 1990. [Google Scholar] [CrossRef]
- Moreira, X.; Zas, R.; Sampedro, L. Methyl jasmonate as chemical elicitor of induced responses and anti-herbivory resistance in young conifer trees. In Plant Defence: Biological Control; Springer: Dordrecht, The Netherlands, 2012; pp. 345–362. [Google Scholar] [CrossRef]
- Rodríguez-García, A.; Martín, J.A.; López, R.; Sanz, A.; Gil, L. Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Ind. Crop. Prod. 2016, 86, 143–154. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, G.; Liu, J. Isolation and screening of fungi for enhanced agarwood formation in Aquilaria sinensis trees. PLoS ONE 2024, 19, e0304946. [Google Scholar] [CrossRef]
- Li, X.; Fang, X.; Cui, Z.; Hong, Z.; Liu, X.; Li, G.; Hu, H.; Xu, D. Anatomical, chemical and endophytic fungal diversity of a Qi-Nan clone of Aquilaria sinensis (Lour.) Spreng with different induction times. Front. Plant Sci. 2024, 15, 1320226. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sui, C.; Liu, Y.; Yang, Y.; Liu, P.; Zhang, Z.; Wei, J. Agarwood Formation Induced by Fermentation Liquid of Lasiodiplodia theobromae, the Dominating Fungus in Wounded Wood of Aquilaria sinensis. Curr. Microbiol. 2017, 74, 460–468. [Google Scholar] [CrossRef]
- Chhipa, H.; Kaushik, N. Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front. Microbiol. 2017, 8, 1286. [Google Scholar] [CrossRef] [PubMed]
- Sangareswari@Nagajothi, M.; Parthiban, K.T.; Kanna, S.U.; Karthiba, L.; Saravanakumar, D. Fungal Microbes Associated with Agarwood Formation. Am. J. Plant Sci. 2016, 7, 1445–1452. [Google Scholar] [CrossRef]
- de Vaan, M.D.; Eikelder, M.L.T.; Jozwiak, M.; Palmer, K.R.; Davies-Tuck, M.; Bloemenkamp, K.W.; Mol, B.W.J.; Boulvain, M. Mechanical methods for induction of labour. Cochrane Database Syst. Rev. 2023, 2023, CD001233. [Google Scholar] [CrossRef]
- Stefani, F.O.P.; Hamelin, R.C. Current state of genetically modified plant impact on target and non-target fungi. Environ. Rev. 2010, 18, 441–475. [Google Scholar] [CrossRef]
- López-Sampson, A.; Page, T. History of Use and Trade of Agarwood. Econ. Bot. 2018, 72, 107–129. [Google Scholar] [CrossRef]
- Prashant, S.P.; Bhawana, M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. Physiol. Plant. 2024, 176, e14400. [Google Scholar] [CrossRef]
- Zhu, Z.; Ng, D.W.H.; Park, H.S.; McAlpine, M.C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 2020, 6, 27–47. [Google Scholar] [CrossRef]
- Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Gao, M.; Han, X.; Sun, Y.; Chen, H.; Yang, Y.; Liu, Y.; Meng, H.; Gao, Z.; Xu, Y.; Zhang, Z.; et al. Overview of sesquiterpenes and chromones of agarwood originating from four main species of the genus Aquilaria. RSC Adv. 2019, 9, 4113–4130. [Google Scholar] [CrossRef]
- Nakanishi, T.; Yamagata, E.; Yoneda, K.; Nagashima, T.; Kawasaki, I.; Yoshida, T.; Mori, H.; Miura, I. Three fragrant sesquiterpenes of agarwood. Phytochemistry 1984, 23, 2066–2067. [Google Scholar] [CrossRef]
- Kumeta, Y.; Ito, M. Characterization of delta-guaiene synthases from cultured cells of Aquilaria, responsible for the formation of the sesquiterpenes in agarwood. Plant Physiol. 2010, 154, 1998–2007. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, J.-L.; Dong, W.-H.; Wang, Y.-L.; Zeng, J.; Yuan, J.-Z.; Wang, H.; Mei, W.-L.; Dai, H.-F. The Characteristic Fragrant Sesquiterpenes and 2-(2-Phenylethyl)chromones in Wild and Cultivated ‘Qi-Nan’ Agarwood. Molecules 2021, 26, 436. [Google Scholar] [CrossRef] [PubMed]
- Pripdeevech, P.; Khummueng, W.; Park, S.K. Identification of odor-active components of agarwood essential oils from thailand by solid phase microextraction-GC/MS and GC-O. J. Essent. Oil Res. 2011, 23, 46–53. [Google Scholar] [CrossRef]
- Shao, H.; Mei, W.-L.; Dong, W.-H.; Gai, C.-J.; Li, W.; Zhu, G.-P.; Dai, H.-F. 2-(2-Phenylethyl)chromone Derivatives of Agarwood Originating from Gyrinops salicifolia. Molecules 2016, 21, 1313. [Google Scholar] [CrossRef]
- Gao, M.; Han, X.; Huang, J.; Sun, Y.; Liu, Y.; Chen, H.; Jin, Y.; Yang, Y.; Gao, Z.; Xu, Y.; et al. Simultaneous determination of multiple active 2-(2-phenylethyl)chromone analogues in agarwood by HPLC, QAMS, and UPLC-MS. Phytochem. Anal. 2021, 32, 412–422. [Google Scholar] [CrossRef]
- Ador, M.A.H.; Farabi, F.; Ahmed, R.; Khatun, R.; Haque, M.M.U. Agar (Aquilaria agallocha Roxb.) based small-scale enterprises in Bangladesh: Management, production, marketing and role in socio-economic development. Trees For. People 2021, 6, 100141. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.-G.; Xu, Y.; Zhang, J.-F.; Song, X.-Q.; Zhu, G.-P.; Hu, X.-W. Dynamic accumulation of sesquiterpenes in essential oil of Pogostemon cablin. Revista Brasileira de Farmacognosia. Rev. Bras. Farm. 2014, 24, 626–634. [Google Scholar] [CrossRef]
- Okugawa, H.; Ueda, R.; Matsumoto, K.; Kawanishi, K.; Kato, A. Effect of jinkoh-eremol and agarospirol from agarwood on the central nervous system in mice. Planta Med. 1996, 62, 2–6. [Google Scholar] [CrossRef]
- Liao, G.; Mei, W.L.; Kong, F.D.; Li, W.; Yuan, J.Z.; Dai, H.F. 5,6,7,8-Tetrahydro-2-(2-phenylethyl)chromones from artificial agarwood of Aquilaria sinensis and their inhibitory activity against acetylcholinesterase. Phytochemistry 2017, 139, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, Y.-L.; Dong, W.-H.; Li, W.; Wang, P.; Cao, X.; Yuan, J.-Z.; Chen, H.-Q.; Mei, W.-L.; Dai, H.-F. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. J. Enzym. Inhib. Med. Chem. 2019, 34, 853–862. [Google Scholar] [CrossRef]
- Kim, R.; Wu, Y.; Tong, R. Asymmetric total syntheses of sarglamides A, C, D, E, and F. Chem. Sci. 2024, 15, 12856–12860. [Google Scholar] [CrossRef]
- Wang, S.-L.; Hwang, T.-L.; Chung, M.-I.; Sung, P.-J.; Shu, C.-W.; Cheng, M.-J.; Chen, J.-J. New Flavones, a 2-(2-Phenylethyl)-4H-chromen-4-one Derivative, and Anti-Inflammatory Constituents from the Stem Barks of Aquilaria sinensis. Molecules 2015, 20, 20912. [Google Scholar] [CrossRef]
- Monggoot, S.; Kulsing, C.; Wong, Y.F.; Pripdeevech, P. Incubation of Aquilaria subintegra with Microbial Culture Supernatants Enhances Production of Volatile Compounds and Improves Quality of Agarwood Oil. Indian J. Microbiol. 2018, 58, 201–207. [Google Scholar] [CrossRef]
- Wang, Q.H.; Peng, K.; Tan, L.H.; Dai, H.F. Aquilarin A, a New Benzenoid Derivative from the Fresh Stem of Aquilaria sinensis. Molecules 2010, 15, 4011–4016. [Google Scholar] [CrossRef] [PubMed]
- Büchi, G.; Wittenau, M.S.V.; White, D.M. Terpenes. X.1, 2 The Constitution of Maaliol. J. Am. Chem. Soc. 1959, 81, 1968–1980. [Google Scholar] [CrossRef]
- Quli, S.M.S. Biodiversity conservation: Analysis of problems & extension strategy for securing people’s participation. Adv. For. Res. India 2000, 22, 24–50. [Google Scholar]
- Huang, S.; Chen, J.; Liu, X.; Xing, C.; Zhao, L.; Chan, K.; Lu, G. Evaluation of the Pharmaceutical Activities of Chuanxiong, a Key Medicinal Material in Traditional Chinese Medicine. Pharmaceuticals 2024, 17, 1157. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, Y.-F.; Li, J.; Gu, Y.-F.; Huo, H.-X.; Li, S.-S.; Song, Y.-L.; Zhu, Z.-X.; Tu, P.-F. GYF-21, an Epoxide 2-(2-Phenethyl)-Chromone Derivative, Suppresses Innate and Adaptive Immunity via Inhibiting STAT1/3 and NF-κB Signaling Pathways. Front. Pharmacol. 2017, 8, 281. [Google Scholar] [CrossRef]
- Näf, R.; Velluz, A.; Brauchli, R.; Thommen, W. Agarwood oil (Aquilaria agallocha Roxb.). Its composition and eight new valencane-, eremophilane-and vetispirane-derivatives. Flavour Fragr. J. 1995, 10, 147–152. [Google Scholar] [CrossRef]
- Dong, W.-H.; Wang, H.; Guo, F.-J.; Mei, W.-L.; Chen, H.-Q.; Kong, F.-D.; Li, W.; Zhou, K.-B.; Dai, H.-F. Three New 2-(2-Phenylethyl)chromone Derivatives of Agarwood Originated from Gyrinops salicifolia. Molecules 2019, 24, 576. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Kitahara, T.; Mori, K. Stereocontrolled synthesis of (-)-prezizanol,(-)-prezizaene, their epimers and (-)-allokhusiol. Tetrahedron 1990, 46, 761–774. [Google Scholar] [CrossRef]
- Zhao, H.; Peng, Q.; Han, Z.; Yang, L.; Wang, Z. Three New Sesquiterpenoids and One New Sesquiterpenoid Derivative from Chinese Eaglewood. Molecules 2016, 21, 281. [Google Scholar] [CrossRef]
- Mei, W.-L.; Zeng, Y.-B.; Wu, J.; Cui, H.-B.; Dai, H.-F. Chemical composition and anti-MRSA activity of the essential oil from Chinese eaglewood. J. Chin. Pharm. Sci. 2008, 17, 225. [Google Scholar]
- Liu, C.M.; Perng, M.H.; Chen, C.Y. The antioxidation and antiproliferation activity of flavonoids from aquilaria agallocha and Aquilaria sinensis. Biomed. Res. 2018, 29, 2191–2196. [Google Scholar] [CrossRef]
- Guxasekera, S.P.; Kinghorn, A.D.; Cordell, G.A.; Farnsworth, N.R. Plant anticancer agents. XIX Constituents of Aquilaria malaccensis. J. Nat. Prod. 1981, 44, 569–572. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Zhang, J.; Zhang, J.; Gao, W. Spasmolytic activity of Aquilariae Lignum Resinatum extract on gastrointestinal motility involves muscarinic receptors, calcium channels and NO release. Pharm. Biol. 2018, 56, 559–566. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Xue, J.; Wei, J.; Zhang, Z.; Chen, H. Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees. Molecules 2011, 16, 4884–4896. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, M.A.; Lawal, O.A.; Sikiru, A.A.; Ogunwande, I.A.; Avoseh, O.N. Chemical Constituents and Antimicrobial Activity of Essential Oil of Senna podocarpa (Guill. et Perr.) Lock. Am. J. Plant Sci. 2014, 5, 2448–2453. [Google Scholar] [CrossRef]
- Varma, K.R.; Maheshwari, M.L.; Bhattacharyya, S.C. Terpenoids—LXII: The constitution of agarospirol, a sesquiterpenoid with a new skeleton. Tetrahedron 1965, 21, 115–138. [Google Scholar] [CrossRef]
- Takemoto, H.; Ito, M.; Shiraki, T.; Yagura, T.; Honda, G. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. J. Nat. Med. 2008, 62, 41–46. [Google Scholar] [CrossRef]
- Wang, M.J.; Chung, M.I.; Chen, J.J. 2-(2-Phenylethyl)-4H-chromen-4-one Derivatives from the Resinous Wood of Aquilaria sinensis with Anti-Inflammatory Effects in LPS-Induced Macrophages. Molecules 2018, 23, 289. [Google Scholar] [CrossRef] [PubMed]
- Pornpunyapat, J.; Chetpattananondh, P.; Tongurai, C. Mathematical modeling for extraction of essential oil from Aquilaria crassna by hydrodistillation and quality of agarwood oil. Bangladesh J. Pharmacol. 2011, 6, 18–24. [Google Scholar] [CrossRef]
- Ishihara, M.; Tsuneya, T.; Shiga, M.; Uneyama, K. Three sesquiterpenes from agarwood. Phytochemistry 1991, 30, 563–566. [Google Scholar] [CrossRef]
- Pant, P.; Rastogi, R.P. Agarol, a new sesquiterpene from Aquilaria agallocha. Phytochemistry 1980, 19, 1869–1870. [Google Scholar] [CrossRef]
- Kristanti, A.N.; Tanjung, M.; Aminah, N.S. Review: Secondary Metabolites of Aquilaria, a Thymelaeaceae Genus. Mini Rev. Org. Chem. 2018, 15, 36–55. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Dong, W.-H.; Yang, J.-L.; Li, W.; Wang, J.; Mei, W.-L.; Dai, H.-F. Monitoring the Chemical Profile in Agarwood Formation within One Year and Speculating on the Biosynthesis of 2-(2-Phenylethyl)Chromones. Molecules 2018, 23, 1261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hussain, M.; Jiang, Z.; Wang, Z.; Gao, J.; Ye, F.; Mao, R.; Li, H. Aquilaria Species (Thymelaeaceae) Distribution, Volatile and Non-Volatile Phytochemicals, Pharmacological Uses, Agarwood Grading System, and Induction Methods. Molecules 2021, 26, 7708. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.; Kumar, P.; Kaur, E.; Sood, A.; Acharya, V.; Warghat, A.R. Comparative transcriptome and tissue-specific expression analysis of genes reveal tissue-cultured plants as an alternative source for phenylethanoids and phenylpropanoids in Rhodiola imbricata (Edgew.). Gene 2022, 836, 146672. [Google Scholar] [CrossRef]
- Yang, D.; Du, X.; Liang, X.; Han, R.; Liang, Z.; Liu, Y.; Liu, F.; Zhao, J.; Blazquez, M.A. Different Roles of the Mevalonate and Methylerythritol Phosphate Pathways in Cell Growth and Tanshinone Production of Salvia miltiorrhiza Hairy Roots. PLoS ONE 2012, 7, e46797. [Google Scholar] [CrossRef]
- Wei, J.; Yang, Y.; Peng, Y.; Wang, S.; Zhang, J.; Liu, X.; Liu, J.; Wen, B.; Li, M. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants (Camellia sinensis). Int. J. Mol. Sci. 2023, 24, 6937. [Google Scholar] [CrossRef]
- Muhlemann, J.K.; Klempien, A.; Dudareva, N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef]
- Wang, A.; Liu, J.; Huang, L. Comparative Analysis of Metabolome and Transcriptome in Different Tissue Sites of Aquilaria sinensis (Lour.) Gilg. Molecules 2024, 29, 1075. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; He, Q.; Feng, J.; Chen, D.; Wei, J.; Liu, Y. Chemical Composition and Potential Properties in Mental Illness (Anxiety, Depression and Insomnia) of Agarwood Essential Oil: A Review. Molecules 2022, 27, 4528. [Google Scholar] [CrossRef]
- Alam, J.; Mujahid, M.; Badruddeen; Jahan, Y.; Bagga, P.; Rahman, M.A. Hepatoprotective potential of ethanolic extract of Aquilaria agallocha leaves against paracetamol induced hepatotoxicity in SD rats. J. Tradit. Complement. Med. 2016, 7, 9–13. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M.; Chan, K. Historical Perspective of Traditional Indigenous Medical Practices: The Current Renaissance and Conservation of Herbal Resources. Evid.-Based Complement. Altern. Med. 2014, 2014, 525340. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Z.; Wang, C.; Wu, C.; Guo, P.; Wei, J. Chemical constituents and pharmacological activity of agarwood and aquilaria plants. Molecules 2018, 23, 342. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, H.Q.; Wang, H.; Mei, W.L.; Dai, H.F. Natural products in agarwood and: Aquilaria plants: Chemistry, biological activities and biosynthesis. Nat. Prod. Rep. 2020, 38, 528–565. [Google Scholar] [CrossRef]
- Zaidi, N.; Haron, M.N.; Komilus, C.F.; Lananan, F.; Chew, H.H.; Yaakub, N.; Kari, A. Effect of Karas (Aquilaria malaccensis) on Male Reproductive Organs and Sperm Quality in Adult Sprague Dawley Rats. Trop. Life Sci. Res. 2023, 34, 241. [Google Scholar] [CrossRef]
- Yang, B.; Qin, C.; Wang, J.; He, M.; Melvin, T.M.; Osborn, T.J.; Briffa, K.R. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2014, 111, 2903–2908. [Google Scholar] [CrossRef]
- Oh, Y.C.; Jeong, Y.H.; Cho, W.K.; Ha, J.H.; Gu, M.J.; Ma, J.Y. Anti-Inflammatory and Analgesic Effects of Pyeongwisan on LPS-Stimulated Murine Macrophages and Mouse Models of Acetic Acid-Induced Writhing Response and Xylene-Induced Ear Edema. Int. J. Mol. Sci. 2015, 16, 1232–1251. [Google Scholar] [CrossRef]
- Sun, K.; Song, X.; Jia, R.; Yin, Z.; Zou, Y.; Li, L.; Yin, L.; He, C.; Liang, X.; Yue, G.; et al. Evaluation of Analgesic and Anti-Inflammatory Activities of Water Extract of Galla Chinensis In Vivo Models. Evid.-Based Complement. Altern. Med. 2018, 2018, 6784032. [Google Scholar] [CrossRef] [PubMed]
- Alamil, J.M.R.; Paudel, K.R.; Chan, Y.; Xenaki, D.; Panneerselvam, J.; Singh, S.K.; Gulati, M.; Jha, N.K.; Kumar, D.; Prasher, P.; et al. Rediscovering the Therapeutic Potential of Agarwood in the Management of Chronic Inflammatory Diseases. Molecules 2022, 27, 3038. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-C.; Chiang, W.; Liu, G.-P.; Chien, Y.-L.; Chang, J.-Y.; Lee, C.-K.; Lo, J.-M.; Huang, S.-L.; Shih, M.-C.; Kuo, Y.-H. 2,2’-Diphenyl-1-picrylhydrazyl radical-scavenging active components from adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) hulls. J. Agric. Food Chem. 2002, 50, 5850–5855. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Kamonwannasit, S.; Nantapong, N.; Kumkrai, P.; Luecha, P.; Kupittayanant, S.; Antibacterial, N.C. activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 20. [Google Scholar] [CrossRef]
- Salehi, B.; Ata, A.; Anil Kumar, N.V.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Ayatollahi, S.A.; Fokou, P.V.T.; Kobarfard, F.; Zakaria, Z.A.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gong, B.; Peng, D.; Liu, Y.; Wu, Y.; Wei, J. Agarwood extract mitigates alcoholic fatty liver in C57 mice via anti oxidation and anti inflammation. Mol. Med. Rep. 2023, 28, 210. [Google Scholar] [CrossRef]
- Okugawa, H.; Ueda, R.; Matsumoto, K.; Kawanishi, K.; Kato, K. Effects of sesquiterpenoids from ‘Oriental incenses’ on acetic acid-induced writhing and D2 and 5-HT2A receptors in rat brain. Phytomedicine 2000, 7, 417–422. [Google Scholar] [CrossRef]
- Saini, H.; Basu, P.; Nesari, T.; Huddar, V.G.; Ray, K.; Srivastava, A.; Gupta, S.; Mehrotra, R.; Tripathi, R. Therapeutic and pharmacological efficacy of plant-derived bioactive compounds in targeting breast cancer. Am. J. Transl. Res. 2024, 16, 1499. [Google Scholar] [CrossRef] [PubMed]
- Nester, T.M.; Hale, L.D.S. Effectiveness of a pharmacist-acquired medication history in promoting patient safety. Am. J. Health-Syst. Pharm. 2002, 59, 2221–2225. [Google Scholar] [CrossRef] [PubMed]
Criteria | Fungal Induction | Physical Induction (Artificial Induction) |
---|---|---|
Mechanism | Introduction of specific fungi (e.g., Fusarium sp.) to induce resin production [44]. | Physical wounding (e.g., drilling and girdling) to stimulate the tree’s natural defense mechanism and thus resin production [52]. |
Time required for resin production | In general, the production time is short because of the direct action of the fungi on the wood [53]. | The production time may be prolonged because these techniques rely on the tree’s natural response to physical damage. |
Resin quality | High-quality resin with desirable chemical composition, often influenced by the fungal strain used [54]. | Quality can vary widely depending on the extent of wounding and the health of the tree [55]. |
Control and consistency | More control over the quality and quantity of resin produced, with consistent results [51]. | Less consistent because the outcome depends on the tree’s response to physical injury [6]. |
Environmental impact | Risk of unintended spread of pathogens [56]. | Minimal direct environmental impact but overuse can lead to tree damage or death [57]. |
Cost | Moderate to high because specialized fungal cultures and careful application are required [11]. | Relatively low because manual or mechanical wounding is used; however, cost can increase if extensive labor is required [58]. |
Sustainability | More sustainable because the process can be carefully controlled and optimized; however, these techniques are dependent on appropriate management of fungi [45]. | Sustainable if managed appropriately; however, overuse can lead to overharvesting and depleting tree resources [59]. |
Potential risks | Pathogenic fungi may spread to non-target trees in the case of improper management [60]. | The tree may die in the case of excessive or improper wounding [54]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baig, A.; Akram, A.; Lin, M.-K. Agarwood in the Modern Era: Integrating Biotechnology and Pharmacology for Sustainable Use. Int. J. Mol. Sci. 2025, 26, 8468. https://doi.org/10.3390/ijms26178468
Baig A, Akram A, Lin M-K. Agarwood in the Modern Era: Integrating Biotechnology and Pharmacology for Sustainable Use. International Journal of Molecular Sciences. 2025; 26(17):8468. https://doi.org/10.3390/ijms26178468
Chicago/Turabian StyleBaig, Aqsa, Adeel Akram, and Ming-Kuem Lin. 2025. "Agarwood in the Modern Era: Integrating Biotechnology and Pharmacology for Sustainable Use" International Journal of Molecular Sciences 26, no. 17: 8468. https://doi.org/10.3390/ijms26178468
APA StyleBaig, A., Akram, A., & Lin, M.-K. (2025). Agarwood in the Modern Era: Integrating Biotechnology and Pharmacology for Sustainable Use. International Journal of Molecular Sciences, 26(17), 8468. https://doi.org/10.3390/ijms26178468